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Abstract: Melanogenesis is a biological process resulting in the production of melanin pigment,
which plays an important role in the prevention of sun-induced skin injury, and determines hair
and skin color. So, a wide variety of approaches have been proposed to increase the synthesis
of melanin. This study evaluated the effects of pulsed electromagnetic fields (PEMFs) on the
pigmentation of zebrafish (Danio rerio) in vivo. We stimulated pigmentation in zebrafish by using
specific frequencies and intensities of PEMFs. This study focuses on pigmentation using PEMFs,
and finds that PEMFs, at an optimal intensity and frequency, upregulate pigmentation by the
stimulated expression of tyrosinase-related protein 1 (TRP1), dopachrome tautomerase (DCT)
through extracellular signal-regulated kinase(ERK) phosphorylation, and p38 phosphorylation
signaling pathways in zebrafish. These results suggest that PEMFs, at an optimal intensity and
frequency, are a useful tool in treating gray hair, with reduced melanin synthesis in the hair shaft or
hypopigmentation-related skin disorders.
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1. Introduction

Melanin is a unique pigmented biopolymer synthesized by specialized cells known as
melanocytes, which are dendritic cells that exist in relatively minor populations in the skin, hair,
eyes, and other locations [1]. The natural tanning process occurs as a response to exposure to
UV radiation. [2]. Several recent studies have focused on the treatment of diseases caused as a
result of hypopigmentation of the skin or hair. Vitiligo is a common depigmenting skin disorder,
with a worldwide prevalence of 0.5–1% [3]. A variety of physical treatments are used to induce
melanin production in the melanocytes of vitiligo patients, who are characterized by a partial loss of
melanocytes from the epidermis of the skin. Recently, a lot of alternative therapies have been proposed
as vitiligo treatments. Narrow-band UVB radiation has been shown to be effective in the treatment of
vitiligo [4]. In addition, a variety of other approaches for inducing pigmentation have been proposed,
including the use of an excimer laser (308 nm) [5,6], monochromatic emission at 355 nm (UVA1)
laser [7], helium–neon laser [8], neodymium-doped yttrium aluminum garnet(Nd: YAG) laser [9],
and Q-switched ruby laser [10,11]. Safe methods to promote melanogenesis would be valuable in
medicine and cosmetics.

The use of pulsed electromagnetic fields (PEMFs) has recently been explored as an effective
method because of its non-invasiveness, safety, lack of side-effects, convenience, and superior treatment
prospects in the treatment of several refractory bone diseases, such as non-unions and the delayed
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healing of fractures [12]. Furthermore, several studies have suggested that electromagnetic fields
(EMFs) are effective in cartilage repair [13], in reducing diabetic neuropathic pain [14], in adult
hippocampal neurogenesis [15], in angiogenesis [16], and in skin wound repair [17]. Our previous
studies have shown that PEMF induces melanogenesis in B16F10 melanoma and human melanocyte
cells [18–20]. Pigmentation is a complex process involving many factors. Microphthalmia-associated
transcription factor (MITF) is the master gene involved in pigmentation, and it controls several crucial
mechanisms in melanocytes, such as melanogenesis, dendricity, and proliferation, in response to
environmental factors [21]. The activity of melanogenic enzymes and melanosome transfer can affect
pigmentation. Tyrosinase, tyrosinase-related protein 1 (TRP 1), and TRP 2 are the melanocyte-specific
enzymes involved in melanin biosynthesis [22]. Recently, it was reported that melanogenesis is also
controlled by various intracellular signaling molecules, such as mitogen-activated protein kinases
(MAPK) [23].

The zebrafish (Danio rerio) has become a favored model for biochemical studies because it is an
efficient and robust alternative to conventional animal experiments [24]. It is a small tropical freshwater
fish, and is a useful vertebrate model organism because of its small size, large clutches, transparent
body, and physiological similarity to mammals, in addition to its low cost of breeding [25]. In addition,
zebrafish have melanin pigmentation on their body surface and rapidly alter their pigmentation in
response to environmental changes, which enables a facile investigation of pigmentation without
the need for complicated experimental procedures [26].Therefore, the zebrafish is an ideal model for
the study of melanogenesis in the context of pigmentation. In the present study, we applied PEMFs
for the stimulation of pigmentation in zebrafish. Zebrafish larvae were stimulated at intensities of
2, 4, and 20 G, at a constant frequency of 60 Hz. In order to verify the changes in pigmentation,
we performed melanin assays, a Western blot analysis, and immunohistochemical staining. Specifically,
we analyzed the changes in ERK and p38 signaling associated with MITF regulation, due to the PEMFs.

2. Results

2.1. Melanin Assay

To test whether the PEMFs induced pigmentation in zebrafish, the amount of melanin was
determined using a melanin content assay after exposure to PEMFs. The melanin content of the
PEMF-treated zebrafish larvae was more than that of the untreated zebrafish larvae (Figure 1B).
The 2 G group showed an increase of 1.22-fold, the 4 G group of ~1.32-fold, and the 20 G group
showed an approximately 1.16-fold increase over the negative control group. The larvae exposed to
4 G exhibited a particularly large increase relative to the controls. These results suggest that the PEMFs,
especially at 4 G, increased pigmentation in zebrafish.

2.2. RT-PCR

The mRNA expression levels of the key melanogenesis-related genes, dct, tyrp1, mitfa, and mc1r,
were measured at 5 dpf (days post-fertilization), as shown in Figure 1. The Dct mRNA levels in the
zebrafish exposed to PEMFs were on average 1.4-fold higher than those in the control. The zebrafish
exposed to PEMFs at 4 G showed a dct expression ~2.0 times higher than that in the controls. The mitfa
expression levels increased at all intensities of the PEMFs. The mitfa mRNA levels in the zebrafish
exposed to 4 G PEMFs were 2.0 times higher than those in the controls. The zebrafish exposed to 4 G
showed elevated mc1r expressions, 1.4 times higher than that in the control. Thus, the PEMF exposure
was found to stimulate the expression of melanogenesis-related mRNA.

2.3. Western Blotting

Based on the results of the RT-PCR, the expression of the pigmentation-related proteins was
measured using Western blot analysis after exposure to 4 G PEMFs at 15 dpf. As shown in Figure 1E,
relative to the controls, the expression of all pigmentation-related proteins increased in zebrafish
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exposed to PEMFs. To investigate the postulated signaling mechanism involved in the effect of PEMFs
on pigmentation in zebrafish, zebrafish embryos were treated with PEMFs. In order to study the
processes related to pigmentation in the zebrafish exposed to PEMF, we assessed the activation of
p-ERK and p-p38 signaling. The protein expression of ERK and p-ERK were determined using Western
blotting. Treatment with PEMF led to a significant decrease in phosphorylated-ERK. Conversely,
the p-p38 activation was increased in the cells exposed to PEMFs. Thus, the PEMF exposure stimulated
melanogenesis in zebrafish.
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= 80) was detected using the melanin content assay at 5 dpf. (C) The mRNA expression, detected using 

reverse transcription polymerase chain reaction, results in zebrafish (n = 20) after exposure to PEMFs 

at 5 dpf. (D) The mRNA expression of melanogenesis-related genes, using glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) as the reference gene. The effect of PEMF on the protein levels 

of tyrosinase-related protein-1 (TRP1), microphthalmia-associated transcription factor (MITF), 

dopachrome tautomerase (DCT), extracellular signal-regulated kinase (ERK), p-ERK, p-p38, p38, and 

b-actin in zebrafish (n = 30) at 15 dpf. (E) The Western blotting analysis of the pigmentation-related 

proteins; (F) TRP1, MITF, and DCT expression level; (G) p-ERK expression; (H) p-p38 expression. 

Each bar represents the mean ± standard error of the independent experiments performed in triplicate 

(n = 5). * p < 0.05, ** p < 0.01, compared to the control. 
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Figure 1. Effect of pulsed electromagnetic fields (PEMFs) on the pigmentation of zebrafish after
exposure to PEMFs. (A) Schematic representation of the schedule of the zebrafish pigmentation
study. After PEMF exposure, the melanin content was determined. (B) The melanin content
in zebrafish (n = 80) was detected using the melanin content assay at 5 dpf. (C) The mRNA
expression, detected using reverse transcription polymerase chain reaction, results in zebrafish
(n = 20) after exposure to PEMFs at 5 dpf. (D) The mRNA expression of melanogenesis-related
genes, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the reference gene. The effect
of PEMF on the protein levels of tyrosinase-related protein-1 (TRP1), microphthalmia-associated
transcription factor (MITF), dopachrome tautomerase (DCT), extracellular signal-regulated kinase
(ERK), p-ERK, p-p38, p38, and b-actin in zebrafish (n = 30) at 15 dpf. (E) The Western blotting analysis
of the pigmentation-related proteins; (F) TRP1, MITF, and DCT expression level; (G) p-ERK expression;
(H) p-p38 expression. Each bar represents the mean ± standard error of the independent experiments
performed in triplicate (n = 5). * p < 0.05, ** p < 0.01, compared to the control.

2.4. Pigmentation

A region of interest was selected to measure the pigmentation area, indicated by a white outline
embracing the dorsal pigment spot from midway between the eyes, around the pigmented eyes,
to the base of the head (Figure 2A). The density of the pigmented area in the treated embryos was
normalized to that in the control embryos using ImageJ software. The treatment of the zebrafish
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embryos with PEMFs for 15 dpf significantly increased the skin melanin formation in the developing
larvae (Figure 2B).
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Figure 2. Effects of 4 G PEMF on pigmentation in zebrafish. (A) Synchronized embryos (n = 20) were
exposed to the PEMF at the indicated intensity and frequency. The effects on zebrafish pigmentation
were observed under a stereomicroscope via inferior views of the embryos at 15 dpf. (B) The
pigmentation area density in the treated embryos, indicated by a white outline, was normalized
to that of the control embryos using the ImageJ software. * p < 0.05, compared to the control. The scale
bar is 500 µm.

2.5. Fontana-Masson Staining

To visualize the melanin, the zebrafish larvae were stained using Fontana-Masson staining,
which is used to confirm melanin synthesis. A region of interest was selected to measure the
pigmentation area, indicated by a white outline. As shown in Figure 3, compared with the controls,
the amount of melanin granules was significantly increased due to PEMF exposure (black color).
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Figure 3. Effects of 4G PEMF in zebrafish at 15 dpf. Representative images of Fontana-Masson-stained
zebrafish (dark color indicates secreted melanin). (A,C) control, (B,D) EMF. (E) the pigmented area
density in figure (A–D) was normalized to that of the control, using ImageJ sotware. ** p < 0.05,
compared to the control. Original magnification: (A,B) ×40; (C,D) × 100 scale bar; 100 µm.
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3. Discussion

A wide variety of approaches have been proposed to increase the synthesis of melanin,
including the use of an excimer laser (308 nm) [5,6], UVA1 laser [7], helium–neon laser [8], Nd:
YAG laser [9], and Q-switched ruby laser [10,11]. The electric appliances that have magnetic fields
in domestic use are easily visible around us, such as microwave cookers (0.0037+/−0.0014 G) and
washing machines (0.0027+/−0.0014 G) [27]. On the one hand, electromagnetic fields (EMFs) are
abundantly present in modern life, and interest regarding the effect of extremely low frequency (ELF)
EMF on human health has been increasing. Different types of magnetic and electromagnetic fields are
now used in medical fields, such as in diagnostics (e.g., magnetic resonance, scanning, and microwave
imaging) and therapy [28]. Extremely low-frequency electromagnetic fields (ELF-EMF) influence cell
differentiation [29,30], cell proliferation, mitochondrial activity [31], cell survival [32], regulate the
cell cycle [33], and neurogenesis [15]. Nevertheless, there is a lack of studies examining general EMF
effects on melanogenesis. To address this, in a previous study, we evaluated the effect of PEMFs on
melanin synthesis in vitro. We found that PEMFs promoted melanogenesis in B16F10 melanoma cells
and human melanocyte cells. We used RT-PCR and Western blotting to show that PEMFs stimulate the
expression of melanogenesis-related genes and proteins. Thus, our previous findings suggested that
the PEMF stimulation significantly promoted melanogenesis [18–20].

Zebrafish have become a useful model for biochemical studies [24], and have been established as a
new in vivo model for evaluating the pigmentation activity of melanogenic regulatory compounds [34].
In the present study, we applied PEMFs for the stimulation of pigmentation in zebrafish. To investigate
the hyperpigmentation effect of PEMFs, a melanin assay was used. As shown in Figure 1B, the melanin
content increased when the zebrafish were exposed to PEMF. Treatment at 4G strongly increased the
melanin content, compared with the control group. Thus, PEMFs were found to promote pigmentation
in zebrafish. The pigmentation in the treated embryos was observed under a stereomicroscope at
5 dpf (Figure 2A), and the density of the pigmentation area was normalized to that in the control
embryos. The pigmentation area in the untreated zebrafish was clearly less than that in the PEMF
treated-zebrafish larvae (Figure 2B). These results are consistent with those reported in our previous
in vitro studies [18–20].

Pigmentation in zebrafish embryos is due to the activity of some major enzymes, including tyrp1,
dct, and mitfa. Mitf is the master gene in pigmentation and controls several key mechanisms, such
as pigmentation in response to environmental factors, including UV radiation [35]. The activation
of MITF induces the expression of the key enzymes of pigmentation, dct and tyrp1, leading to the
production of melanin. In addition, mc1r is a key regulator of melanosome dispersal in zebrafish [36].

The expression of these enzymes was determined using RT-PCR, and the results showed that
treatment with 4G EMF induced the expression of mitf and dct (Figure 1D). Moreover, the dct,
tyrp1, and mitf expressions, as quantified by Western blotting, increased in the PEMF-treated
group. Western blotting using anti-DCT antibody indicated an increase in the expression of these
melanophore-specific proteins [37]. Previous studies have demonstrated that MAPK kinases, including
ERK and p38, play an important role in pigmentation [38]. It is well established that the ERK signaling
pathway is involved in cell proliferation and differentiation; furthermore, the ERK signaling pathway
has been identified as a negative regulator of melanogenesis [39]. The upregulation of phosphorylated
ERK signaling is related to the reduction of melanin synthesis [20]. However, the phosphorylation of
p38 MAPKs can upregulate MITF expression [34,40]. The mitogen-activated protein kinase (MAPK)
cascades are an important set of signaling pathways activated in response to EMF in most systems [41].
Thus, to clarify the signaling pathway involved in the PEMF action on melanin synthesis in zebrafish,
we examined the phosphorylation of ERK and p38 (Figure 1G,H). The results showed a significant
decrease in the phosphorylation of ERK in the PEMF-treated group, which can also lead to the
stimulation of the melanogenic pathway by accelerating the MITF activation (Figure 1E,F). The results
indicate that the treatment of PEMFs at an optimal intensity and frequency influence the mechanically
sensitive kinases, such as ERK and p38. To visualize melanin, the samples were stained with
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Fontana-Masson staining, and the pigmented area density was determined (Figure 3). Silver nitrate
(AgNO3) reacts with melanin to produce metallic silver (Ag), resulting in a black stain that can be
visualized using a light microscope. As shown in Figure 3, compared with the controls, the amount of
melanin granules was significantly increased due to PEMF exposure (dark brown color). The results
demonstrate that PEMFs at a specific frequency can stimulate pigmentation in zebrafish. These results
may indicate that the optimal condition of PEMFs is good tool for hyperpigmentation therapy for gray
hair treatment when melanogenesis is reduced in the hair-follicle, or for hipopigmentation-related
skin disorders. As the embryos have been exposed to PEMFs right after birth, more research should be
performed to determine whether their effect was a developmental defect.

4. Materials and Methods

4.1. Zebrafish Maintenance and Embryo Collection

Following standard procedures, adult zebrafish were kept in a circulating filtration system
(28 ± 0.5 ◦C, 14:10 h light:dark) and were fed three times a day. The male and female zebrafish were
separated until mating and spawning. After natural spawning, the fertilized embryos were collected
and used for the experiments. The embryos were placed individually in each well on 96-well plate
filled with 100 µL of water containing sea salt. The embryo and larval developmental stages were
expressed in the days post-fertilization (dpf) [42].

4.2. PEMFs Exposure

We used a Helmholtz coil that was able to generate PEMFs; the apparatus is depicted in Figure 4.
The stimulus frequency was 60 Hz and teh stimulus wave was in a pulse form. The electromagnetic
field device was placed in a 28.5 ◦C incubator. The unit of measurement of the magnetic density is
gauss (G) and the zebrafish embryos were stimulated with PEMFs at intensities of 2, 4, and 20 G for 5
or 15 days. The control group was placed in a separate incubator so as to avoid PEMF exposure.
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Figure 4. Photograph of the electromagnetic field (EMF) device in incubator. Pulsed EMF was generated
using a pair of Helmholtz coils. (A) Helmholtz coil; (B) function generator; (C) power supply.

4.3. Microscopy

The embryos from the wild-type control group or from the PEMF-exposed groups were observed
and photographed under light microscopy so as to examine the pigmentation.

4.4. Melanin Assay

The compound treatment and phenotype-based evaluation were done as previously described [43].
For examining the melanin content, extracts were prepared from 5 dpf zebrafish larvae. Simply put,
the embryos were collected and were dissolved in a lysis buffer. After centrifugation, the melanin
was extracted into 1 N NaOH, and was incubated at 100 ◦C for 10 min. The optical density of the
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supernatant was measured at 405 nm. The results of the treated embryos were compared to those
of the appropriate controls, and the final measurements were reported as percentages of the control
sample measurements.

4.5. Reverse Transcriptase-PCR Analysis

RT-PCR was used to detect the pigmentation-related genes expressed in the 5 dpf embryos.
The total RNA in the zebrafish embryos was extracted using the TRIzol Reagent (Ambion, Austin,
TX, USA). The reverse transcriptase reactions were used to synthesize the cDNA from 1 µg of total RNA,
using an advantage RT-for-PCR kit (Clontech, Palo Alto, CA, USA). The reverse transcriptase-PCR
analysis was performed according to the manufacturer’s instructions. The expression of the
genes encoding tyrosinase-related protein 1a (tyrp1a), dopachrome tautomerase (dct or tyrp2),
microphthalmia-associated transcription factor a (Mitfa or nacre), melanocortin 1 receptor (mc1r),
and gapdh (glyceraldehyde 3-phosphate dehydrogenase) were evaluated. The bands were visualized using
Molecular Imager ChemiDoc XRS+ (Bio-Rad, Hercules, CA, USA). The software Image J (National
Institutes of Health, Bethesda, MD, USA) was used for the quantitative analysis of the results.

4.6. Western Blotting

The zebrafish embryos were lysed using a buffer containing 2% SDS, 0.1 mg/mL bromophenol
blue in Tris-HCl (pH 6.8), 5% 2-mercaptoethanol, and 10% glycerol, and were boiled at 100 ◦C for
10 min. The protein was quantified using Bicinchoninic acid (23225, Thermo fisher Scientific, Waltham,
MA, USA). Subsequently, the sample was subjected to sodium dodecyl sulphate-polyacrylamide gel
electrophoresis, and the protein was transferred from the gel to a nitrocellulose membrane. Anti-DCT
(Thermo Fisher Scientific, Waltham, MA, USA), anti-MITF (Origene Technologies, Zug, Switzerland),
anti-TRP1 (Abcam, Cambridge, UK), anti-ERK (Cell Signaling Technology, Danvers, MA, USA),
anti-p-ERK (Cell Signaling Technology, Danvers, MA, USA), anti-p38 (Antibodies-Online, Aachen,
Germany), anti-p-p38 (Thermo Fisher Scientific, Waltham, MA, USA), and anti-β-Actin (Abcam,
Cambridge, UK) antibodies were used as the primary antibodies in Western blotting. The blots
were incubated with the primary antibodies, and were then further incubated with a horseradish
peroxidase-conjugated secondary antibody. The chemiluminescent protein bands were photographed
using Molecular Imager ChemiDoc XRS (Bio-Rad, Hercules, CA, USA). To analyze and quantify the
Western blotting image, Image J software (National Institutes of Health, Bethesda, MD, USA) was used.

4.7. Fontana-Masson Silver Staining

We performed a densitometric analysis to visualize melanin in zebrafish. Fontana-Masson silver
staining was performed using a previously described method [44]. Formalin-fixed and paraffin sections
were processed on slides and stained with silver nitrate (Kojima Chemical, Kashiwabara, Japan) for 1 h
at 56 ◦C and washed with distilled water. Then, the slides were fixed in 5% sodium thiosulfate solution
(Duksan, Seoul, Korea) for 5 min, and were washed with distilled water. After that, they were stained
with nuclear fast red solution (Sigma Aldrich, Saint Louis, MO, USA) for 5 min, and were washed with
distilled water three times. Finally, after dehydration with 95% ethanol and 100% ethanol, the slides
were washed two times with xylene (Duksan, Seoul, Korea).

4.8. Statistical Analysis

The data were analyzed using one-way analysis of variance (ANOVA) and Student’s t-test.
When the value of p was <0.05 or <0.01, the difference between the means was considered significant
(* p < 0.05, ** p < 0.01). Graphical representations were produced using the Sigmaplot 2001 software.
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5. Conclusions

In the present study, we investigated the pro-pigmentation effect of PEMFs in a zebrafish
model. Our data suggest that PEMFs promote pigmentation by inducing MITF and DCT, which are
mediated through a reduction of ERK phosphorylation and an upregulation of p38 phosphorylation.
These results suggest that PEMFs, at an optimal intensity and frequency, are a useful tool for treating
gray hair with reduced melanin synthesis in the hair shaft, or hypopigmentation-related skin disorders
such as vitiligo.
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