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Abstract: In this study, the innovative and multifunctional nanoparticles–hydrogel nanocomposites
made with chitosan hydrogel beads and solid lipid–polymer hybrid nanoparticles (SLPN) were
prepared through conjugation between SLPN and chitosan beads. The SLPNs were first fabricated via
coating the bovine serum albumin (BSA)-emulsified solid lipid nanoparticles with oxidized dextran.
The aldehyde groups of the oxidized dextran on the surface of the SLPN enabled an in situ conjugation
with the chitosan beads through the Schiff base linkage. The obtained nano-on-beads composite
exhibited a spherical shape with a homogeneous size distribution. The successful conjugation of
SLPN on the chitosan beads was confirmed by a Fourier transform infrared spectroscopy and a
scanning electron microscope. The effects of the beads dosage (50, 100, 200, and 300 beads) and the
incubation duration (30, 60, 90, 120, and 150 min) on the conjugation efficiency of SLPN onto the beads
were comprehensively optimized. The optimal formulations were found to be a 200 bead dosage,
with 30–90 min incubation duration groups. The optimal formulations were then used to encapsulate
thymol, an antibacterial agent, which was studied as a model compound. After encapsulation,
the thymol exhibited sustained release profiles in the phosphate buffer saline. The as-prepared
nanoparticles–hydrogel nanocomposites reported in this proof-of-concept study hold promising
features as a controlled-release antibacterial approach for improving food safety.
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1. Introduction

Hydrogels are highly hydrated three-dimensional network structures that are able to absorb
large quantities of water and can swell without being dissolved, as a result of chemical or physical
cross-linking [1]. Because of their high water content, as well as their physiochemical similarity to
the native extracellular matrix, hydrogels are extensively employed in various applications such as
tissue engineering, bio-adsorbents, and drug delivery systems [2–4]. Depending on the techniques
involved in the preparation process, the appearance of hydrogels could be matrix, film, microsphere,
or beads [1]. Hydrogels could be prepared via gelation using the mechanism of antisolvent coagulation;
ionic or covalent cross-linking of hydrophilic synthetic polymers, such as polyethylene glycol (PEG),
polyacrylamide (PAM), and polyvinyl alcohol (PVA); or natural polysaccharides, such as alginate
and chitosan. However, some synthetic polymers such as PAM and its derivatives, acrylamide (AM)
and ethyleneimine, are extremely toxic and can cause severe neurotoxic effects [5,6]. Moreover,
many widely used cross-linkers, such as glutaraldehyde, are known to generate potential cytotoxicity,
which could compromise further applications of hydrogels cross-linked by these linkers [7]. Therefore,
hydrogels prepared using biopolymers that have been prepared with safe and effective cross-linking
methods, have attracted increased attention in recent years. Among the biopolymer-based hydrogels,

Int. J. Mol. Sci. 2018, 19, 3112; doi:10.3390/ijms19103112 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-0001-1194
http://www.mdpi.com/1422-0067/19/10/3112?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19103112
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 3112 2 of 13

chitosan hydrogel beads have been extensively applied in various fields, because of the remarkable
properties of chitosan, such as its low toxicity, biodegradability, and biocompatibility [8,9].

Currently, the functionalization of chitosan hydrogel has become more and more popular, as it
could confer additional functions to native chitosan hydrogel. In particular, nanoparticles–chitosan
hydrogel composites have been developed and studied over decades, because of their enhanced
properties compared with their individual components [10]. For instance, the recently reported metal
nanoparticles–chitosan hydrogel composite made of silver or gold nanoparticles and chitosan has
demonstrated an exceptional antimicrobial activity and an adsorption ability of heavy metals or
pesticides [11–13]. Furthermore, silver nanoparticles–functionalized chitosan hydrogels exhibited
no negative impact on the cells of dermis compared with individual silver nanoparticles [11,14,15].
However, the release and migration of metal nanoparticles from the hydrogel matrix to the environment
may pose serious safety concerns by introducing secondary contamination, which may cause severe
adverse consequences to human health and the natural environment [16,17]. Therefore, developing
novel methodologies to functionalize chitosan-based hydrogels for the preparation of nanocomposites
is critically needed. In this study, we have proposed preparing a novel nano-on-beads composite using
chitosan hydrogel and organic nanoparticles (i.e., solid lipid–polymer hybrid nanoparticles (SLPN)).
The nanoparticles were crosslinked onto chitosan hydrogel beads via food-grade macromolecular
crosslinkers to create the covalent bonding, thus minimizing the migration of the nanoparticles from
the beads.

In our previous study, we successfully prepared SLPN from oxidized dextran (OD), bovine serum
albumin (BSA), and solid lipid [18]. OD is a dialdehyde polymer obtained from the oxidation of
native dextran. The abundant aldehyde groups on OD not only enable an in-situ crosslinking with
amino groups on BSA during the preparation of SLPN, but also makes SLPN capable of reacting with
other amino-containing polymers via the Schiff base linkage. The chitosan hydrogel beads, prepared
using a coagulation technique, acted as a polymeric hydrogel matrix rich in amino groups for reacting
with SLPN. Thus, we proposed that the OD-decorated SLPN could be covalently conjugated to the
surface of the chitosan beads to form nano-on-beads composite, by simply incubating the beads in a
colloidal SLPN dispersion. The major objective of this study is to prove this innovative concept and to
prepare and comprehensively characterize the obtained nano-on-beads composite, including its size,
composition, and morphology.

2. Results and Discussion

2.1. Functionalization of Chitosan Beads with SLPN

In our previous study [18], oxidized dextran (OD) was successfully prepared by the oxidation of
native dextran with sodium periodate (NaIO4). The structure of OD was confirmed by nuclear magnetic
resonance (NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR). The prepared
OD was then used in the formulation of SLPN by cross-linking it with BSA in order to confer the
aldehyde groups on the surface of the nanoparticles, resulting in the formation of surface-active
SLPNs capable of reacting with other amino-containing polymers, such as chitosan. Therefore, in the
present study, we first prepared the chitosan beads using an antisolvent coagulation method, using a
concentrated sodium hydroxide (NaOH) solution, and then these beads were subsequently incubated
with surface-active SLPN for functionalization via the Schiff base linkage (Figure 1A). For comparison,
chitosan beads with and without SLPN were both prepared, and their digital photos are shown in
Figure 1B,C, respectively. Apparently, both types of beads had a spherical shape with a homogeneous
size distribution, while the beads functionalized with SLPN exhibited a slightly larger dimension
(2–2.5 mm) than the control beads without functionalization (2.2–2.7 mm). In the hydrated state,
the pure chitosan beads appeared to be white, while the color of the SLPN-chitosan nanocomposite
beads varied from light yellow to orange, depending on the heating duration, due to the extent of
the Schiff base formation. Upon dehydration, a significant shrinkage was observed for both types
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of beads, as the water molecules diffused out. In the dried state, the pure chitosan beads changed
into hemispherical shape, whereas the SLPN-chitosan–nanocomposite beads were able to maintain
their original spherical shape without a noticeable collapse on the surface, indicating an improved
mechanical property after functionalization [19]. The enhanced strength of the SLPN-chitosan beads
could be attributed to the conjugation of SLPN on the surface, as well as the crosslinking effect of
the free OD present in the SLPN dispersion. It has been previously reported that the dialdehyde
biomacromolecules are very effective crosslinkers to chitosan for forming chitosan hydrogels [20–22].

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 13 

 

changed into hemispherical shape, whereas the SLPN-chitosan–nanocomposite beads were able to 
maintain their original spherical shape without a noticeable collapse on the surface, indicating an 
improved mechanical property after functionalization [19]. The enhanced strength of the SLPN-
chitosan beads could be attributed to the conjugation of SLPN on the surface, as well as the 
crosslinking effect of the free OD present in the SLPN dispersion. It has been previously reported that 
the dialdehyde biomacromolecules are very effective crosslinkers to chitosan for forming chitosan 
hydrogels [20–22]. 

 
Figure 1. (A) The formulation of solid lipid–polymer hybrid nanoparticles (SLPN) and the fabrication 
of nano-on-beads composite with as-prepared SLPN; (B) hydrated and dehydrated (top-right) states 
of SLPN functionalized chitosan beads; (C) hydrated and dehydrated (top-right) states of pure 
chitosan beads. 

2.2. Effect of Chitosan Beads Dosage and Incubation Duration 

To investigate the effects of the beads dosage (50, 100, 200, and 300 beads) and incubation 
duration (30, 60, 90, 120, and 150 min) on the conjugation efficiency of SLPN onto the chitosan beads, 
the protein concentration in the SLPN dispersion was measured at different time points during the 
functionalization process. The protein, BSA, was used as a natural emulsifier during the SLPN 
preparation, and it formed the intermediate layer between the OD coating and the solid lipid core. 
While there may be free OD in the SLPN dispersion, the BSA molecules, as the intermediate and 
amphiphilic layer in the SLPN structure, shall be adsorbed on the solid lipid core. Thus, the change 
in the BSA concentration in the SLPN dispersion during the conjugation process was correlated to 
the change of the SLPN concentration. By subtracting the measured residual BSA concentration in 
the dispersion from the total BSA concentration used to prepare the SLPN, one can deduce the SLPN 
conjugated to the chitosan beads and thus calculate the conjugation rate and efficiency. Figure 2A 
shows the change of the residual BSA content in the SLPN dispersion as a function of the incubation 
time and the number of beads. Generally, more SLPNs were conjugated to the surface of the chitosan 
beads over time for a given number of beads, and the conjugation rate was greater in the groups with 
a larger number of beads. In particular, in the groups of 200 and 300 beads, a burst reduction of BSA 
concentration was observed within the first 30 min, being 50% and 35%, respectively, followed by a 

Figure 1. (A) The formulation of solid lipid–polymer hybrid nanoparticles (SLPN) and the fabrication
of nano-on-beads composite with as-prepared SLPN; (B) hydrated and dehydrated (top-right) states
of SLPN functionalized chitosan beads; (C) hydrated and dehydrated (top-right) states of pure
chitosan beads.

2.2. Effect of Chitosan Beads Dosage and Incubation Duration

To investigate the effects of the beads dosage (50, 100, 200, and 300 beads) and incubation
duration (30, 60, 90, 120, and 150 min) on the conjugation efficiency of SLPN onto the chitosan
beads, the protein concentration in the SLPN dispersion was measured at different time points during
the functionalization process. The protein, BSA, was used as a natural emulsifier during the SLPN
preparation, and it formed the intermediate layer between the OD coating and the solid lipid core.
While there may be free OD in the SLPN dispersion, the BSA molecules, as the intermediate and
amphiphilic layer in the SLPN structure, shall be adsorbed on the solid lipid core. Thus, the change
in the BSA concentration in the SLPN dispersion during the conjugation process was correlated to
the change of the SLPN concentration. By subtracting the measured residual BSA concentration in
the dispersion from the total BSA concentration used to prepare the SLPN, one can deduce the SLPN
conjugated to the chitosan beads and thus calculate the conjugation rate and efficiency. Figure 2A
shows the change of the residual BSA content in the SLPN dispersion as a function of the incubation
time and the number of beads. Generally, more SLPNs were conjugated to the surface of the chitosan
beads over time for a given number of beads, and the conjugation rate was greater in the groups with



Int. J. Mol. Sci. 2018, 19, 3112 4 of 13

a larger number of beads. In particular, in the groups of 200 and 300 beads, a burst reduction of BSA
concentration was observed within the first 30 min, being 50% and 35%, respectively, followed by
a linear reduction. In contrast, in the groups of 50 and 100 beads, such a burst reduction was not
noticeable. This could be due to the increase in the number of absorption sites (amino groups on
chitosan beads) when more chitosan beads were present.

Moreover, the protein content was normalized based on the number of beads, and the calculated
protein concentration per bead was higher at lower bead dosage group (Figure 2B), suggesting
that more SLPNs were conjugated to one bead when a smaller number of beads were present.
Although incubation with less beads in a given amount of SLPNs could achieve a higher concentration
of nanoparticles per bead, the physicochemical characteristics of the SLPN dispersion during the
conjugation process needs to be considered, as the extended heating time is involved, which may alter
the nanoparticle structure of the SLPNs. During the incubation and crosslinking process, not only were
the SLPNs covalently bonded onto the surface of the chitosan beads, but the free OD in the dispersion
also reacted with the SLPN and chitosan hydrogel matrix. Our previous study demonstrated that with
the increased heating time, the formation of significantly larger SLPNs and even the aggregation and
precipitation of SLPNs occurred [18]. The reaction between the free OD and the BSA in the SLPN
led to a change in the particulate characteristics of the SLPN, probably due to the excessive coating.
In this study, the characteristics of the SLPNs were monitored by measuring the particle size and
polydispersity index (PDI) of the SLPNs in the dispersion, throughout the incubation time during
conjugation. Before crosslinking (time 0 min in Figure 2C,D), the particle size and PDI of the prepared
SLPN was around 137 nm and 0.23, respectively. During the conjugation process, the SLPNs in all
of the groups were able to maintain their original particle size and PDI in the first 60 min, while the
particle size of the blank and 50-beads groups started to increase slowly to over 200 nm at 90 min,
and then rapidly to over 600 nm at 120 min. Concomitantly, following a similar trend, the PDI of these
two groups also significantly increased to 0.4 and 0.8, respectively. While the dramatic increase in the
particle size in the blank group that did not have any chitosan beads was well corroborated with our
previous study, where excessive heating induced the SLPN aggregation [18]; the different stability of
SLPN in the groups with a varying number of beads may be explained, as below. As OD has no distance
restriction to promote cross-linking, it could rapidly cover the surface of the BSA molecules during the
SLPN preparation rather than forming intermolecular conjugation among the protein molecules like
conventional cross-linkers (e.g., glutaraldehyde) do [23]. It must be noted that the free ODs that did not
react with BSA during the preparation of SLPN were not removed from the dispersion, and therefore
the free ODs would continue to react with the already-formed SLPN in the heating process during the
preparation of the nano-on-beads composite, leading to an excessively thick OD layer depositing on the
SLPN and a significantly larger particle size with a greater PDI. Interestingly, for the other groups with
a greater number of beads (i.e., 100, 200, and 300 beads), the particle size and PDI remained constant
throughout the conjugation process, up to 150 min. The differences in the particulate characteristics of
the SLPNs among the different groups during incubation could be attributed to the fast uptake and
clearance of free OD by the superfluous beads in the groups with more than 100 beads. In particular,
not only did the amino groups of BSA in SLPN react with the free OD, but the amino groups from the
chitosan hydrogel matrix reacted as well. Therefore, when there were enough beads that could help
to quickly react with free the OD in the dispersion, the free OD were spared from reacting with the
SLPN, preventing the formation of an unnecessarily thick coating, and thus improving the stability of
the SLPNs against aggregation during functionalization. In other words, the reaction rate between
the free OD with 50 chitosan beads was not fast enough to competitively inhibit or slow down the
reaction between the free OD and SLPN, resulting in SLPNs that failed to maintain their particle size
and PDI after a long incubation period. As a result, the chitosan beads in the 50-beads group may be
functionalized by the aggregated SLPNs. Collectively, based on the obtained results, the groups with
200 beads at three time points (i.e., 30, 60, and 90 min) were selected for the following studies.
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2.3. Characterization of Composite Beads

Figure 3 shows the FTIR spectra of the individual components, of the SLPN and the selected
nano-on-beads composite sample. In the spectrum of the native BSA, two major characteristic
peaks at 1640 and 1515 cm−1 were detected and assigned to the amide I and amide II stretching
vibrations, respectively (Figure 3A). The OD spectrum exhibited some typical characteristics of an
absorption band of native dextran, including 3329 cm−1 due to O–H stretching; 1636 cm−1 due to
water molecule bending; and 2925, 1419, and 1345 cm–1 assigned to ν(C–H) and δ(C–H) vibrational
modes [24]. Furthermore, the dialdehyde absorption peak at 1730 cm–1 was observed in the OD
spectrum (Figure 3B). The spectrum from the pure chitosan beads showed signals at 1649, 1560,
and 1314 cm−1 for the C=O stretching (amide I), N–H bending (amine II), and C–N stretching
(amide III), respectively [25,26]. The chitosan spectrum also exhibited some characteristic peaks of
polysaccharide, such as O–H stretching, C–H stretching, and C–O stretching at 3400–3600, 2800–2900,
and 1020–1180 cm−1, respectively (Figure 3C) [27]. After functionalization with SLPN, the N–H
stretching at 3325 cm−1 and the N–H bending at 1560 cm−1, which were originally present in the pure
chitosan beads, could not be detected in the composite beads (Figure 3D). Based on a previous study,
the Schiff bases were found to exhibit an absorption band at 1613–1631 cm−1 [28]. However, it is hard to
identify this peak in the spectra of the composite beads, which might be due to the overlay of the imine
bond with the amide bond from both BSA and chitosan. There were no significant differences between
the nano-on-beads groups (data now shown). Furthermore, the surface morphology of the selected
oven-dried beads was visualized by SEM (Figure 4). The chitosan bead without functionalization
had rough surface with diameter around 750 µm (Figure 4A,C), which was concordant with other
studies on chitosan beads prepared using the coagulation technique [29,30]. After functionalization
with SLPN, although no change in the size of the dried beads, the clusters of nanoparticles with size
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ranging from 100 to 200 nm were clearly observed on the surface of the chitosan bead (Figure 4B,D),
demonstrating the successful conjugation of SLPN on the bead.
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In addition to confirming the functionalization of beads with SLPN, the detachment or migration
behavior of SLPN from the chitosan beads when incubated in a buffer medium was then evaluated
by measuring the time-dependent protein concentration in the supernatant. Interestingly, the BSA
concentration was not be detected in the supernatant at all within the investigated time period, up to
24 h. This result suggested that covalent bonding through the Schiff base linkage between the chitosan
and SLPN was strong enough to retain an SLPN from the migration into the buffer medium.

2.4. Encapsulation of Thymol and Functionalization

SLPNs with thymol loading at 0.05, 0.075, and 0.1 mg/mg (w/w, thymol/lipid) were successfully
fabricated and were denoted as T-SLPN1, T-SLPN2, and T-SLPN3, respectively. The particulate
characteristics and encapsulation efficiency are shown in Table 1. Compared to the empty SLPN,
the particle size, PDI, and absolute value of the zeta potential slightly increased with the increase
of the thymol loading. When the concentration of thymol reached 0.1 mg/mL, the encapsulation
efficiency of SLPN significantly decreased from around 92% to 78%, indicating that SLPN may not be
capable of accommodating such a high concentration of thymol. Thus, 0.075 mg/mL of loading SLPNs
were selected for further experiments. Subsequently, the thymol-loaded SLPN (T-SLPN2) was used
to functionalize the chitosan beads following the protocol established in this study (i.e., 200B-30m,
200B-60m, and 200B-90m). As thymol is a hydrophobic molecule that is supposed to be entrapped
in the core of SLPN, the residual concentration of thymol in the T-SLPN2 dispersion can be used as
another indicator, in addition to BSA, for calculating the conjugation efficiency. Therefore, during the
functionalization of the chitosan with T-SLPN2, the thymol concentration was measured using UV-VIS
spectroscopy, in order to quantitatively confirm and validate the absorption of SLPN onto beads.
As shown in Figure 5A, the conjugation efficiencies calculated from the measurement of the residual
thymol concentration in the T-SLPN dispersion after functionalization were well comparable with the
data calculated BSA concentration. The results again demonstrated the successful functionalization of
chitosan beads by SLPN via an in situ cross-linking reaction.

The cumulative release of thymol from the composite beads in the phosphate buffered saline
(PBS) buffer is presented in Figure 5B. Three formulations of composite beads all exhibited controlled
release profiles, with less than 50% thymol detected in the release medium after 6 h of incubation.
Several mathematical models including the zero-order, Higuchi, and Ritger–Peppas models were
applied based on previous studies, in order to understand and elucidate the release mechanism of
thymol from the nano-on-beads composite system [31,32]. The model simulation and data analysis
were done by using R and RStudio software, and the results are shown in Table 2. Generally speaking,
the kinetic release mechanism of thymol was best explained by the Higuchi model, which had the
highest determination of coefficient (R2). The Higuchi model explained that thymol was first to be
dissolved in a solid lipid matrix and was diffused to the surface of the matrix, then partitioned to
amphiphilic protein layer, followed by the hydrophilic OD layer. Finally, the thymol was released
to the surrounding medium. Among all of the groups, the 200B-30m group presented the highest
R2 in the zero-order model (ideal controlled release kinetic with constant release rate at all time),
which means that the release of thymol was a better control in the 200B-30m group than in the other
groups. As we had demonstrated that SLPNs maintained their integrity, and that the detachment of
BSA from the composite beads was not detected for over 24 h of incubation in the same PBS medium,
one could conclude that the sustained release of thymol from the composite beads was governed
by diffusion.

Thymol has been proven to have potent antimicrobial activities against a wide spectrum of
pathogenic pathogens found in food products, including L. monocytogenes, S. typhimurium, E. coli
O157:H7, and B. thermosphacta [33–36]. The minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) values for L. monocytogenes and S. typhimurium ranged from
0.25 to 0.5 µL/mL (0.24 mg to 0.48 mg/mL), while E. coli O157:H7 was less inhibited by thymol,
with MIC and MBC ranging from 0.5 to 1 µL/mL (0.48 mg to 0.96 mg/mL). In our study, the thymol
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amount per bead (T-SLPN2) was 0.0013, 0.0017, and 0.0021 mg for 200B-30m, 200B-60m, and 200B-90m,
respectively. The nanoencapsulation of thymol in SLPN is expected to enhance its antimicrobial activity
by providing a large surface area, and it thus has better contact with the bacteria. By developing
the nano-on-beads composite, thymol-loaded nanoparticles are immobilized on the chitosan beads,
and when an appropriate number (e.g., 100–400 beads) of composite beads is used, it will ensure that
the concentration of thymol reaches its MIC and MBC values against different bacteria, enabling the
antimicrobial potency against common pathogenic pathogens.

Table 1. Particulate characteristics of thymol loaded solid lipid–polymer hybrid nanoparticles (SLPN).

Group Empty T-SLPN1 T-SLPN2 T-SLPN3

Thymol loading (v/v) 0 0.05 0.075 0.1
Particle size (nm) 136.0 ± 5.6 141.1 ± 8.4 140.0 ± 5.6 144.1 ± 3.0

PDI 0.238 ± 0.011 0.241 ± 0.025 0.246 ± 0.032 0.275 ± 0.028
Zeta potential (mV) −14.2 ± 1.8 −14.3 ± 1.6 −14.4 ± 0.9 −16.3 ± 2.4

EE (%) NA 93.2 ± 1.6A 91.1 ± 1.9A 78.3 ± 8.3B

The capital superscript letter indicates the significant difference in that parameter among different samples at
p < 0.05. EE—encapsulation efficiency; PDI—polydispersity index.

Table 2. Determination of the coefficient (R2) of the fitted model equations applied to the thymol
release kinetics.

Group Zero-Order Model Higuchi Model Korsmeyer–Peppas Model

Equation R2 Equation R2 Equation R2

200B-30m y = 0.14x 0.927 y = 2.20x − 1.19 0.945 y = 0.67x − 0.06 0.921
200B-60m y = 0.16x 0.920 y = 2.44x + 1.18 0.982 y = 0.45x + 0.51 0.974
200B-90m y = 0.18x 0.914 y = 2.65x + 2.19 0.984 y = 0.45x + 0.57 0.977
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3. Materials and Methods

3.1. Materials

Precirol® ATO 5 was a kind gift from Gattefossé. Dextran (40 kDa), thymol, sodium periodate
(NaIO4), bovine serum albumin (BSA), and low molecular chitosan (75–85% deacetylated) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Hydrochloric acid (HCl), sodium hydroxide
(NaOH), and ethanol were obtained from Fisher Scientific Co. (Norcross, GA, USA). Unless noted
otherwise, all of the chemicals were of analytical grade and were used without further purification.
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3.2. Preparation of Chitosan Hydrogel Beads

The chitosan solution (2% w/v) was prepared by dissolving chitosan in 1% (v/v) acetic acid at
room temperature overnight, with gentle stirring. In order to eliminate the gas bubbles, the chitosan
solution was sonicated for 3 min, and then gently stirred overnight for complete hydration. To prepare
the chitosan beads, 5 mL of the chitosan solution was extruded dropwise into a beaker containing
25 mL of 1 M sodium hydroxide, through tubing connected to a 200 µL pipette tip, and the extrusion
was powered by a Fisherbrand™ FH30 peristaltic pump (Norcross, GA, USA). The obtained chitosan
beads were solidified in sodium hydroxide for 2 h while stirring at 300 rpm. Then, the alkaline
solution was slowly decanted and the chitosan beads were collected using filtration. The beads were
successively washed with ultrapure water, until the eluted water was neutral.

3.3. Preparation of SLPN

Before the preparation of SLPN, the OD was synthesized based on previous literature [37]. Dextran
(40 kDa) was used to prepare the OD, and the entire oxidation procedure was performed in a beaker
protected from light. Briefly, the dextran solution (2.4 g/50 mL) was reacted with 0.2 M sodium
metaperiodate (50 mL) for 24 h at room temperature at pH 4. After the reaction, the mixture was
dialyzed against water for 24 h, followed by lyophilization. The obtained OD powder was stored in
4 ◦C until use. The oxidation degree was determined to be 28.1%, as reported in our recent study [18].

Empty SLPNs were prepared using a homogenization and sonication method, as previously
reported [38]. Briefly, 10 mg of Precirol® ATO 5 powder was heated to melt at 65 ◦C. Then, 10 mL
of pre-heated (65 ◦C) aqueous phase containing 1 mg/mL BSA and 1 mg/mL OD solution in pure
water was added into the above melted lipid under homogenization at 25,000 rpm for 30 s, to obtain a
coarse emulsion, followed by 3 min sonication using a probe-type sonicator (Misonix Sonicator® 3000,
Vernon Hills, IL, USA). The obtained sample was incubated under 70 ◦C for 30 min to initiate the in
situ conjugation between the BSA and OD. Subsequently, the mixture was rapidly cooled down in an
ice bath to solidify the solid lipid core.

3.4. Encapsulation of Thymol in SLPN

With the attempt to prepare antimicrobial hydrogel nanocomposite, thymol, an essential oil with
a potent antimicrobial activity, was loaded into SLPN. Briefly, thymol was dissolved in ethanol at a
concentration of 10 mg/mL as a stock solution. Then, different amounts of thymol stock solution
(50, 75 or 100 µL, equivalent to 0.5, 0.75, and 1 mg thymol, respectively) were mixed with the melted
solid lipid to form new lipid phases, and were incubated together at 70 ◦C for 1 min. The subsequent
procedures were the same as described above for the preparation of the empty SLPNs.

The concentration of the thymol encapsulated in the SLPNs was measured using UV-VIS
spectroscopy. The encapsulation efficiency (EE) was determined by measuring the concentration of the
un-encapsulated thymol, using an Amicon® Ultra centrifugation device with a molecular weight cutoff
of 10 kDa. After centrifugation under 10,000× g for 15 min, the solution in the receiving reservoir was
collected and diluted five times with hexane, so as to extract the free thymol. The concentration of the
extracted thymol was measured using a UV-VIS spectrophotometer at 275 nm, with a pre-established
thymol standard curve (0.01–0.1 mg/mL). The EE was calculated using the following equation:

EE (%) =
Total thymol− filtered thymol

Total thymol
× 100%

3.5. Functionalization of Chitosan Beads with SLPN

A certain dosage of chitosan hydrogel beads (50, 100, 200, and 300 beads) were directly added
into a solution of freshly prepared SLPN solution (with or without thymol loading). The mixture
was incubated under 70 ◦C for 30, 60, 90, 120, and 150 min so as to initiate the functionalization
via a Schiff base reaction between the amino groups of the chitosan and aldehyde groups of the



Int. J. Mol. Sci. 2018, 19, 3112 10 of 13

OD. After incubation, the mixture was cooled down in an ice bath. To determine the adsorption
efficiency of SLPN onto the chitosan beads, the concentration of protein in the supernatant was
determined at designated time points (30, 60, 90, 120, and 150 min) using a protein assay kit, according
to the manufacturer′s protocol. To determine the particulate characteristics of the SLPNs after
functionalization, the particle size, PDI, and zeta potential of the SLPNs were measured using a
Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK). The particle size was determined
by dynamic light scattering (DLS) at a 173◦ scattering angle. The PDI, which is a parameter to evaluate
the homogeneity of the nanoparticles, was recorded together with particle size measurement. The zeta
potential was calculated from the electrophoretic mobility of the sample. The SLPN functionalized
chitosan beads are hereafter denoted based on their beads amount and incubation time. For example,
the 50 chitosan beads with 30 min incubation group was labelled as 50B-30m.

3.6. Characterization of SLPN Functionalized Chitosan Beads (Nano-on-Beads Composite)

Selected samples (200B-30m, -60m, and -90m) were placed in aluminum foil plate and dried in
the oven for 2 h at 40 ◦C. The preliminary data indicated that drying at 40 ◦C for 2 h was sufficient to
completely remove any water from the beads by measuring the weight change as a function of the
drying time. After drying, the Fourier-transform infrared spectroscopy (FTIR) spectra of dried beads
were recorded using a NicoletTM iSTM5 FT-IR spectrophotometer (Thermo Scientific, Waltham, MA,
USA). in the range of 500–4000 cm−1. The results were analyzed using OMNIC software, version 8.0.

The oven-dried bead samples were directly placed on double-sided carbon tape. All of the
samples were coated with gold using a sputter coater, before being observed under a scanning electron
microscope (SEM, JSM-6335F, JEOL Ltd., Tokyo, Japan).

To evaluate the detachment of the SLPN from the chitosan beads, samples were incubated in
water under mild stirring, and the incubation medium was collected at designated time points (1, 3, 6,
12, and 24 h) for the measurement of the protein concentration using a Lowry assay, according to the
manufacturer′s protocol.

3.7. Release Study

The release rate of the thymol from the nano-on-beads composite was conducted in phosphate
buffered saline (PBS, 10 mM). The selected thymol loaded nano-on-beads composite (200 beads) were
directly placed in a PBS release medium (50 mL). The release system was carefully closed so as to
prevent evaporation during the release test. During the experiment, 2 mL of the release medium was
withdrawn at predetermined time intervals, with the replacement of the same volume of fresh medium
in order to keep the volume constant. The collected release medium was then lyophilized for 24 h,
and then the thymol from the dried powder of the release medium was extracted with 5 mL of hexane.
The concentration of thymol was determined using a UV-VIS spectrophotometer.

3.8. Statistical Analyses

All of the results were presented as the mean ± standard deviation (SD) of at least triplicate
determinations. The data were analyzed using one-way analysis of variance (ANOVA) with Tukey’s
multiple-comparison test to compare the significance among the samples. The significant level (p) was
set as 0.05.

4. Conclusions

In conclusion, the results of this proof-of-concept study suggest that the chitosan hydrogel beads
can be successfully functionalized with nanoparticles made from food-derived nanomaterials in order
to form multifunctional nanoparticles–hydrogel nanocomposites. The surface-active OD on the SLPN
not only stabilized the solid lipid nanoparticles, but also enabled the surface of the nanoparticles
to react with the chitosan via Schiff base linkage, forming a covalent conjugation. The formulation
and preparation parameters during the conjugation process between SLPN and the chitosan beads,
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including the beads dosage and incubation duration, were comprehensively investigated. Our results
concluded that a 200 beads dosage with a 30–90 min incubation duration was found to achieve
a high conjugation efficiency (30–60%) with unaffected physicochemical characteristics of SLPN
after conjugation. After the optimization, the thymol was pre-loaded into the SLPN to prepare the
antimicrobial nano-on-beads composites that exhibited a sustained release of thymol and thus held
great potential for food safety-related applications.
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