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Abstract: High expectations are placed upon anti-angiogenic compounds for metastatic colorectal
cancer (mCRC), the first malignancy for which such type of treatment has been approved. Indeed,
clinical trials have confirmed that targeting the formation of new vessels can improve in many
cases clinical outcomes of mCRC patients. However, current anti-angiogenic drugs are far from
obtaining the desirable or expected curative results. Many are the factors probably involved in such
disappointing results, but particular attention is currently focused on the validation of biomarkers able
to improve the direction of treatment protocols. Because clinical studies have clearly demonstrated
that serum or tissue concentration of some angiogenic factors is associated with the evolution of the
disease of mCRC patients, they are currently explored as potential biomarkers of prognosis and of
tumor response to therapy. However, the complex biology underlying CRC -induced angiogenesis is
a hurdle in finding rapid solutions. The aim of this review was to explore molecular mechanisms
that determine the formation of tumor-associated vessels during CRC progression, and to discuss the
potential role of angiogenic factors as diagnostic, prognostic and predictive biomarkers in CRC.
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1. Angiogenesis in Colon Cancer

Angiogenesis is a fundamental determinant of solid tumor progression and a promising
target in cancer therapy. The formation of new blood vessels is realized through a stereotypical
process involving a cascade of sequential steps that could be recapitulated during tumor growth.
The pathways underlying cancer-stimulated angiogenesis are activated by adaptive or aberrant
processes: in the first case the lowering oxygen availability in growing tumor mass can physiologically
activate the hypoxia-associated adaptation program in cancer or in neighbor normal cells; otherwise,
the angiogenesis can be aberrantly induced by cancer cells due to oncogenic transformation of key
signaling pathways (Figure 1). In colorectal cancer, angiogenic switch occurs early in neoplastic
progression in adenomas, and microvessel density correlates positively with formation of metastases
and peritoneal dissemination [1,2]. Vessel count results are higher at the invasive edge of tumor than
within the tumor [3]. Several angiogenic growth factors have been identified as expressed at high
levels with vascular endothelial growth factor (VEGF)-A, which represents the most consistently
expressed factors during CRC progression and metastatization. For other angiogenic growth
factors, the panorama is more complex, suggesting for each ligand a role in a different time during
normal–adenoma–carcinoma sequence [4].
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Figure 1. Schematic representation of the main molecular factors and events involved in angiogenesis 
during CRC progression. Hypoxia and inflammation are indicated as main driver events that through 
the interplay between tumor and normal associated cells enrich the tumor microenvironment with 
angiogenic growth factors. Abbreviations: cyclooxygenase (COX-2); prostaglandin-E2 (PGE2); 
GTPase KRas (Ki-Ras); phosphatidylinositol 3-kinase (PI3K); hypoxia-inducible factor 1 (HIF) 1; 
vascular endothelial growth factor receptors (VEGFRs); platelet derived growth factors (PDGFs); 
cancer associated fibroblasts (CAFs); stromal cell-derived factor 1 (SDF-1); angiopoietins (ANGs); 
tyrosine-protein kinase receptor TIE-2 (TIE-2). 

1.1. Angiogenic Growth Factors  

Hypoxia is a frequent feature of solid tumors and its central role in activating angiogenic switch 
is increasingly highlighted. The continuous and dysplastic growth of tumor determines the formation 
of hypoxic microenvironment that induces the stabilization of HIF1-α and its association with HIF1-
β). The heterodimer HIF1 determines adaptive phenotype in cancer cells exerting direct 
transcriptional activation of target genes. CRC is one of the cancers in which HIF1-α subunit is 
overexpressed from the early stages of carcinogenesis [5]. The presence of hypoxic zones in CRC aids 
dissemination of cancer cells and drug resistance [6]. Low oxygen tension, by increasing HIF1-α 
stability and dimerization, stimulates the transcription of several genes, including the VEGF-A. 
VEGF-A, a member of the VEGF family, and its receptor vascular endothelial growth factor receptor 
2 (VEGFR)-2 are considered to be the leading determinants of angiogenesis. However, it was 
recognized that high HIF1-α expression is an independent prognostic marker for CRC regardless of 
VEGF upregulation [7]. Indeed, hypoxia-stabilized HIF1-α stimulates cyclooxygenase-2 (COX-2) 
mRNA expression, which in turn leads to enhanced prostaglandin E2 levels that are associated with 
increased CRC vascularization. For this reason, prostaglandin E2 was proposed as prognostic marker 
in CRC disease [8,9]. In agreement with this hypothesis, it was demonstrated that COX-2 inhibitors 
were able to reduce tumor-associated angiogenesis [10].  

1.1.1. VEGF-A 

Several studies, both in vitro and in vivo, have demonstrated that VEGF-A is the key molecule 
in promoting angiogenesis and it is actively involved in tumor growth and metastasis. As is well 
known, VEGFs specifically bind to VEGF tyrosine kinase receptors on endothelial cells, including 
VEGFR-1 (alias Fms-like tyrosine kinase 1 (FLT1)) and VEGFR-2 (alias kinase insert domain receptor 

Figure 1. Schematic representation of the main molecular factors and events involved in angiogenesis
during CRC progression. Hypoxia and inflammation are indicated as main driver events that
through the interplay between tumor and normal associated cells enrich the tumor microenvironment
with angiogenic growth factors. Abbreviations: cyclooxygenase (COX-2); prostaglandin-E2 (PGE2);
GTPase KRas (Ki-Ras); phosphatidylinositol 3-kinase (PI3K); hypoxia-inducible factor 1 (HIF) 1;
vascular endothelial growth factor receptors (VEGFRs); platelet derived growth factors (PDGFs);
cancer associated fibroblasts (CAFs); stromal cell-derived factor 1 (SDF-1); angiopoietins (ANGs);
tyrosine-protein kinase receptor TIE-2 (TIE-2).

1.1. Angiogenic Growth Factors

Hypoxia is a frequent feature of solid tumors and its central role in activating angiogenic switch
is increasingly highlighted. The continuous and dysplastic growth of tumor determines the formation
of hypoxic microenvironment that induces the stabilization of HIF1-α and its association with HIF1-β).
The heterodimer HIF1 determines adaptive phenotype in cancer cells exerting direct transcriptional
activation of target genes. CRC is one of the cancers in which HIF1-α subunit is overexpressed from the
early stages of carcinogenesis [5]. The presence of hypoxic zones in CRC aids dissemination of cancer
cells and drug resistance [6]. Low oxygen tension, by increasing HIF1-α stability and dimerization,
stimulates the transcription of several genes, including the VEGF-A. VEGF-A, a member of the VEGF
family, and its receptor vascular endothelial growth factor receptor 2 (VEGFR)-2 are considered
to be the leading determinants of angiogenesis. However, it was recognized that high HIF1-α
expression is an independent prognostic marker for CRC regardless of VEGF upregulation [7]. Indeed,
hypoxia-stabilized HIF1-α stimulates cyclooxygenase-2 (COX-2) mRNA expression, which in turn leads
to enhanced prostaglandin E2 levels that are associated with increased CRC vascularization. For this
reason, prostaglandin E2 was proposed as prognostic marker in CRC disease [8,9]. In agreement with
this hypothesis, it was demonstrated that COX-2 inhibitors were able to reduce tumor-associated
angiogenesis [10].

1.1.1. VEGF-A

Several studies, both in vitro and in vivo, have demonstrated that VEGF-A is the key molecule
in promoting angiogenesis and it is actively involved in tumor growth and metastasis. As is well
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known, VEGFs specifically bind to VEGF tyrosine kinase receptors on endothelial cells, including
VEGFR-1 (alias Fms-like tyrosine kinase 1 (FLT1)) and VEGFR-2 (alias kinase insert domain receptor
(KDR)), and they initiate intracellular signal transduction pathways associated with vascularization
and angiogenesis in malignant tissue [11]. VEGFR-2 can transduce the full range of VEGFs responses
in endothelial cells, controlling different steps during the formation of the vascular tube. The binding
of VEGF-A with VEGFR-2 represents the most effective inducer of endothelial cell migration and
proliferation and for this reason, the VEGF-A/VEGFR-2 axis is the gold target in current anti-angiogenic
therapy for cancer. VEGF-A was found overexpressed in both tumor biopsy and in serum of CRC
patients and it seems to be closely related to the severity of CRC and its clinical outcome [12–14].
Up-regulated VEGFR-2 has been detected, as expected, on tumor vessels supporting CRC, and, in a
variable percentage of cases, also on CRC cells, suggesting a direct role in cancer cell biology apart
from being a vasculature-restricted receptor [3]. Several studies have contributed to unveil a complex
pattern associated with VEGF-A expression. Two families of VEGF-A isoforms are generated by
alternate splice-site selection in terminal exon. The proximal splice-site selection results in at least
six proangiogenic isoforms, and, of them, primary human CRCs can express four distinct variants:
VEGF121, VEGF145, VEGF165 and VEGF189 [15]; VEGFA165 is the most biologically active isoform
and it is secreted by most tissues. Although it is not completely elucidated, VEGF isoforms could
exert different roles in modulating angiogenesis as suggested by their distinct binding capacities.
VEGF121 isoform does not bind heparansulfate proteoglycan in the extracellular matrix, inducing a
signaling response in endothelial cells that is, temporally and spatially, different compared with other
isoforms [16]. Although missense point mutations appear uncommon in VEGF genes from cancer
specimens, the natural high polymorphism of VEGF could provide an unexplored genomic basis
for the diversity of angiogenesis programs among different patients [17]. Several single nucleotide
polymorphism (SNP) haplotypes were identified in CRC, but few of them were common. In particular,
the common −2578A, −460C, +405G and −2578A, −460T, +405G haplotypes were associated with the
increased risk of CRC [18]. However, given the current literature, it is not possible to conclude that
SNP in VEGF gene represent a potential risk factor for the development of CRC, as for other tumors.

1.1.2. PlGF

Placenta growth factor (PlGF) is a member of the VEGF family exhibiting a strong angiogenic
effect. The dimeric glycoprotein PlGF is a pleiotropic growth factor that works in synergy with VEGF-A,
amplifying the downstream signal of VEGFR-1 and VEGFR-2 [19,20]. PlGF is expressed in human CRC
tissue, and it correlates with micro-vessel density and cancer progression [21]. In preclinical models,
hypoxia was able to induce PlGF in human CRC cell lines and in vivo also in endothelial cells [22].
PlGF represents a suitable therapeutic target because it is highly expressed on both endothelial and
vessel-associated cells in many tumors, but it is scarcely detectable in healthy tissues [23,24].

1.1.3. ANGs

Together with VEGF, ANGs are among the most important growth factors in regulating tissue
repair and vascular homeostasis. Angiopoietin system is deregulated in many cancers and many
different types of cancer cells can be directly responsive to these factors. The human ANG family
includes the ANG-1, -2 and -4 secretory factors that are ligands of the transmembrane TIE-2, mainly
expressed in endothelial cells. Although the precise regulatory role of ANGs remains controversial,
studies with knockdown embryos have clearly demonstrated their involvement in the development
of both vascular and lymphatic systems [25]. The best studied ANG-1 and ANG-2 factors seem to
have complementary role in angiogenesis: while ANG1 helps to stabilize mature vessels, ANG-2 is
associated with vascular remodeling [26]. In CRC patients, ANG-2 is expressed ubiquitously in tumor
tissue, whereas ANG-1 expression is rare [27]. These data are compatible with a hypothesis in which
blood vessel destabilization, operated by ANG-1, is a key step in CRC angiogenesis; however, it is
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commonly accepted that ANGs have a limited potency alone and that they should play in concert with
other pro-angiogenic factors.

1.1.4. FGFs

Distinct classes of growth factors have been associated with the proangiogenic phenotype in CRC.
The fibroblast growth factors (FGFs) are small heparin-binding growth factors comprising 23 members
that bind to one or more of the four high-affinity fibroblast growth factor receptors (FGFRs). Although
the precise function of FGFs in new vessels formation remains elusive, experimental data are coherent
in stating that several members of this family are able to promote a strong angiogenic response. It is
now accepted that the FGF system plays a critical role in several biological processes involving a variety
of cell types including endothelial cells. The basic FGF (bFGF), a member of FGFs family, stimulates
VEGF-A expression in endothelial and stromal cells, proposing a model in which the connective tissue
contributes to the progression of vessel formation by a positive paracrine loop [28]. bFGF regulates
the angiogenesis process through a dual mechanism: it stimulates VEGF-A expression in endothelial
cells and stromal cells and it modulates VEGFR-2 signaling [29]. FGF signaling inhibition could affect
angiogenesis due to VEGF-A insufficiency, but bFGF alone seems to induce only a modest maturation
of new vessels. Carcinoma cells can express FGFRs and they may mimic stromal cells as main source of
FGFs. In fact, several reports exist about FGFs and of FGFRs 1–4 being expressed in CRC, and there is
some evidence regarding the role of the FGF signaling axis in sustaining the autonomous growth and
invasion of cancer cell [30]. Some splice variants, such as FGFR1-IIc, have been detected in CRC but
not in adenoma-derived cell lines [31]. FGF axis is able to sustain in an autocrine manner the release of
VEGF-A in CRC cells, and this was demonstrated for fibroblast growth factor-7 (FGF-7) after binding
with FGFR2 IIIb [32].

1.1.5. PDGFs

An important family of growth factors accompanying angiogenesis is represented by PDGFs.
The PDGF/platelet-derived growth factor receptor (PDGFR) system is physiologically activated
during embryonic vasculogenesis and wound healing in adults. Generally, CRC is associated with
overexpression of PDGFs and PDGFRs in tumor cells and/or in tumor-associated cells [33]. PDGFs in
their monomeric form include four different members (PDGF-A/B/C/D), that become active in some
of their possible dimerization forms (PDGF-AA/BB/CC/DD/AB). The three different dimeric forms
of PDGFR (αα, ββ, αβ) could bind different PDGFs, but the downstream signaling and the biological
effects are largely overlapped. PDGF-BB is the best characterized member in CRC progression and
it is upregulated in blood and tissues from CRC patients [34]. It is known that PDGF-BB stimulates
angiogenesis via three mechanisms: direct stimulation of endothelial cells proliferation; upregulation
of VEGF-A, FGFs and erythropoietin in pericytes; and recruitment of endothelial precursor cells from
circulation [35]. PDGF-BB has been shown to be associated with CRC stage and with increasing
pericytes within tumors [36,37]. PDGF-BB produced by CRC cells recruits pericytes by providing
the needed support for the formation of mature vessels and sustaining endothelial cell survival.
In addition, also PDGF-BB and PDGF-AB were described as upregulated in CRC but their role in
CRC-associated angiogenesis is unclear.

1.2. Tumor Microenvironment and Angiogenesis

Local inflammation or the production of chemotactic factors by cancer cells results in the
accumulation of a variety of non-tumoral cells that can promote tumor growth. CRC, similar to
most other solid tumors, is infiltrated by immune cells, including tumor-associated macrophages
(TAMs), T cells and dendritic cells, by myeloid-derived suppressor cells (MDSCs) and by CAFs [38].
All these cells have been involved in CRC-associated angiogenesis, although with different mechanisms.
Some infiltrating cells are naturally equipped to release pro-angiogenic factors due to their
physiological involvement in inflammation and wound repair. The importance of pro-inflammatory



Int. J. Mol. Sci. 2018, 19, 299 5 of 25

microenvironment in CRC progression was also demonstrated by a significant association between
tissue accumulation of tryptase-positive mast cells, an increase of serum tryptase and microvascular
density [39,40]. However, in many cases, the pattern of growth factors, released by cancer cells,
is crucial in determining in a paracrine manner the pro-angiogenic phenotype of infiltrating cells.

1.2.1. TAMs

Macrophages infiltrating the tumor are represented by both classically activated macrophages
(M1) and alternatively activated macrophages (M2), and the latter share tumor promoting activities,
including angiogenesis [41]. Both M1 and M2 macrophages were observed in CRC but the M2
phenotype is frequently more represented [42]. M2 macrophages are known to accelerate tissue repair
by releasing VEGF-A and matrix degrading enzymes: this function is particularly active in hypoxia.
Macrophages can be visualized in the stroma of adenomatous polyps and CRC and in particular along
the tumor front. A significant correlation was found between the number of infiltrating macrophages
and microvessel density [43]. The importance of macrophages in CRC progression was confirmed
by a syngeneic mouse cancer model in which macrophages promoted vascular tumor density and
metastasis [44].

1.2.2. CAFs

Fibroblasts are an important mesenchymal component in many tumors and their phenotypic
characterization has evidenced similarities with myofibroblasts, a specialized cell type that plays a
critical role during normal tissue wound repair. Stromal myofibroblasts participate in angiogenesis
by providing a repertoire of secreted pro-angiogenic growth factors, including VEGF-A, bFGF,
transforming growth factor-β 1 (TGF-β1) and PDGFs. In addition, myofibroblasts may elicit
vasculogenesis by secretion of SDF-1, that is a potent chemotactic factor for endothelial cells [45].
CRCs with abundant myofibroblast-like CAFs are associated with shorter disease-free survival [46].
Myofibroblasts express an array of proinflammatory cytokines and chemokines, contributing to
recruit immune cells to the local microenvironment. The chemokine, CC motif, Ligand 2 (CCL2),
(alias monocyte chemotactic protein 1 (MCP1)), a member of the C-C chemokine family, is secreted
by CRC-associated myofibroblasts and stimulates the recruitment of monocyte, macrophages and
MDSCs [47,48].

1.2.3. MDSCs and Lymphocytes

The number of infiltrating MDSCs correlates with the stage and metastatic burden [49]. MDSCs
are key players in immunoediting and contribute to the unbalanced response of T helper cell
subsets Th1/Th2/Th17 observed in CRC, with a prevalent production of regulatory tumor-promoting
cytokines. In particular, Th2 and Th17 cells can promote tumorigenesis and/or progression by
stimulating angiogenesis. Key factors in this process are Interleukin (IL)-6 and IL-17. IL-6 is particularly
abundant in microenvironment with a prevalence of Th2 subset [50]. IL-17 is a well-established
angiogenic cytokine that stimulates migration and cord formation of endothelial cells in vitro and
the formation of new blood vessel in vivo [51]. Overall, several suggestions about the role of
tumor-infiltrating cells propose that a potential new anti-angiogenic strategy could consider also
the reprogramming of the tumor microenvironment.

1.3. Angiogenesis Induced by Oncogenic Signaling

The oncogenic transformation determining the autonomous upregulation of endothelial growth
factors within tumor mass can sustain CRC angiogenesis. Because only a minor subgroup of highly
aggressive CRCs harbors copy number amplification of VEGFA, the proangiogenic phenotype of CRCs
should be based upon the deregulation of specific signaling pathways [52]. Molecular pathogenesis
of CRC represents a prototypal model of carcinogenesis and cancer progression and it is sustained
by aberrant modulation of few signaling pathways: WNT–β–catenin signaling pathway, the TGF-β1
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signaling pathway, the epidermal growth factor receptor (EGFR)–mitogen activated protein kinase
(MAPK) pathway, and the PI3K pathway. In many cases these pathways participate also in maintaining
a pro-angiogenic phenotype both in hypoxia and normoxia. For example, KRAS and PI3K signaling
enhances the hypoxic induction of VEGF-A, even when HIF1-α was silenced [53]. These effects could
be exerted through the activation of pathways directed to alternative transcription factors, such as
SP1 [54].

1.3.1. TGF-β1

The TGF-β1 is a ubiquitous peptide with a prominent role in the inhibition of epithelial cell
growth. However, as observed in many other carcinomas, CRC carcinogenesis is accompanied by
the acquisition of resistance to the growth-inhibitory effects mediated by TGF-β1 [55]. TGF-β1 is a
pleiotropic growth factor that, through binding to its receptor, endoglin exerts a central role in cancer
biology. TGF-β1 can act on endothelial cells, inducing VEGF-A expression [56] and thus participating
in realization of some steps of the angiogenesis process [57]. Up to 85% of CRC cell lines are resistant to
TGF-β1 growth-inhibitory effects [58]. In addition, TGF-β Receptor type II (TGFR-2) and SMAD family
member 4 (Smad4)—a downstream mediator of TGF-β1 signaling—resulted genetically inactivated
in about 20% of human CRCs [59]. The resulting hypothesis suggests that the TGF-β1 secreted by
CRC cancer cells is mainly involved in modifying the normal environment surrounding the tumor
by promoting cancer progression. In fact, analysis of CRC tissue revealed the presence of high
levels of TGF-β1 mRNA and protein, mainly in the advanced stages of progression [60]. In addition,
although the TGF receptors are poorly expressed in CRC cells, contributing to resistance to TGF-β1
in tumor cells, endothelial cells surrounding cancer cells synthesize and express TGFb receptors [61].
The overexpression of TFG-β1 in CRC tissue leads to high serum levels in patients, and correlates
well with microvascular density. Genetic studies have revealed a key function for TGF-β1 in vascular
development and vascular homeostasis. TGFB1 mutant embryos exhibit fragile vessels and in turn
midgestation lethality, a phenotype exhibited also in mice with null mutations of other genes in
TGF-β1 signaling pathways, including Activin receptor-Like Kinase (ALK)-1, (ALK)-5, endoglin and
SMAD family member 5 (Smad5) [62]. TGF β stimulates the differentiation of precursors into pericytes
and smooth muscle cells, and the deposition of extracellular matrix, allowing the stabilization of the
vasculature. The stage of the progression and the microenvironmental conditions deeply influence
the pro-angiogenic capacity of TGF-β1, generating a complex and unsolved scenario. Indeed, TGF-β1
seems to have an opposite effect on endothelial cells compared with VEGF-A, inducing antiproliferative
effects and down-modulating VEGFR-2 mRNA and protein in a dose-dependent manner [63].

1.3.2. WNT

The WNT/β-catenin pathway may also contribute to VEGF-A production and angiogenesis in
CRC [64]. WNT signaling is important for tissue development and maintenance, but the aberrant
activation of WNT signaling was frequently observed in CRC as a driver event. The oncogenic action of
WNT on cell proliferation, migration and invasion is accomplished through the constitutive activation
of β-catenin and, in turn, of lymphoid enhancer/T-cell factor (LEF/TCF) transcription factors [65].
B-catenin signaling upregulates VEGF-A expression in vitro by direct binding of β-catenin/TCF4 to
consensus binding sites within the gene promoter of VEGFA [66]. Another potential link between WNT
signaling and angiogenesis involves the upregulation of pyruvate dehydrogenase kinase 1 (PDK1) that
inhibits mitochondrial respiration by supporting glycolysis [67]. Because WNT signaling interferes
with VHL expression, a negative regulator of HIF1-α, it was suggested that the observed WNT
activation in CRC could be also contribute to the pro-angiogenic HIF1-α dependent phenotype [68].

1.3.3. KRAS

About 40% of patients with CRC have constitutive activation of KRAS, and given the high
concordance between primary tumor and metastases, the activation of this oncogenic step was
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considered fundamental in CRC progression [69]. KRAS is a membrane-anchored guanosine
triphosphate/guanosine diphosphate (GTP/GDP)-binding protein involved in intracellular signal
transduction downstream of protein kinase receptors, mainly epidermal growth factor receptor.
It serves as a signal switch molecule that controls multiple cellular responses coupling receptor
activation by specific growth factors with downstream effector pathways including the RAF–MEK–ERK
and PI3K–Akt cascades. Several point mutations have been described for KRAS, approximately 80%
occurring in codon 12 [70]. Although the oncogenic role of KRAS is well known, its prognostic role
in CRC remains controversial [71]. The oncogenic activation of KRAS was associated with enhanced
production of angiogenic factors including the chemokines, CXC motif, and VEGF-A [72]. Signaling
through the KRAS up-regulates VEGF-A in a PI3K-dependent manner and this mechanism enhances
pro-angiogenic stimulation by WNT signaling. Moreover, it was proposed that hypoxia itself could
activate KRAS signaling also in absence of a mutated KRAS gene [73]. Constitutive KRAS signaling
could also be transmitted by aberrant activation of RAF kinases, serine/threonine protein kinases
that function as key downstream effectors of RAS. The RAF kinase family consists of three members:
A-Raf proto-oncogene, serine/threonine (ARAF), B-Raf proto-oncogene, serine/threonine (BRAF),
and Raf-1 proto-oncogene, serine/threonine (RAF1). Mutated BRAF gene was described mainly in
melanoma patients, but about 10% of CRC patients are characterized by a valine-to-glutamate change
at the residue 600 (V600E) of the protein. Although BRAF oncogene has attracted interest as a potential
prognostic marker in CRC, its role in cancer progression is a subject of intense debate [74].

2. Targeting Angiogenesis in CRC: Current Clinical Outlook

The number of anti-angiogenic compounds that have been tested in clinical trials for metastatic
(mCRC) patient treatment continues to grow (Table 1). They include both antibodies and small
molecules with a great heterogeneity in their targets.

Table 1. Anti-angiogenesis drugs approved for metastatic CRC and recent clinical trials with potential
new anti-angiogenesis therapeutics.

Compound Category Pro-Angiogenic
Targets Combination Drugs Clinical Use Route of

Administration Ref.

Aflibercept
”Trap”-inhibitor,

recombinant fusion
protein.

VEGF-A/B, PlGF Fluoropyrimidines, folinic
acid and irinotecan

Second line, after
oxaliplatin; regardless

K/NRAS and BRAF
genotype

Intravenous [75]

Bevacizumab Recombinant
humanized—mAb VEGF-A

Fluoropyrimidines, folinic
acid, irinotecan and/

or oxaliplatin

First and second line;
regardless K/NRAS and

BRAF genotype
Intravenous [75]

Famitinib Small molecule, multiple
kinase inhibitor

VEGRs, PDGFRs,
c-KIT, FLT3, RET Alone No, experimental use Oral [76]

Fruquintinib Small molecule, multiple
kinase inhibitor VEGRs Alone No, experimental use Oral [77]

Nintedanib Small molecule, multiple
kinase inhibitor

VEGFR 1-3,
FGFRs, PDGFRs

5FU, folinic acid and
oxaliplatin No, experimental use Oral [78,79]

Regorafenib Small molecule, multiple
kinase inhibitor

KIT, RET, PDGFR,
FGFR BRAF Alone After progression to other

conventional treatments Oral [75]

Trebanabib Fusion protein ANG-1/2, TIE2 5FU, folinic acid and
irinotecan No, experimental use Oral [80]

Trifluridine/
tipiracil Antimetabolite PD-ECGF Alone After progression to other

conventional treatments Oral [75]

Vandetanib Small molecule, multiple
kinase inhibitor VEGFR-2, EGFR

Irinotecan and cetuximab;
capecitabine, oxaliplatin

and bevacizumab

Not in use, due to unsafe
toxicity profile Oral [81,82]

Vanucizumab Bi-specific monoclonal
antibody VEGF-A, ANG-2 FOLFOX No, experimental use Intravenous [83]

Vorinostat Histone deacetylase
inhibitors HIF1-α 5FU No, experimental use Oral [84,85]

Abbreviations: FOLFOX (fluorouracil, leucovorin and oxaliplatin); 5fluorouracil (5FU); Cell Factor receptor c-KIT
(c-KIT); FMS-like tyrosine kinase-3 receptor (FLT3).
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2.1. Bevacizumab

The first anti-angiogenic compound successfully used in metastatic mCRC patients was
bevacizumab (Avastin®, Roche, Welwyn Garden City, UK), a recombinant humanized monoclonal
antibody that inhibits VEGF-A. Bevacizumab is a favorable partner for combination chemotherapy;
in fact, it does not generate cumulative toxicity, even if it is associated with specific side effects,
such as hypertension, alteration of coagulation and thromboembolic phenomena. Several clinical
trials have demonstrated that combining bevacizumab with a chemotherapy backbone improves
clinical outcomes regardless of treatment protocol. Adding bevacizumab to treatment schedules
containing a fluoropyrimidine (5fluorouracil or capecitabine) in combination with either irinotecan
plus leucovorin (FOLFIRI) [86–88], or oxaliplatin plus leucovorin (FOLFOX) [89–91], has allowed
to reach an overall response rate (ORR) higher than 50%, median progression free survival (PFS)
between 8.3 and 11.1 months, and median Overall Survival (OS) between 20.3 and 22.2 months.
The favorable toxicity profile permitted to develop intensive regimens, combining bevacizumab
with triplet chemotherapies of 5fluorouracil, irinotecan and oxaliplatin. A randomized, open-label,
multicentric phase III trial compared, in K/NRAS and BRAF unselected patients, the combinations
folinic acid, 5fluorouracil, oxaliplatin and irinotecan (FOLFOXIRI) plus bevacizumab with FOLFIRI
plus bevacizumab, both followed by a maintenance with bevacizumab and 5FU [92]. The study reached
the primary end-point whit a median PFS of 12.1 months in the experimental arm (vs. 9.7 months,
p = 0.006); ORR and median OS were respectively 65% and 31.0 months. Interestingly, maintaining
VEGF inhibition with bevacizumab, beyond progression of disease, represents a valid therapeutic
option in mCRC patients [93,94].

2.2. Aflibercept

More recently, aflibercept (Zaltrap®; Sanofi-Aventis, Frankfurt am Main, Germany)—another
infused anti-angiogenic compound—has been introduced in clinical practice for second line treatment
of metastatic CRC patients, following an oxaliplatin-based regimen. Aflibercept is a recombinant fusion
protein consisting of VEGF-binding portions of the extracellular domains of human VEGF receptors 1
and 2 (VEGFR-1/VEGFR-2), fused to the Fc portion of the human IgG1 immunoglobulin. It binds to
the circulating VEGF and it acts as a “VEGF trap”. Aflibercept inhibits the activity of VEGF-A and
VEGF-B, as well as of PlGF. In a phase III study, considering K/NRAS and BRAF unselected patients,
FOLFIRI plus aflibercept showed a statistically significant advantage in ORR, median PFS and median
OS respect to FOLFIRI plus placebo. These positive clinical effects were confirmed also in patients
previously treated with bevacizumab [95].

2.3. Vanucizumab

Vanucizumab is an anti-angiogenic bi-specific monoclonal antibody targeting VEGF-A and ANG2.
In a recent double-blind, randomized phase II trial, which compared vanucizumab plus FOLFOX with
bevacizumab plus FOLFOX as first line treatment of mCRC patients, the experimental arm failed to
reach primary endpoint (median PFS improvement), and an alarming increase of blood pressure was
observed in vanucizumab-treated cohort compared to control arm [83].

2.4. Regorafenib

Regorafenib (Stivarga®; Bayer Pharma, Leverkusen, Germany) is an oral multi-kinase inhibitor
that acts on tyrosine kinases receptors (KIT, RET, PDGFR, FGFR) and serine/threonine kinases (BRAF).
Its anti-angiogenic activity depends on blocking signaling downstream of VEGFR-2 and TIE2. After the
phase III study which demonstrated a statistically significant benefit on OS vs. placebo [96], regorafenib
became the standard therapeutic choice for metastatic CRC patients who are in disease progression
after all standard chemotherapies.
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2.5. TAS 102

Trifluridine/Tipiracil, also known as TAS 102 (Lonsurf®; AndersonBrecon Limited, Hereford,
UK), is an oral mixture consisting of the cytotoxin trifluridine (TFT) and thymidine phosphorylase
inhibitor tipiracil (TPI). In a phase III study, comparing TAS 102 with placebo, in metastatic CRC
patients who had received at least two standard chemotherapic treatments, and had prior treatment
with fluoropyrimidine, oxaliplatin, irinotecan, bevacizumab, and cetuximab or panitumumab, TAS 102
resulted in significant improvements of OS, median PFS and Disease Control Rate (DCR) [97].
Although TAS 102 has a prevalent genotoxic action, a preclinical model showed a potential role
in angiogenesis exerted by inhibiting the angiogenic chemokine platelet-derived endothelial cell
growth factor (PD-ECGF) [98].

2.6. Vandetanib

Vandetanib is an oral VEGFR-2 and Epidermal Growth Factor Receptor (EGFR) inhibitor currently
tested in combination with cetuximab and irinotecan in a phase I study [81]. However, available data
indicate for vandetanib an unsafe toxicity profile when combined with capecitabine, oxaliplatin and
bevacizumab [82].

2.7. Nintedanib

Nintedanib is an oral VEGFR-1/-2/-3, FGFR-1/-2/-3 and PDGFR-α/β inhibitor. It showed, when
combined with FOLFOX in a phase I/II study, comparable results respect bevacizumab as first line
treatment in metastatic CRC patients [78]. Despite the absence of significant benefit compared to other
anti-agiogenesis drugs, Nintedanib was tested in a phase III study plus the best supportive care in
comparison with placebo plus the best supportive care [79].

2.8. Trebanabib

Trebanabib is an Fc-fusion protein that inhibits the interaction between ANG1/2 and the TIE2
receptor. Trebanabib failed to reach a statistically significant improvement in median PFS in a phase II,
placebo-controlled, randomized study, in combination with FOLFIRI [80].

2.9. Vorinostat

Vorinostat is an histone deacetylase inhibitors, with epigenetic activity, and it has been shown
to repress HIF1-α through translational inhibition [84], but a phase I/II study of vorinostat plus 5FU
in mCRC pts with elevated intratumoral thymidylate synthase failed to determinate a maximum
tolerated dose [85].

2.10. Fruquintinib

Fruquintinib is an oral VEGFR-1/-2/-3 inhibitor; in a phase Ib with subsequent randomized
double-blind phase II study versus placebo, enrolling previously treated mCRC patients (≥than 2 lines),
it showed a significant benefit in median PFS [99]. In the phase III confirmatory trial, fruquintinib
showed statistically significant benefit in median OS, median PFS and response rate [77].

2.11. Famitinib

Famitinib is a wide spectrum kinase inhibitor targeting VEGFR-2/-3, PDGFRs, Stem Cell Factor
receptor c-KIT, FLT3 and receptor tyrosine kinase RET. A multicentric randomized, double-blind,
phase II study in mCRC patients in third or later line setting versus placebo showed for famitinib a
statistically significant benefit in median PFS and disease control rate, without significant toxicity [76].
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3. Angiogenesis-Related Prognostic Biomarkers in CRC

Angiogenesis plays a critical role in sustaining growth and progression of solid cancers, and for
this reason angiogenic factors could represent useful prognostic biomarkers (Table 2). The greater
the angiogenic potential of a tumor, the higher will be the proliferative rate and the invasive capacity.
In addition, some angiogenic factors are measurable in serum or plasma, offering the possibility
to perform a non-invasive and sequential screening. However, attention should be reserved to the
modality of collection of blood specimens because it was proposed to influence significantly the
detection of angiogenic biomarkers [100].

3.1. VEGF Signaling

VEGF-A is one of the most investigated biomarkers in CRC. The assessment of VEGF-A expression
in tissues and/or in serum of cancer patients was used as an effective method in predicting metastasis
from CRC [101–103]. Specifically, in a study conducted on seventy CRC patients, it was found that
serum VEGF expression levels, determined by ELISA, were significantly correlated with advanced
stage and metastases but not with age, gender, and tumor localization [14]. Another study, involving
a cohort of one-hundred three CRC patients, reported that elevated circulating levels of VEGF were
prognostic for liver and lung metastasis [104]. Kwon and colleagues have examined the expression
levels of VEGF, IL-6 and C-Reactive Protein in patients who underwent curative resection for CRC and
determined their reciprocal association and with histological findings. Also in this study, the VEGF
level correlated significantly with tumor size and it has been proposed as a poor prognostic factor
for overall survival [105]. Also, gene polymorphism in VEGF-A could hold prognostic information:
a recent study demonstrated that the homozygous genotype VEGF-2578 AA had significant effect on
time to tumor recurrence [106]. In order to strengthen the prognostic value of VEGF, some studies
have suggested the parallel evaluation for circulating cytokines, including the chemokine, CXC motif,
Ligand 1 (CXCL1), and IL-6 [104]. However, results from these studies were contradictory [105].

In order to circumvent the case in which angiogenesis does not determine a significant increase in
circulating VEGF levels, biomarkers could be analyzed also in primary tumor site. The expression of
VEGF was evaluated by immunohistochemistry in archived primary CRC tissue samples and it was
found upregulated in combination with increased microvessel density (MVD), but authors failed to
demonstrated a significant correlation with other prognostic factors and OS [107]. In association with
VEGF-A expression, VEGF receptors VEGFR-1 and VEGFR-2 and/or their phosphorylation status
have also been investigated.

The detection of VEGFR-2 phosphorylated status, as reported by Giatramanolaki [108], in parallel
with VEGF expression, could be a more reliable marker for active angiogenesis in tumors and may
be useful in translational research with agents targeting VEGF-A. The phosphorylation status of
pVEGFR-2 was determined on formalin-fixed paraffin embedded tissues demonstrating a significant
difference in staining positivity between normal and cancer colon tissue. In particular, an elevated
expression was detected in the cytoplasm and nucleus of cancer cells and in the tumor-associated
vasculature, mainly at the invading tumor edge. This study also suggests that monoclonal antibodies
raised against the phosphorylated form of VEGF receptors could be an useful prognostic/predictive
tool in clinical management of CRC patients evidencing in a more specific manner the extension of the
zones of active angiogenesis in the primary tissue [108]. Unfortunately, it has also been demonstrated
that prolonged VEGFR-2 blockade, after an initial stabilization of the disease, leads to an upregulation
of several other pro-angiogenic growth factors such as PDGFs, FGFs, ANGs and of tumor-angiogenesis
related interleukins, thus lowering the prognostic value of VEGFRs [109].
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Table 2. Prognostic and predictive biomarkers proposed for advanced CRC and validated by
clinical experimentation.

Biomarker Drug/Treatment Prognostic Value Predictive Value Ref.

Circulating VEGF-A

FOLFIRI plus bevacizumab Yes Yes (VEGF-A ↑ during treatment
and poor prognosis) [110]

XELOX, FOLFOX6 or
FOLFIRI/FOLFOXIRI

plus bevacizumab
Yes No [111]

Tissue VEGF
expression

Randomized, 3-arms, phase II trial
plus bevacizumab;

multiple treatments
Yes N/V [112,113]

FOLFIRI plus bevacizumab N/V

Yes (↓ peri-therapeutic VEGF-A
expression predicts
responsiveness to

bevacizumab and PFS)

[94]

IFL NO NO (bevacizumab improves
survival regardless VEGF levels) [114]

SNPs VEGF

FOLFIRI plus bevacizumab,
retrospective analysis N/V

Yes (VEGF GP −1498 T/T
genotype was associated with

shorter PFS)
[115,116]

FOLFIRI plus bevacizumab N/V No [117]

FOLFIRI AND XELIRI
plus Bevacizumab N/V Yes (the VEGF GP 1154 G/G is

associated with OS) [118]

Retrospective analysis
Yes (VEGF-2578 is

associated with
time of recurrence)

N/V [106]

FOLFIRI plus bevacizumab N/V Yes (VEGF GPs −1154 G/G
−152 G/G is predictive for PFS) [116]

Tissue
VEGFR1,VEGFR2,

VEGFR3 expression

CBI or CB *
Yes (VEGFR2 could

predict clinical
outcome in mCRC

N/V [119]

Four cycles of therapy
plus Bevacizumab N/V

YES (Pretreatment ↑ soluble
VEGFR-1 is associated with higher

response to therapy)
[120]

Tissue IL-8 and SNP
expression

Retrospective analysis ** Yes N/V [121]

Bevacizumab-based first
line treatment N/V

YES (IL-8 GPs-51 T/A and A/A
are associated with shorter

PFS and OS)
[122]

Serum PLGF FOLFIRI
plus bevacizumab/aflibercept N/V

YES (↑PLGF and VEGF correlate
with response in patients previous

treated with bevacizumab)
[123]

* Independently of KRAS mutation; ** Various therapy protocols not reported in the article. N/V: not verified;
CBI: cetuximab, bevacizumab, irinotecan; FOLFIRI: fluorouracil, leucovorin, irinotecan; FOLFOX: fluorouracil,
leucovorin and oxaliplatin; IFL: irinotecan, fluorouracil, leucovorin; XELOX: capecitabine, oxaliplatin.

3.2. ANG Signaling

Changes in the expression of ANGs and their receptors have been frequently reported in
several malignancies and in mCRC. Available results are largely concordant in suggesting that
Ang-2 over-expression is a frequent event in CRC progression and that Ang-2 and Tie-2 plasma
concentrations are reliable prognostic markers. Indeed, numerous evidences demonstrated elevated
serum and tissue levels of ANG-2 in CRC and the association between Ang-2 overexpression and
lymph node metastasis, venous invasion and MVD [124]. Hong et al. in a retrospective study
conducted by immunohistochemistry reported an increased expression of Ang-2 and a strong and
inverse correlation with prognosis and OS. They concluded suggesting an important role of Ang/Tie2
signaling as additional tumor markers in CRC [125]. Another important study analyzed serum and
tissue specimens from 490 patients with CRC to evaluate the significance of ANG-2 in both serum
and primary CRC tissue [126]. In this study CRC patients showed the overexpression of ANG-2 in
association with tumor progression. Similarly, another study conducted by Engin et al. demonstrated
a significant increase in ANG-2 and Tie-2 plasma concentration in CRC patients whereas ANG-1 levels
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were not statistically different respect to control group. Moreover, ANG-2 concentration was correlated
with the tumor stage [127]. Investigation about plasma ANG-1 expression has generated equivocal
results. This could be because ANG-1 has an antagonistic role in regulating the angiogenesis process
respect to ANG-2 role. Therefore, it has been proposed that a better estimation of prognosis would
derive from the calculation of expression ratio ANG-2:ANG-1 [127].

3.3. PDGF Signaling

Manzat-Saplacan et al. investigated, by RT-PCR, in blood sample from CRC patients and control
subjects, the expression of different genes involved in angiogenesis [128]. From the comparison
emerged significant upregulation only for PDGF-C and clusterin. Even if other investigated factors
showed an increased expression in CRC their difference respect to control group was not statistically
significant. The prognostic role of PDGFs and PDGFRs has been investigated also in gastrointestinal
cancers where PDGF-D and PDGF-C resulted associated with tumor progression recurrence, distant
metastasis and poor outcomes [129–131]. However, despite several studies having analyzed the role of
PDGFs as prognostic factor, the clinical and biological importance of PDGFs expression in human CRC
is still debated [132].

3.4. FGF Signaling

bFGF, when upregulated, contributes in maintaining high levels of VEGF, and therefore it could
be involved in resistance to anti-VEGF therapy. Initial evidence about the role of bFGF as prognostic
factor in CRC was produced by Iwasaki and colleagues who analyzing resected tissue specimens from
a small number of CRC patients, individuated a correlation between bFGF and tumor stage [133].
Another study, on 52 CRC patients, investigated the potential prognostic role of VEGF, bFGF and NO
levels obtaining a significant increases only in VEGF and NO: the determination of serum levels of
these factors was proposed to predict the progression of malignancy [134].

3.5. TGF-β Signaling

Because of its dual role as suppressor of carcinogenesis and promoter of cancer progression,
expression levels of TGF-β1 have been studied mainly in patients with a late stage of CRC [135].
In particular, Chun and colleagues investigated, by immunohistochemistry, the expression levels of
TGF-β1, TGF-β1 receptor, and downstream effectors in 201 cases of stage III rectal cancer: from the
study emerged a correlation between low expression of TGF-β1 and poor prognosis [135].

3.6. Non-Coding RNA Signaling

Recently, because of their association with various cancers, including CRC, and their involvement
in numerous biological processes such as angiogenesis, invasion and proliferation, non-codingRNAs
(ncRNAs), mainly microRNAs (miRNA) and long non-codingRNA (lncRNAs) have gained growing
attention. Since miRNA and lncRNAs seem to be stable in stool and easily measurable in blood plasma
and serum, they can represent a new alternative and attractive strategy for developing prognostic
and predictive biomarkers of CRC. It is well known that numerous microRNAs are able to regulate
tumor angiogenesis, for example, by inhibiting components of the hypoxia signaling pathway and
in this way blocking transcription of downstream elements that regulate angiogenic switch. This is
the case of miR-22, that was found highly expressed in human CRC but it is absent in normal colon
tissue. In fact, miR-22 inhibits HIF1-α expression, repressing VEGF-A production during hypoxia.
Accordingly, knockdown of endogenous miR-22 enhanced hypoxia-induced expression of HIF1-α and
VEGF-A [136]. Also, miR-499 regulates VEGF pathway under hypoxia–ischemia conditions and it
seems to be involved in CRC angiogenesis by targeting WNT signaling [137]. Moreover, miR-135a/b
and miR-17-92a cluster can activate the WNT signaling pathway via suppression of adenomatous
polyposis protein (APC) or transcription factor E2F1, respectively [138,139]. A tumor-suppressing
role in CRC has been proposed also for the miR-143 and miR-145. In particular, Chen and colleagues
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demonstrated that the inhibitory effect of miR-143 was dependent on the association between miR-143
and KRAS translation [140]. Later, other groups demonstrated a decrease of miR-143 and miR-145
expression in precancerous tissue and neoplastic colorectal tissue respect to normal mucosa. A possible
link with angiogenesis was demonstrated for miR-145 that can target p70S6K1 downregulating the
downstream expression of HIF1-α and VEGF-A [141,142].

Recent data suggest a prognostic role for lncRNAs, including H19, lincRNA-p21, Taurine
upregulated 1 gene (TUG1) and Hox transcript Antisense RNA gene (HOTAIR). All these molecules
have been associated with increased angiogenesis in different tumor models and interestingly,
they have been proven to be involved in CRC metastasis [143]. Therefore, it is plausible that lncRNAs
could modulate CRC progression by partly regulating angiogenesis. However, further data are needed
in order to confirm this hypothesis.

3.7. Other Signaling Pathways

HIF1-α expression, in association with VEGF, is related to clinical outcome and prognosis:
Wu Yugang et al. found elevated expression levels of HIF1-α, the chemokine, CXC motif, Receptor 4
(CXCR4) and of VEGF-A were significantly correlated with tumor stage, and progression [144].
The same conclusion was proposed in a different study where HIF-1α expression was evaluated
by quantitative PCR and immunocytochemistry [145].

Several studies have established a strong association between tumors and chronic inflammation,
demonstrating the overexpression of several inflammatory cytokines, such as IL-1, IL-6, IL-4 or IL-8 in
tumor tissue or serum of cancer patients [146,147]. It has been reported that some of these cytokines
are involved in promoting growth and progression of CRC. So, the determination of inflammatory
cytokines in serum of CRC patients could be a useful tool for prognosis and diagnosis [148]. Citokines
can affect the proliferation and migration of endothelial cells and promote angiogenesis [146,149,150].
The presence of hypoxic zones could further exacerbate this manifestation, as described for the
secretion of IL-8 [151]. Evaluation of circulating levels of IL-1, IL-6, IL-8, VEGF and other cytokines,
in a cohort study of sixty-nine patients, showed a significant correlation between IL-8 and VEGF,
with recurrence in CRC [152]. Also, IL-6 can play a central role in cancer invasion and spreading,
and it has been reported that in the presence of increasing levels of IL-6, both the OS and PFS of CRC
patients worsened [153]. Nastase and colleagues analyzed by ELISA and quantitative PCR method,
IL-8 expression levels in 62 CRC patients, finding a significant correlation between serum IL-8 levels
and tumor stage [149]. Another study evidenced the association between IL-8 expression and tumor
promotion suggesting a prognostic role in CRC for this interleukin [121].

4. Response Biomarkers in Anti-Angiogenesis Therapy of CRC

A growing list of factors has been investigated in the last years in order to individuate biomarkers
able to predict clinical response to anti-angiogenesis drugs (Table 2). Nevertheless, the complexity
of the underlying signaling pathways represents an important obstacle in finding a single effective
biomarker. Moreover, there is a series of collateral problems that to date complicated the identification
and validation of biomarkers. For example, the definition of objective response criteria suitable for
anti-angiogenic therapy or the lack of reproducibility in biomarker measurement. Other problems can
derive from the type of protocols routinely used for cancer treatment usually based on the combination
of anti-angiogenic agents with a backbone of chemotherapy. Unfortunately, to date no absolute
conclusion has been achieved, and clinical practice is still suffering from a lack of biological tools
to select CRC patients who may benefit more than others from anti-angiogenetic treatments and
monitoring them during treatments, in order to anticipate diagnosis.

Although initial evidence suggested that a rapid increase in the serum VEGF-A concentration
may be a potential predictor of resistance to bevacizumab, Alidzanovic et al. [111] demonstrated
that the increase of VEGF circulating levels, during bevacizumab-based treatment, should not be
considered as a tumor escape mechanism, but rather a pharmacodynamic effect: the measured VEGF
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is largely complicated by bevacizumab [110]. Hegde et al. measured serum VEGF-A levels by ELISA
at baseline, in a large cohort of cancer patients (colorectal cancer, renal cancer and lung cancer) from
four randomized phase III studies with experimental bevacizumab-containing regimens [113,114].
The results of this study confirmed that higher pre-treatment VEGF-A levels had a prognostic
significance, but they were not predictive for response to bevacizumab treatment. A recent retrospective
analysis of the phase III study, comparing FOLFIRI plus aflibercept versus FOLFIRI plus placebo as
second line treatment in CRC patients [95], analyzed the clinical response of bevacizumab-pretreated
subgroup, measuring nine potential biomarkers implicated in angiogenesis. In this study, a positive
correlation between disease progression and increased PlGF and VEGF-A concentrations was found.
The authors concluded that aflibercept would be an optimal choice in patients progressed to prior
bevacizumab-based treatment showing a rise of PlGF, VEGF-A and other angiogenesis circulating
biomarkers [123]. A potential use of soluble VGFR-1, an endogenous blocker of VEGF, was proposed
as biomarker to stratify patients with localized rectal cancer. In fact, plasma pretreatment sVEGFR-1
concentration was associated with both primary tumor regression and the development of adverse
events after neoadjuvant bevacizumab and chemoradiation [120]. The predictive role of VEGF was
evaluated also analyzing mRNA expression in circulating cells. Marisi et al. observed that a reduction
in VEGF expression in plasma samples of metastatic CRC patients, from baseline to the first clinical
evaluation, was correlated with a better outcome to bevacizumab-based treatment [154].

The VEGFA SNPs have also been investigated for their potential involvement in patients’ response
to bevacizumab. Formica et al. firstly found a statistically significant association between VEGF
gene polymorphisms (GPs) −152 (G/G vs. G/A + A/A), −1154 (G/G vs. G/A + A/A) and
PFS [116]. In agreement, Koutras et al. confirmed the increased frequency of VEGF GP −1154 G/G
in patients not responding to bevacizumab treatment and with a poor PFS [118]. Loupakis et al.
retrospectively analyzed VEGF SNPs in 111 consecutive metastatic CRC patients treated with FOLFIRI
plus bevacizumab, in order to evaluate their correlation with PFS [115]. The VEGF GP −1498 T/T
genotype was associated with shorter median PFS in bevacizumab-treated patients, but not in the
control group treated with FOLFIRI alone. Their findings seem to suggest a possible role of VEGF
−1498 C/T variant in predicting the efficacy of bevacizumab, but a subsequent prospective study did
not validate this hypothesis [117]. Although data need to be further validated, the predictive role of
polymorphisms in other genes involved in angiogenesis has been proposed. Di Salvatore et al. showed
a statistically significant association between IL-8 GPs −251 T/A and A/A and shorter PFS and OS,
compared to TT alleles in bevacizumab-treated RAS mutant, metastatic CRC patients [122].

Although based on preliminary data, and on the analysis of a limited number of patients,
the hypothesis is emerging of a promising predictive role also for VEGF isoforms. Bates et al. demonstrated
that the ratio of VEGF-165b:VEGF-total (VEGF-165b is the predominant anti-angiogenetic isoform),
analyzed by immunohistochemistry staining of tumor tissues, significantly correlated with disease
free survival in patients being treated with bevacizumab and oxaliplatin-based chemotherapy [155].
In addition, Bunni et al. showed that plasma VEGF-Axxxb levels correlated with tissue VEGF-Axxxb
expression, suggesting that also circulating levels of VEGF isoforms could be useful as a predictive
biomarker for responsiveness to bevacizumab [156].

Recent studies have suggested that VEGF receptors, which have been shown to be independent
prognostic markers in CRC, can be also considered in order to improve the predictive value of VEGF-A
during anti-VEGF treatment [119,157,158]. Indeed, a diagnostic approach able to describe the pattern
of the activation of signaling pathways involved in angiogenesis should result in a more predictive
capacity. In fact, many of the currently evaluated anti-angiogenesis drugs are tyrosine kinase inhibitors
that target factors downstream of VEGF. In addition, the investigation of the active signaling pathways
could permit to predict the development of evasive resistance mechanisms usually associated to
anti-VEGF monotherapies [159].

Lieu et al. measured levels of PlGF, VEGF-A, VEGF-C and VEGF-D in sequential plasma samples
of metastatic CRC patients treated with chemotherapy plus bevacizumab, and of control cohorts
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subjected to regimens with or without bevacizumab [160]. Patients who progressed on chemotherapy
with bevacizumab had significantly higher levels of PlGF, but not of VEGF-C and VEGF-D compared
to patients treated with chemotherapy alone. Martinetti et al. aimed to validate the prognostic role of
circulating VEGFs, PDGFs, Stromal Cell-derived Factor-1 (SDF-1), osteopontin and Carcinoembryonic
Antigen, by analyzing plasma samples of patients treated with three bevacizumab-based regimens at
baseline and during therapy [112]. They found that baseline higher levels of CEA, SDF-1 and VEGF
were associated with poor prognosis, even if the correlation did not reach statistical significance.

To date, few consistent reports about the predictive role of miRNAs in CRC angiogenesis have
been provided. Boisen and colleagues conducted an early study showing that some miRNAs expressed
in tumor tissue and potentially involved in angiogenesis pathway have a predictive role on tumor
response in patients treated with bevacizumab [161]. In addition, Hansen investigated the predictive
role of circulating miR-126 measured by qPCR in mCRC patients, before, during and at progression
to first-line chemotherapy with bevacizumab [162]. These findings about a significant concordance
between miR-126 levels and tumor progression confirmed a possible predictive role of miR-126 in
bevacizumab-based treatments.

5. Conclusions

More than forty years have passed since the first intuition about angiogenesis as an effective
target in cancer therapy, yet angiogenesis is still a largely enigmatic phenomenon, involving the
coordinated action of many players. Preclinical experimentation is actively involved in testing
several new inhibitors against both the gold target VEGF and new potential angiogenic targets.
Nevertheless, in many cases, expectations have not been followed by effective results in clinical
trials. More information has to be known about mechanisms allowing the correct coordination
of sequential steps in the formation of new vessels, and about the redundant effect of numerous
factors involved. This aspect is further complicated by the fact that in tumor we usually assist
at the realization of an “imperfect”, non-canonical angiogenesis. The clinical need for predictive
biomarkers in anti-angiogenesis therapy is prompting researcher for a gold rush that is revealing
itself to be a fishing expedition, generating results that are frequently difficult to compare because
of heterogeneity in the methodological approaches. Currently there is not an angiogenic biomarker
that could be used in clinical practice, although some important points have been clearly delineated:
VEGF-A is a solid prognostic biomarker, but its predictive role as a unique biomarker is inadequate;
different factors should be considered in parallel with VEGFs, taking into account also factors related
to maturation and stabilization of new vessels; microenvironment should not be considered simply
a bystander in angiogenesis and tumor-associated normal cells are important contributors in this
process; tumor-angiogenesis is a dynamic phenomenon and angiogenic biomarkers could change
in the progression of the disease and in relation to therapeutic protocol, making their prognostic
value inadequate
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