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Abstract: For more than three decades, researchers have known that consensus splice sites alone are
not sufficient regulatory elements to provide complex splicing regulation. Other regulators, so-called
splicing regulatory elements (SREs) are needed. Most importantly, their sequence variants often
underlie the development of various human disorders. However, due to their variable location
and high degeneracy, these regulatory sequences are also very difficult to recognize and predict.
Many different approaches aiming to identify SREs have been tried, often leading to the development
of in silico prediction tools. While these tools were initially expected to be helpful to identify
splicing-affecting mutations in genetic diagnostics, we are still quite far from meeting this goal.
In fact, most of these tools are not able to accurately discern the SRE-affecting pathological variants
from those not affecting splicing. Nonetheless, several recent evaluations have given appealing
results (namely for EX-SKIP, ESRseq and Hexplorer predictors). In this review, we aim to summarize
the history of the different approaches to SRE prediction, and provide additional validation of these
tools based on patients’ clinical data. Finally, we evaluate their usefulness for diagnostic settings and
discuss the challenges that have yet to be met.

Keywords: splicing regulatory elements; in silico predictions; pre-mRNA splicing; mutation;
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1. Introduction

One of the most important features distinguishing prokaryotic from eukaryotic gene expression
is the process of RNA splicing. During splicing, the borders of intervening sequences (so-called
introns) are recognized, cleaved, and exons are then ligated together. This process is catalyzed
by a large ribonucleoprotein complex termed spliceosome. Through multiple protein–RNA and
RNA–RNA interactions, this huge molecular machine recognizes pre-mRNA sequence elements
indicated as “splicing signals”. These include: donor splice site, branch point site and acceptor splice
site. Importantly, mammalian genomes contain a huge number of pseudo splice sites, i.e. sequences that
resemble real splice sites but are never used under normal conditions. These pseudo sites outnumber
the authentic splice sites by an order of magnitude. Therefore, additional regulatory sequences are
necessary to discern between the two and are referred to as “splicing regulatory elements” (SREs).
The function of the SREs is to bind splicing activators or repressors and influence the choice of adjacent
splice sites. In general, SREs play a key role both in constitutive splicing as well as the regulation of
alternative splicing (the process through which more than one mRNA isoform can be created from
a single precursor transcript) [1–3].
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Compared to the relatively conserved splice sites, the SRE sequences are much more degenerate [4].
SREs were originally categorized according to their localization and effect on splicing as exonic or
intronic splicing enhancers (ESEs and ISEs) and silencers (ESSs and ISSs). Despite still being in
use, this division now seems to be rather simplistic, as some SREs can even act adversely from
various exonic or various intronic positions (e.g., SRp40 binding elements act mostly as silencers in
ADAR2 exon 8, but behave as enhancers in about 25% of positions when shifted within the same
exon; similarly, neuron-specific splicing factors Nova activate alternative exon inclusion when bound
to the downstream intron, but repressed its inclusion when bound to the upstream intron) [2,5].
Importantly, most regulatory contexts emerge from overlapping RNA elements. The existence of
composite exonic regulatory elements of splicing (CERES) proves that some of the overlapping
elements may have both silencing and enhancing properties [6]. Complicating the matter a little bit
more, the elements’ recognition is also influenced by its accessibility, i.e. the state of chromatin and
RNA secondary structure [2].

In addition, SREs can influence not only the standard pre-mRNA splicing process but most
probably also backsplicing—a special type of alternative splicing which leads to circular RNA
(circRNA) formation. circRNAs are abundant, stable and evolutionary conserved noncoding RNAs
often expressed in a tissue specific manner. The tissue specificity and the lack of correlation between
expression levels of a circRNA and the linear transcript from which it is derived indicate that the
process of circRNA biogenesis may be precisely regulated [7]. Supporting the role of SREs in the
circRNA biogenesis, several splicing regulators have been found to be implicated in this process.
In particular, regulation of circRNAs formation was demonstrated for splicing factor Muscleblind and
several hnRNP and SR family proteins in Drosophila [8,9]. Similarly, splicing regulators QKI, RBM20
and FUS have been described to activate or repress biogenesis of specific circRNAs in human [10–12].

In theory, the mutation of any cis-acting splicing element may result in aberrant splicing.
In accordance, pre-mRNA splicing defects are responsible for a substantial proportion of inherited
disorders (estimated between 15% and 50%) [4]. Notably, since deregulation of specific circRNAs levels
has already been shown to be associated with human diseases, this could be another way through
which SRE sequence variants might lead to pathology [7]. However, further research will be needed to
confirm the role of particular SRE aberrations in circRNAs genesis and disease development.

Although some exons seem to be especially prone to SRE aberrations [13–15], several systematic
studies showed that SRE changes generally lead to splicing defects much less frequently than splice site
disruptions [16–19]. Still, SRE-affecting mutations impose a significant burden on genetic diagnostics,
as they can occur virtually anywhere in the exons or introns and are extremely difficult to be
distinguished from harmless changes, which are also very abundant in human genomes [20]. This issue
is even more pronounced now, as the next generation sequencing produces thousands of novel variants
with every single read [21].

For all these reasons, many potential SRE-affecting variants fall into the category of so-called
“variants of unknown significance” [20]. To distinguish these mutations from harmless non
splicing-affecting variants, medical geneticists can either use laborious in vitro studies or much more
feasible (yet less reliable) in silico predictions [22]. In this review, we summarize the current state of
SRE predictions and evaluate their reliability and potential use in clinical diagnostic settings.

2. Predictions on SREs

Following the striking finding that virtually any DNA change may affect splicing by disrupting
potential SREs, many attempts to locate these elements have been performed. Some systematic
approaches then led to the development of several SRE-predicting tools that are listed in Table 1
and Figure 1. At first, Liu et al. attempted to define ESE motifs by using the method of “functional
systematic evolution of ligands by exponential enrichment” (functional SELEX). They used this
in vitro selection of splicing activating sequences to determine the binding preferences of four classical
SR-proteins, SRSF1, SRSF2, SRSF5 and SRSF6 [23]. Based on these matrices, Cartegni et al. then
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developed an online tool called ESE-finder [24]. The major advantage of this approach is that users can
easily link any particular splicing-affecting sequence with its cognate binding factor. On the other hand,
all sequence variants often induce ambiguous changes in the predicted scores for several individual
factors, so the conclusions about the variant’s effect on splicing may not be very straightforward.
In addition, there is no clue what score changes are sufficient to impact splicing events, because
threshold values indicated in the program may be specific for the used experimental conditions [23].
The same approach (SELEX) was later used to assign binding preferences to other splicing factors,
such as hnRNPA1, Tra2beta, 9G8 and U2AF [25,26].

Table 1. Selected individual SRE-prediction tools.

Prediction Tool Principle Website Reference Evaluation

ESE-finder SELEX (in vitro selection of ligands) http://krainer01.cshl.edu/cgi-bin/tools/ESE3/
esefinder.cgi?process=home [24] [15,19,27–31]

ESRseq
testing of all possible k-mers for
positive and negative splicing

influences, based on QUEPASA method
[32] [13,15,19]

FAS-ESS analysis of random sequence silencing
properties in the minigene settings http://genes.mit.edu/fas-ess/ [33] [30]

Hexplorer statistical comparison of hexamer
sequence motifs

http://nar.oxfordjournals.org/content/early/
2014/08/21/nar.gku736/suppl/DC1 [34] [15,19]

PESX statistical comparison of octamer
sequence motifs http://cubio.biology.columbia.edu/pesx/pesx/ [35] [19,27]

RESCUE-ESE statistical comparison of hexamer
sequence motifs http://genes.mit.edu/burgelab/rescue-ese/ [36] [19,27,30,31]

SPANR splicing code, machine learning http://tools.genes.toronto.edu/ [37] [15]

SpliceAid2 database of in vitro proved splicing
factors binding sites www.introni.it/spliceaid.html [38]
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Next, Fairbrother et al. presented another pioneering approach to identifying ESEs: Relative
Enhancer and Silencer Classification by Unanimous Enrichment (RESCUE) [39]. They compared
the occurrence of all possible hexanucleotide motifs in exonic and intronic sequences and both in
exons with strong and weak splice sites. The rationale behind such an experiment is that ESEs are
more prevalent in exons than in introns and that exons with weak splice sites are more dependent
on the presence of ESEs. The authors made their results easily accessible with an online tool named
RESCUE-ESE [36]. This tool is easy to use, simply showing the number and identity of predicted ESEs.
However, there is no correction for possible elements’ overlap and for any related context dependence.

http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://genes.mit.edu/fas-ess/
http://nar.oxfordjournals.org/content/early/2014/08/21/nar.gku736/suppl/DC1
http://nar.oxfordjournals.org/content/early/2014/08/21/nar.gku736/suppl/DC1
http://cubio.biology.columbia.edu/pesx/pesx/
http://genes.mit.edu/burgelab/rescue-ese/
http://tools.genes.toronto.edu/
www.introni.it/spliceaid.html
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Other scientists later adapted the same principle for further SRE identification, only using different
rationales. From those, we would like to point out the more recent Hexplorer approach by the Schaal
laboratory which showed improved efficiency in current evaluation studies (see below) [34] In analogy
with RESCUE-ESE, this approach relies on the computational comparison of hexamer frequencies
in exonic and intronic sequences around weak and strong 5’ splice sites. Its advantage comes from
counting each nucleotide’s probability of being part of an enhancer or a silencer from all the six
hexamers overlapping it. Therefore, the program is able to better cover context dependence compared
to methods based on individual predicted SRE motifs [34].

In parallel to analyzing existing genomic data, another way to define functional SREs is to use
splicing reporter systems to test many different sequence combinations for enhancer or silencer
properties. For example, Wang et al. adopted a systematic minigene analysis to test random
decanucleotides for their ESS properties [33]. More specifically, they inserted random sequences
into the middle exon of a three-exon minigene. The sequences that led to exon skipping of this
otherwise constitutive exon were assigned as ESS. They can easily be searched using an online tool,
FAS-ESS. Notably, one of the major drawbacks to this approach is that the discovered motifs might be
functional only in the particular cellular and genomic (or minigene) context [2]. Later, Ke et al. used
an analogous approach to assign enhancing or silencing properties to all hexanucleotide combinations
(ESRseq scores) [32]. In order to make provision for the context dependence of the hexamer activities,
these authors tested all the sequence motifs in five different exonic locations. Similar to the Hexplorer
method, the ESRseq score for each hexamer was counted based on all the overlapping hexamers’
individual scores. Unfortunately, these scores are accessible only as supplementary tables to the article
and no online program based on this approach has yet been made available to the public.

Recently, Xiong et al. [37] presented another approach based on splicing code modeling, which they
used to design the SPANR tool (Splicing-based Analysis of Variants) [37]. The tool predicts the effects
that a nucleotide variant exerts on cassette exon alternative splicing. This method extracts a huge
number of DNA sequence features (cis-elements) from exon triplets (three exons and their intervening
introns) and uses them to predict the percentage of middle exon inclusion. Owing to its non-linear
nature, the model incorporates context dependent effects. In addition, the tool was trained on data from
16 different human tissues, which should enable it to make provision for some tissue specific features.

In addition to genomics and minigene systems, other possible approaches to identify splicing
regulatory evidence have also been followed. In particular, Piva et al. have presented their database
(called SpliceAid2) of human splicing factor expression data and RNA target motifs [38]. Here, users
can get predictions on potential SREs based strictly on comparison with experimentally proved splicing
regulators’ binding sites. The advantage of this approach is that it allows the identification of both the
potential SRE element and the protein which may bind to it. Of course, the limitation is that we still
largely ignore the binding site specificities of many RNA binding proteins. In addition, recent works
on identifying RNA binding proteins in HeLa cells have uncovered a huge number of RNA binding
proteins for which we completely ignore their potential to alter the splicing process [40].

Up until this moment, the best way to use these programs to obtain an accurate prediction of
SRE elements in a given experimental system has been to use them in combination. For example,
Raponi et al. adopted an integrated approach: they got the best predictions on mutation-induced
exon skipping when they combined multiple individual SRE predictions together (see Table 2 for
details) [41]. The resulting tools, EX-SKIP and HOT-SKIP, count the sum of ESEs and ESSs derived from
individual predictions and then calculate the ESS/ESE ratio, either for the specific variant (in EX-SKIP)
or for each possible single nucleotide substitution in a selected exon (in HOT-SKIP). An advantage of
these tools is that the individual predictions are collectively shown on the results page, so the user
does not have to approach each program individually. Such an advantage is also held by several online
engines/web pages that include several individual prediction tools at one web location, e.g., Sroogle
and Human Splicing Finder (Table 2) [26,42].



Int. J. Mol. Sci. 2017, 18, 1668 5 of 14

Table 2. Selected tools and online engines combining multiple SRE-prediction tools.

Prediction Tool Included Tools Website Reference Evaluation

EX-SKIP
PESE and PESS [35], FAS-ESS [33],

RESCUE-ESE [36], EIEs and IIEs [43],
NI-ESE and NI-ESS [44]

http://ex-skip.img.cas.cz/ [41] [13,15,19,31,45]

HOT-SKIP PESE and PESS, FAS-ESS, RESCUE-ESE,
EIEs and IIEs, NI-ESE and NI-ESS http://hot-skip.img.cas.cz/ [41]

Human Splicing
Finder (HSF)

ESE-finder [24], RESCUE-ESE, PESE and
PESS, EIEs and IIEs, FAS-ESS and ESS

decamers [33], Exonic splicing regulatory
sequences [5], HSF- specific matrices for

Tra2-β, 9G8 and hnRNP A1 [26]

http://www.umd.be/HSF3/
index.html [26] [15]

Sroogle

ESE-finder, RESCUE-ESE, FAS-ESS, PESE
and PESS, other SRE predictions

according to Voelker [46], Yeo [47],
Goren [5]

http://sroogle.tau.ac.il/ [42]

3. Efficiency of SRE Predictions

An important point about SRE predictors is their reliability in terms of concordance between
predicted events and the real situation in cells, tissues and organisms. However, due to methodological
constraints and lack of primary samples, most researchers often have had to rely only on in vitro
results. Yet profound analyses showed rather good agreement between in vitro and in vivo splicing
affection [48], suggesting that this drawback does not compromise substantially the validity of
SRE predictions.

Despite the fact that developers of SRE-predictors mostly proved their functionality using
independent in vitro analyses, additional studies often put the reliability of these tools in
question. On one hand, SRE-prediction tools have been shown to recognize motifs with general
splicing-regulatory properties. Particularly, the tools were demonstrated to statistically distinguish
sequences with different propensity to activate cryptic splice sites or the splicing-affecting variants from
harmless SNPs [30,49]. In parallel, Raponi et al. indicated several statistically significant correlations
between SRE predictions and the level of BRCA1 exon 6 inclusion [41]. On the other hand, difficulties
arose when these predictors were tested for discerning individual splicing-affecting variants from
harmless sequence changes. Many studies have therefore indicated SRE-predicting tools as less
efficient, often inconclusive and difficult to interpret, possibly because most of these programs were
not designed for this purpose [13,27–31]. For this reason, these programs have not been regarded as
useful in clinical investigations [4].

Interestingly, several recent evaluations have pinpointed some promising achievements of
newly developed algorithms (EX-SKIP, ESRseq scores and Hexplorer) to recognize SRE-affecting
variants [13,15,19,45]. In particular, testing EX-SKIP with 29 variants found in five CFTR gene exons
showed, on average, a 72.5% success rate in predicting the direction of exon inclusion change [45].
When assessing its capacity to distinguish variants capable of increasing exon skipping, the predictions
suffered more from a lower sensitivity (71%) than specificity issues (75%). However, these numbers
could be biased due to the higher number of mutations leading to exon skipping in the dataset
compared to the silent variants and variants promoting exon inclusion. In another evaluation using
35 exonic variants in six different immunity-related genes, EX-SKIP showed reasonable sensitivity
(75%) but poor specificity, possibly due to a low representation of splicing-affecting mutations in the
testing data [19]. Likewise, Soukarieh et al. detected a similar sensitivity (75%) but again low specificity
of EX-SKIP predictions (46%) [15].

For ESRseq scores, Di Giacomo et al. was the first study to independently show its promising
potential in discerning splicing-affecting from non-affecting changes [13]. Using a tentative threshold
for ESRseq score difference on 32 variants from BRCA2 exon 7, they obtained no false negatives and
just two false positive predictions on exon skipping induction. Later, Soukarieh et al. extended this
analysis with four other sets of variants (from MLH1 exon 10, BRCA1 exon 6, CFTR exon 12 and NF1

http://ex-skip.img.cas.cz/
http://hot-skip.img.cas.cz/
http://www.umd.be/HSF3/index.html
http://www.umd.be/HSF3/index.html
http://sroogle.tau.ac.il/
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exon 37) including 154 individual point mutations in total [15]. The predictions on exon skipping
variants in individual datasets showed sensitivity to be between 67% and 100% (weighed mean: 85%)
and specificity between 66% and 94% (weighed mean: 83%). The high sensitivity of these predictions
was later corroborated by Grodecká et al., although the specificity remained poorer [19].

Finally, the Hexplorer tool has been shown to perform comparably well with respect to the ESRseq
scores. With the five extensive variant sets tested by Soukarieh et al., it provided a sensitivity between
57% and 100% (weighed mean: 79%) and specificity between 63% and 89% (weighed mean: 74%) [15].
In another study, this tool showed 100% sensitivity but again quite a poor specificity, possibly due to
the chosen dataset [19].

In fact, all the above-described evaluations of EX-SKIP, ESRseq and Hexplorer have been done
using data derived from minigene splicing analysis. In most cases, this analysis reliably mirrors the
splicing effects, at least in terms of induction and the direction of a splicing defect [15,19,31,48].

Therefore, to extend these observations, we have decided to further evaluate these three predictors
using 20 gene variants retrieved from the literature, for which the results on splicing affection were
ascertained directly from the patients’ tissues. As shown in Table 3, even with this smaller set of
mutations we have reached sensitivity and specificity in discerning skipping-inducing mutations
comparable to the previous results [15,45], differing only in a somewhat higher specificity for the
EX-SKIP tool compared to [15].

Table 3. Evaluation of ESRseq, Hexplorer and EX-SKIP predictors on patients’ RNA-based results.

Gene cDNA Variant Exon Effect on
Exon Skipping

∆ESRseq
(−0.5)

Hexplorer:
∆HZEI (−0.5)

EX-SKIP: ESS/ESE
mut/wt (1)

BRCA1 c.5123C > A 18 increased −2.574 -10.85 1.05
c.5434C > G 23 increased 0.558 −1.28 1.09
c.5453A > G 23 increased −2.176 −15.02 1.43
c.5096G > A 18 none −1.731 −0.22 0.93
c.5116G > A 18 none 1.582 2.67 0.86
c.5411T > A 23 none 0.66 4.33 0.83

BRCA2 c.231T > G 3 increased 1.65 4.76 0.97
c.439C > T 5 increased −2.69 −13.06 1.77

c.7992T > A 18 increased −1.11 0.00 1.00
c.8257_8259delCTT 18 increased −0.51 0.52 0.98

c.9234C > T 24 increased −1.24 −12.07 1.12
c.223 > C 3 none 0.37 −11.19 0.97

c.433_435delGTT 5 none −0.23 6.46 0.51
c.7994A > G 18 none −1.21 0.24 1.02
c.8182G > A 18 none −1.65 0.00 0.98
c.9216G > 1 24 none −2.88 −10.94 1.04

NF1 c.557A > T 5 increased −2.43 −12.21 1.25
c.528T > A 5 none 1.17 0.70 0.90

DMD c.5287C > T 37 increased −0.70 −16.84 1.16
c.5308A > T 37 none −0.05 −2.85 1.05

True calls 70.0% 70.0% 70.0%
Sensitivity 80.0% 70.0% 70.0%
Specificity 60.0% 70.0% 70.0%

To further evaluate the three prediction tools, we have retrieved 20 gene variants detected in genes BRCA1, BRCA2,
NF1 and DMD (10 inducing aberrant splicing and 10 harmless at the level of splicing) from the literature. In all
these cases, nonsense mediated decay was either prevented or not expected. For an easy comparison, we used the
same thresholds as described in Soukarieh et al. (shown in table headings) [15], except from the original Hexplorer
threshold which was not applicable to our data, so we used a threshold −0.5 instead. The true calls are shown in
bold. ∆ESRseq: score difference between predicted mutant and wild type ESRseq score. ∆HZEI: score difference
between predicted mutant and wild type HZEI score.

4. Exons Susceptibility to the Splicing Defects Due to SREs Changes

As mentioned in the introduction, some exons are being described as more susceptible to SRE
disruptions than others. Typical signs for these susceptible exons are: (i) above- or below-average
length (exon lengths below 50 nts and above 300 nts have been connected to lower splicing efficiency,
probably due to affected recognition through the exon-definition process); (ii) weak splice sites; and (iii)
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alternative splicing [27,45,50,51]. However, these potentially important variables that affect the variants’
effects on splicing are not considered by most of the SRE-prediction algorithms. In addition, there are
several other related factors that influence the basic level of exon recognition and might thus influence
exons susceptibility to SRE-affecting variants, which might be more difficult to predict in silico. These are
RNA secondary structure, nucleosome density and transcription rate [45]. Hand in hand with that,
even distant regulatory elements in promoters and transcription enhancers have been shown to
frequently influence alternative splicing. Besides impacting the basic level of exons’ recognition,
this also represents another level of (hardly predictable) interindividual variability, as variations in
these functional elements (e.g., SNPs or differences in methylation) are substantially associated with
alternative splicing [52].

All these reasons may explain the discrepancies regarding results of SRE-predictor tools, that
have been much more successful for some exons than for others. For example, compare the 57% vs.
83% sensitivity of Hexplorer predictions on variants in MLH1 exon 10 and NF1 exon 37, respectively,
in Soukarieh et al. [15], or 87.5% vs. 50% success rate of EX-SKIP predictions on variants in CFTR
exon 3 and exon 10, respectively, in Aissat et al. [45]. Hand in hand with that, while some predicted
score differences showed significant correlations with the level of the induced exon skipping within
individual exons, the overall extent of exon skipping between individual exons seems to be better
predicted by the strength of splicing signals [15,45]. All these facts once again pinpoint the high
context-dependence of the splicing regulation and the need for more complex prediction approaches
to be developed.

5. Future Approaches at Evaluating the Effects of Splicing Disruption

The first issue, which still needs to be addressed by splicing research, is the prediction of the
aberrant splicing pattern that emerges when splicing is affected. For obvious reasons, the particular
outcome of a splicing-affecting mutation is crucial for diagnostic decisions. In general, the SRE-affecting
mutations most usually increase or decrease inclusion of the exon they are located in [6,15,17,27,31].
However, they can also result in multiple exon skipping or activate a cryptic splice site [53–55].
In specific cases, intronic SRE mutations may lead to the activation of a pseudoexon (an intronic
sequence that is neglected by the spliceosome under standard conditions) [56]. Once again, also in
these cases the resulting splicing defects are extremely context-dependent.

Thus far, to the best of our knowledge, there were only a few pioneering attempts to use in
silico prediction tools to assess whether a mutation will lead to exon skipping or to the cryptic splice
site activation [57,58]. However, none of these approaches were directed at looking for potential
SRE-affecting variants and it would be interesting if future research could specifically be targeted to
this specific aim.

Finally, another issue that still needs to be addressed will be to predict the extent of aberrant
splicing. This particular area is still in its infancy, with limited correlations between predicted variables
and the level of exon skipping or inclusion [15,45]. Such correlations might be useful for prediction
tool developers, but they are rather useless for the diagnosticians who have to cope with individual
sequence changes. In particular, all these approaches often disregard the fact that for many genes,
the level of exon inclusion is often tissue specific [6,27]. This problem will eventually have to be
included in predictions, if they are ever going to be useful in diagnostics.

6. Clinical Significance of Splicing Aberrations

As outlined above, if we consider the huge complexity of causes and consequences of splicing
aberrations, one can easily understand the challenges that a genetic diagnostician can meet when
working with novel gene variants. As a result, extensive effort has been put into defining classification
criteria for assessment of variants’ pathogenicity, as this issue markedly impacts patients’ clinical
management. Some publications proposed criteria for overall pathogenicity assessment, either for
disease-causing genes in general or for a specific set of genes (e.g., mismatch repair genes) [52,53].
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Others aimed more specifically at coping with splicing-affecting mutations [54,55]. All these works
based their classification on a five-tier scheme where the most probably pathogenic variants fall into
the class 5 while those most probably benign are included in class 1. For clarity, we have summarized
the classification criteria that apply to SRE-affecting variants in Table 4.

Table 4. Summary of clinical classification guidelines that apply to SRE-affecting variants.

Class Observation Reference

5: pathogenic

• assay on mRNA from patients tissue samples

[59] 1 [60]
AND no wt transcript detected from variant allele

AND aberrant transcripts introduce PTC
or deletion disrupting functional domain

OR deletion disrupting protein conformation only in [60]

OR damaging effect on the gene or gene product
(extent not specified)

[61]

AND other lines of evidence supporting variant pathogenicity 2 (stronger
than for class 4)

• lab assays based on mRNA (e.g., minigenes)

[60,61]

AND variant-specific abrogated function
(extent not specified)

AND

additional frequency/co-segregation/clinical data, additional
molecular/mechanistic evidences from other sources, supporting
variant pathogenicity
(stronger than for class 4)

4: probably
pathogenic

• assay on mRNA from patients tissue samples

[61]
AND damaging effect on the gene or gene product

(extent not specified)

AND other lines of evidence supporting variant pathogenicity (milder than
for class 5)

• lab assays based on mRNA (e.g., minigenes)

[60,61]

AND variant-specific abrogated function
(extent not specified)

AND

additional frequency/co-segregation/clinical data, additional
molecular/mechanistic evidences from other sources, supporting
variant pathogenicity
(milder than for class 5)

• minigene assays

[48]
AND complete aberrant and frameshifting effect/

deletion of a functional domain effect

3: uncertain
pathogenicity

all variants that do not fall into other classes

[59]

e.g., aberrant transcripts produce deletion
not disrupting known functional domains

e.g.,
change in the level of alternative transcripts,
at least some of which do not introduce PTC
or protein-disrupting deletion

e.g., leaky aberrant splicing

e.g., contradictory benign and pathogenic criteria [61]
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Table 4. Cont.

2: likely not
pathogenic

• assay on mRNA from patients tissue samples
[59–61]

AND no associated mRNA aberration detected

AND analysis including NMD inhibition only [60]

AND other lines of evidence disproving variant pathogenicity only [61]

• lab assays based on mRNA
(e.g., minigenes)

[60,61]

AND variant-specific proficient function

AND

additional frequency/co-segregation/clinical data, additional
molecular/mechanistic evidences from other sources, disproving
variant pathogenicity
(milder than for class 1)

1: not pathogenic

• lab assays based on mRNA
(e.g., minigenes)

[60,61]

AND variant-specific proficient function

AND

additional frequency/co-segregation/clinical data, additional
molecular/mechanistic evidences from other sources, disproving
variant pathogenicity
(stronger than for class 2)

1 Richards et al. combines multiple individual pathogenic and benign criteria to reach the classification [61];
2 Walker et al. recommends predicted/expected SRE aberrations only for research testing [59]. • denotes a single set
of criteria for each class. A variant has to meet all the criteria in at least one set to be included into the respective class.
The criteria listed in the table were extracted from several publications that were written, in fact, for somewhat
differing purposes. Walker et al. published an evaluation and update of clinical classification guidelines previously
designed by Spurdle et al. that were specifically aimed at potential splicing affection [59,62]. On the other hand,
Thompson et al. and Richards et al. dealt with overall pathogenic potential of novel variants including direct effects
on protein coding [60,61]. While Thompson et al. limited their criteria on mismatch repair genes [60], Richards
et al. designed criteria for classification of all variants identified in genes that cause Mendelian disorders [61].
Finally, we have included one classification proposal derived from a publication that thoroughly evaluated the
reliability of minigenes [48]. Of note, we did not include in the table the splicing-specific classification designed
by Houdayer et al. [17], as this recommended a particular (specific) re-classification of class 3 variants (or variants
of unknown significance) into three other classes (1S, 2S, 3S). Concerning the in silico predictions, Richards et al.
propose using them as a supportive criterion, if all the in silico programs tested agree on the prediction [61].
However, they do not directly mention predictions of SREs in their publication, describing only the splice site
predictors. In comparison, Walker et al. allows usage of SRE predictors in general. If a variant causes a loss or
creation of the same SRE predicted by at least two of three used programs, then these guidelines propose that it
should be experimentally tested (as a research testing) [59]. Other guidelines mentioned in this table do not propose
the usage of SRE predictions. Please note that only an effect on splicing is taken into account in this table. The effect
of a variant on protein coding per se should always be considered as well.

Regarding splicing alterations, variants leading to aberrant splicing of 100% transcripts, with clear
effect on protein function (i.e., introducing PTC or in-frame deletion disrupting a functional domain)
fall into class 5 (classified as pathogenic) [59,60]. According to some guidelines, aberrant splicing has
to be shown on patient’s mRNA samples [59], while others allow this classification to also be based on
in vitro assays when the results are supported by additional clinical evidence (family co-segregation,
number of tumors, etc.) [60,61].

According to Thompson et al. [60], variants shown to abrogate mRNA splicing using in vitro
assays only (without patient’s RNA-derived data) can fall into class 4 (likely pathogenic), if the
additional clinical evidence does not allow class 5 ranking. On the other hand, after careful comparison
of results obtained from patients’ RNA and the minigenes, van der Klift et al. proposed that minigene
assay alone should be sufficient for class 4 of clinical classification, if a splicing affecting variant
demonstrates complete aberrant and frameshifting effect [48]. Such reclassification would have
important consequences for patients, since class 4 and class 5 variants are recommended to have the
same clinical management.

However, after analyzing data from several systemic splicing studies, we found that only a tiny
minority of SRE-affecting mutations led to a complete splicing defect in minigenes (in particular,
5 of 136, i.e. 3.7%, variants increasing exon skipping showed 100% splicing aberration) [14,15,17,27,63].



Int. J. Mol. Sci. 2017, 18, 1668 10 of 14

From this point of view, the guidelines proposed by Richards et al. seem to be more pertinent for the
SRE-affecting variants, since these always use a combination of several criteria to classify a variant and
do not stick to 100% aberrant effect at the same time [61].

This pinpoints another difficulty that arises from the uncertainty in the minimal extent of aberrant
splicing that can lead to a particular disease. In other words, the minimal amount of the residual
full-length transcript sufficient to cover the biological function (in the relevant tissue) and prevent the
disease development needs to be determined for individual conditions. Importantly, we cannot forget
any possible adverse effects that the products of aberrantly spliced transcripts may exert on the wild
type ones, e.g., dominant negativity in protein dimers [55,64].

At present, it follows that many variants fall into class 3—uncertain pathogenicity. Besides the
mutations resulting in leaky aberrant splicing (variant allele produces full-length transcripts to some
extent), this pertains, e.g., for exon-skipping mutations leading to in frame deletions not disrupting
known functional domains or to upregulation of physiological alternative transcripts, at least some of
which do not clearly disrupt protein function [59,60].

While the splice site related predictions are beginning to be included in classification guidelines,
the SRE-related predictions stand aside [59,61]. In fact, despite the significant progress of these
programs achieved in the past few years, they still await proper validation [4,15,17,48]. Currently, we
can propose using the best performing tools (ESRseq, Hexplorer, and possibly EX-SKIP), ideally in
combination with some a priori knowledge about the exons alternative splicing, as a rough preliminary
filter to select the variants for further in vitro testing. Naturally, such a selection should be based on
an overall estimation of each case (careful assessment of the patient’s condition, variant co-segregation,
etc.). Recognition of the splicing affecting variants is beneficial not only for the diagnostics, but it may
eventually lead to the development of effective RNA-targeting therapy. This issue has been addressed
by several recent reviews [65–68].

7. Conclusions

In the past two decades, many prediction tools have assisted researchers in defining potential
SREs. On the other hand, only the approaches that either consider a nucleotide change in its larger
sequence environment or combine several individual prediction methods have been successful in
accurately recognizing splicing-affecting SRE changes. Repeatedly, the best outcomes have been shown
for ESRseq scores, followed by Hexplorer and EX-SKIP tools. What still prevents these tools from
being firmly included in diagnostic settings is their somewhat variable reliability for different exons,
resulting defect ambiguity, and the limited number of evaluating studies.

In general, the future aim for SRE predictors is to make maximal provision for the context
dependence of splicing regulation to improve both the recognition of splicing-affecting variants
and the assessment of the resulting defects. To this point, combining the SRE predictions with
an estimate of exon susceptibility to be skipped or to activate nearby cryptic splice sites may be helpful.
Other approaches could include data gained from functional (high throughput) SRE mapping or from
CLIP-detected binding sites of splicing regulators, accompanied with the knowledge of splicing effects
upon their knock down.
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Abbreviations

CERES Composite exonic regulatory element of splicing
circRNA Circular RNA
CLIP Cross-linking immunoprecipitation
ESE Exonic splicing enhancer
ESS Exonic splicing silencer
HSF Human Splicing Finder
ISE Intronic splicing enhancer
ISS Intronic splicing silencer
PTC Premature termination codon
RESCUE Relative Enhancer and Silencer Classification by Unanimous Enrichment
SELEX Functional systematic evolution of ligands by exponential enrichment
SNP Single nucleotide polymorphism
SPANR Splicing-based Analysis of Variants
SRE Splicing regulatory element
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