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Abstract: G-rich DNA sequences have the potential to fold into non-canonical G-Quadruplex
(GQ) structures implicated in aging and human diseases, notably cancers. Because stabilization
of GQs at telomeres and oncogene promoters may prevent cancer, there is an interest in
developing small molecules that selectively target GQs. Herein, we investigate the interactions
of meso-tetrakis-(4-carboxysperminephenyl)porphyrin (TCPPSpm4) and its Zn(II) derivative
(ZnTCPPSpm4) with human telomeric DNA (Tel22) via UV-Vis, circular dichroism (CD), and
fluorescence spectroscopies, resonance light scattering (RLS), and fluorescence resonance energy
transfer (FRET) assays. UV-Vis titrations reveal binding constants of 4.7 × 106 and 1.4 × 107 M−1

and binding stoichiometry of 2–4:1 and 10–12:1 for TCPPSpm4 and ZnTCPPSpm4, respectively.
High stoichiometry is supported by the Job plot data, CD titrations, and RLS data. FRET melting
indicates that TCPPSpm4 stabilizes Tel22 by 36 ± 2 ◦C at 7.5 eq., and that ZnTCPPSpm4 stabilizes
Tel22 by 33 ± 2 ◦C at ~20 eq.; at least 8 eq. of ZnTCPPSpm4 are required to achieve significant
stabilization of Tel22, in agreement with its high binding stoichiometry. FRET competition
studies show that both porphyrins are mildly selective for human telomeric GQ vs duplex DNA.
Spectroscopic studies, combined, point to end-stacking and porphyrin self-association as major
binding modes. This work advances our understanding of ligand interactions with GQ DNA.
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1. Introduction

DNA can exist in a variety of secondary structures [1] in addition to the right-handed
double-stranded (dsDNA) form first proposed by Watson and Crick in 1953. One example is
G-Quadruplex (GQ) DNA, a non-canonical DNA structure formed by guanine rich sequences [2].
The primary structural unit of GQ DNA is a G-tetrad which consists of four guanines associated
through Hoogsteen hydrogen bonding (Figure 1A). G-tetrads interact with each other via π-π stacking,
and are linked by the phosphate sugar backbone, forming GQs. The stability of the GQ is further
enhanced by coordinating cations [3,4]. In fact, biological GQs with 2–4 G-tetrads would not fold
without a cation due to a strong repulsion of guanine carbonyls in the center of each tetrad (Figure 1A).
Unlike dsDNA, GQs exhibit high structural diversity, adopting parallel, mixed-hybrid, and antiparallel
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topologies (Figure 1B). Bioinformatics studies suggest that sequences with GQ-forming potential are
prevalent in highly-conserved functional regions of the human genome including telomeres, oncogene
promoters, immunoglobulin switch regions, and ribosomal DNA [5–8], and may regulate numerous
biological processes. Evidence for GQ formation inside the cell was recently presented [9–12], and
studies are underway to better assess their in vivo roles [2].
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Telomeres protect the ends of eukaryotic chromosomes from degradation and fusion and 
contain tandem repeats of dTTAGGG [13]. The 22-mer human telomeric DNA sequence 
dAGGG(TTAGGG)3 (Tel22) is well-studied and has been shown to form diverse GQ structures in 
vitro [14–16], see Figure 1B. The topology, stability, and homogeneity of the human telomeric DNA 
depends on the DNA length and the identity of the nucleotides at 5′ and 3′ ends. In addition, the 
nature of the central stabilizing cation, the presence of small molecules, annealing temperature and 
rate, and molecular crowding reagents impact the resulting secondary structure. In K+, Tel22 forms a 
parallel GQ with three G-tetrads and three TTA propeller loops, but only in the presence of molecular 
crowding conditions [17,18], some small molecules (e.g., N-methylmesoporphyrin IX, NMM) [19,20], 
under crystallization conditions [21], or at high DNA concentration [22]. In Na+, Tel22 adopts an 
antiparallel topology with three G-tetrads connected by two lateral loops and one central diagonal 
loop [23]. In the dilute K+ solutions favored in this work, Tel22 adopts at least two (3 + 1) mixed-
hybrid structures called Form 1 and Form 2 [24–28]. The two forms have one propeller loop and two 
lateral loops, but differ by loop orders; three G-rich strands run in the same direction and opposite 
from that of the fourth strand, hence the name (3 + 1). Other GQ topologies exist under these 
conditions (e.g., an antiparallel GQ with two G-tetrads) [29], but at low abundance. It has been 
proposed that formation of GQ structures at telomeres inhibits the activity of telomerase, the enzyme 

Figure 1. (A) Four guanines associate via Hoogsteen hydrogen bonding to form a G-tetrad.
M+ represents a central coordinating cation, such as Na+, K+, or NH4

+. (B) Schematics of the
physiologically-relevant structures of human telomeric DNA, dAGGG(TTAGGG)3. Grey and red
rectangles represent guanines in anti and syn conformations. Adenines and thymines are represented
as blue and yellow circles, respectively. Strand orientations are depicted with arrows. Mixed-hybrid
conformation is that of Form 2. (C) Structure of ZnTCPPSpm4; the fifth axial water ligand attached to
Zn(II) is not depicted for clarity of the image.

Telomeres protect the ends of eukaryotic chromosomes from degradation and fusion and contain
tandem repeats of dTTAGGG [13]. The 22-mer human telomeric DNA sequence dAGGG(TTAGGG)3

(Tel22) is well-studied and has been shown to form diverse GQ structures in vitro [14–16], see Figure 1B.
The topology, stability, and homogeneity of the human telomeric DNA depends on the DNA
length and the identity of the nucleotides at 5′ and 3′ ends. In addition, the nature of the central
stabilizing cation, the presence of small molecules, annealing temperature and rate, and molecular
crowding reagents impact the resulting secondary structure. In K+, Tel22 forms a parallel GQ with
three G-tetrads and three TTA propeller loops, but only in the presence of molecular crowding
conditions [17,18], some small molecules (e.g., N-methylmesoporphyrin IX, NMM) [19,20], under
crystallization conditions [21], or at high DNA concentration [22]. In Na+, Tel22 adopts an antiparallel
topology with three G-tetrads connected by two lateral loops and one central diagonal loop [23]. In the
dilute K+ solutions favored in this work, Tel22 adopts at least two (3 + 1) mixed-hybrid structures
called Form 1 and Form 2 [24–28]. The two forms have one propeller loop and two lateral loops,
but differ by loop orders; three G-rich strands run in the same direction and opposite from that
of the fourth strand, hence the name (3 + 1). Other GQ topologies exist under these conditions
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(e.g., an antiparallel GQ with two G-tetrads) [29], but at low abundance. It has been proposed that
formation of GQ structures at telomeres inhibits the activity of telomerase, the enzyme responsible
for maintenance of telomeres integrity, leading to cell immortality. Because telomerase is upregulated
in 85–90% of cancers [30], stabilization of GQs by small molecule ligands has emerged as a novel,
selective, anti-cancer therapeutic strategy [31,32].

Porphyrins are one of the earliest classes of DNA ligands. Their interactions with GQ DNA
were first studied in 1998 [33], and with dsDNA as far back as 1979 [34], and are still of great
interest [35]. Porphyrins are aromatic, planar, and the size of their macrocycle (~10 Å) matches
that of a G-tetrad (~11 Å), leading to an efficient π-π stacking. Cellular uptake and localization
studies demonstrate that porphyrins accumulate rapidly in nuclei of normal and tumor cells [36,37] at
levels sufficient for tumor growth arrest; yet they are non-toxic to somatic cells [38]. Porphyrins can
be readily functionalized to optimize their GQ-stabilizing ability and selectivity, solubility, and cell
permeability. Our laboratory and others have characterized binding of numerous porphyrins, including
NMM [19,20,39], meso-tetrakis-(N-methyl-4-pyridyl) porphyrin (TMPyP4) [38,40], and its various
derivatives [41–44] to human telomeric DNA. Porphyrins can bind to GQ DNA via end-stacking,
which has been characterized spectroscopically [45,46], and observed in structural studies [20,47].
Intercalation has been suggested [46,48–50], but is considered energetically unfavorable for short
GQs with 2-4 G-tetrads. Porphyrins can also interact with the grooves [51] and loops [52] of GQs.
Porphyrin metallation is expected to enhance its GQ binding due to the electron-withdrawing property
of the metal, which reduces the electron density on the porphyrin, improving its π-π stacking ability.
The enhancement of porphyrin’s binding to GQ is especially strong when the metal is positioned
above the ion channel of the GQ.

In this work, we focus on two novel tentacle porphyrins, meso-tetrakis-(4-carboxyspermine-
phenyl)porphyrin, TCPPSpm4 and its Zn(II)-derivative, ZnTCPPSpm4, Figure 1C. Binding of tentacle
porphyrins to dsDNA is well studied [53–56], but their interactions with GQ DNA remain poorly
characterized. We introduced spermine groups to enhance the GQ-binding potential, solubility,
and biocompatibility of the porphyrins. Polyamines have been reported to interact with DNA by
both electrostatic forces and via site-specific interactions with the phosphate backbone and DNA
bases [57–59]. In some cases polyamines induced conformational modifications [60]. Spermine
was shown to preferentially bind to the major groove of dsDNA [59]. A variety amines (e.g.,
pyrrolidine, piperidine, morpholine, 1-ethylpiperazine, N,N-diethylethylenediamine, and guanidine)
have been incorporated into GQ ligands, leading to improvements in their GQ binding affinities
and water solubility [61–65]. Of equally strong importance, spermine is essential for cellular growth,
differentiation [66], and protection against double-strand breaks. Polyamines are currently being
exploited as a transport system for cancer drugs due to their well-known ability to accumulate in
neoplastic tissues [67–71]. Therefore, we added spermine to meso-tetrakis-(4-carboxyphenyl)porphyrin
not only to improve its GQ-binding, but also to facilitate its delivery to cancer cells in future
biological studies.

We characterized the interactions between human telomeric DNA and TCPPSpm4 or
ZnTCPPSpm4 in a K+ buffer through UV-Vis, fluorescence, and circular dichroism (CD) spectroscopies,
resonance light scattering (RLS), and fluorescence resonance energy transfer (FRET) assays.
We demonstrate that both porphyrins bind tightly to Tel22 GQ with a high binding stoichiometries
(2–4:1 for TCPPSpm4 and 10–12:1 for ZnTCPPSpm4) and stabilize it strongly with mild selectivity
over dsDNA. Our data are consistent with end-stacking binding mode and DNA-assisted
porphyrin self-stacking.

2. Results and Discussion

In this work, we focus on two tentacle porphyrins, meso-tetrakis(4-carboxysperminephenyl)
porphyrin, TCPPSpm4, and its Zn(II) derivative, ZnTCPPSpm4. Both porphyrins are modified with
four spermine arms, see Figure 1C. The pKa of the spermine amine groups in TCPPSpm4 was measured
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to be ~5.8 for the first protonation and ~8 for the second protonation [72]. Therefore, this porphyrin is
expected to be at least tetracationic at pH 7.2 used in this work. Zn(II) was introduced into TCPPSpm4
to improve its GQ binding due to electron-poor nature of the metal. In addition, Zn(II) is coordinated
to an axial water, which is expected to prevent its intercalation into dsDNA, and thus, to improve its
selectivity. Binding of TCPPSpm4 to the GQ aptamer (dTGGGAG)4 was recently characterized [73],
whereas binding of ZnTCPPSpm4 to any of the GQs has not yet been tested. Here, we explore in detail
how both porphyrins interact with human telomeric GQ DNA, Tel22.

2.1. UV-Vis Spectroscopy Demonstrates that TCPPSpm4 and ZnTCPPSpm4 Bind Tightly to Tel22

Due to the excellent chromophoric properties of both porphyrins, their binding to Tel22 was
monitored using Soret band of 415 nm for TCPPSpm4 and 424 nm for ZnTCPPSpm4. We first performed
a dilution study which indicated that the porphyrins maintain their aggregation state, assumed to
be monomeric, in the concentration range of 1–40 µM (Figure S1). Subsequently, both porphyrins
were titrated with Tel22; representative UV-Vis titrations are shown in Figure 2. The extinction
coefficient for the TCPPSpm4-Tel22 complex was determined to be (1.2 ± 0.2) × 105 M−1cm−1 at
429 nm and (0.54 ± 0.04) × 105 M−1cm−1 for ZnTCPPSpm4-Tel22 at 435 nm. The Soret band of
TCPPSpm4 displayed a pronounced red shift (∆λ) of 13.5 ± 0.5 nm and hypochromicity (%H) of
58 ± 6 % upon addition of Tel22. The corresponding values for ZnTCPPSpm4 are similar with ∆λ of
11.3 ± 0.6 and % H of 58 ± 5%. Red shift of ~15 nm and %H of ~50% were obtained for TCPPSpm4
binding to another GQ structure formed by (dTGGGAG)4 aptamer [73]. High values of ∆λ and %H
indicate strong interactions between the π-systems of porphyrins and GQ, characteristic of either
end-stacking or intercalation. Pasternack et al. found that intercalation of a porphyrin into dsDNA
can be identified by %H > 40% and ∆λ ≥ 15 nm [74]. Although supported by molecular dynamics
stimulation studies [50], this mode of binding has not yet been detected in structural studies. On the
other hand, both end-stacking [20,47] and loop binding [52] have been observed in X-ray structures of
porphyrin-GQ complexes.

To extract binding constants, we employed the Direct Fit method, which is the simplest way of
treating the titration data, as it assumes equivalent and independent binding sites. Such data treatment
is justified by the presence of the isosbestic points, yet it is an oversimplification in view of high
stoichiometric ratios obtained (see below) and the presence of detectable shoulders, especially in
final samples. Data analysis yielded a binding constant, Ka, of (4.7 ± 0.7) × 106 M−1 for TCPPSpm4
assuming a binding stoichiometry of 4:1; and Ka of (1.4 ± 0.7) × 107 M−1 for ZnTCPPSpm4 assuming
a binding stoichiometry of 12:1. The high Ka values indicate strong binding between Tel22 and
the porphyrins and correlate well with the high values of ∆λ and %H. ZnTCPPSpm4 binds three
times tighter than its free-base analogue, possibly due to the presence of electron withdrawing metal.
This binding is likely further enhanced by electrostatic attractions due to high charges on the porphryins
and by interactions of four spermine arms with the grooves of Tel22 GQ.
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to the binding of nine porphyrin molecules to one Tel22 GQ. In both cases, binding 
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binding ratios of 4:1 and 5:1 correspond to molar fractions of 0.8 and 0.83, respectively, which 
would likely be impossible to distinguish, given the expected level of data accuracy. The 

Figure 2. Interactions between porphyrins and Tel22 GQ probed by UV-Vis spectroscopy. (A) A
representative UV-Vis titration of 2.8 µM TCPPSpm4 with 82.6 µM Tel22. Clear isosbestic point is
observed at 424 nm. (B) Best fit (solid line) to the titration data monitored at 415 nm (squares) and
429 nm (circles). (C) A representative UV-Vis titration of 5.8 µM ZnTCPPSpm4 with 46.3 (followed by
185) µM Tel22. Clear isosbestic point is observed at 442 nm. (D) Best fit (solid line) to the titration data
monitored at 424 nm (squares). Concentration of binding sites is defined as the concentration of Tel22
multiplied by the binding stoichiometry (4:1 for TCPPSpm4 and 12:1 for ZnTCPPSpm4). Blue lines and
points correspond to porphryins alone and pink corresponds to porphyrin-Tel22 complex.

To independently verify the stoichiometry for porphyrin-Tel22 binding, we used Job’s method,
also known as the method of continuous variation [75]. In this method, the mole fraction of DNA
and porphyrin is varied while their total concentration is kept constant. The mole fraction at the
maximum or minimum on the plot of absorbance vs mole fraction corresponds to the binding
stoichiometry between the two binding partners [76]. Representative Job plots are depicted in Figure 3.
Job plot experiments for TCPPSpm4-Tel22 system yielded an average mole fraction of 0.70 ± 0.04,
which corresponds to the binding of 2–3 porphyrins to one Tel22. For the ZnTCPPSpm4-Tel22 system,
Job plot yielded a mole fraction value of ~0.9, which corresponds to the binding of nine porphyrin
molecules to one Tel22 GQ. In both cases, binding stoichiometries are somewhat lower than those
obtained via fitting of the UV-vis titration data. Similar discrepancy was also observed in our previous
work where we investigated binding of four different cationic porphyrins to two parallel GQs [77].
Job plot stoichiometry is lower because it represents only the major binding event, while stoichiometry
obtained via fitting of UV-vis titration data encompasses strong, weak, and non-specific binding. It is
also important to remember that binding stoichiometries of 1:1 and 2:1 can be clearly differentiated
via Job’s method, but higher binding stoichiometries are difficult to determine precisely. For example,
binding ratios of 4:1 and 5:1 correspond to molar fractions of 0.8 and 0.83, respectively, which would
likely be impossible to distinguish, given the expected level of data accuracy. The unusually high
binding stoichiometry supports the involvement of multiple binding modes such as end-stacking,
electrostatic interactions, and groove binding, the latter two resulting from the presence of spermine
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arms. It also suggests the possibility of porphyrin self-association on the DNA backbone. The much
higher binding stoichiometry for ZnTCPPSpm4 is puzzling, especially in light of ZnTCPPSpm4′s axial
water molecule, which is expected to inhibit some binding modes, such as porphyrin self-association.
However, slipped self-stacking is still possible.
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with Tel22 at 25 ◦C. Porphyrins and Tel22 GQ DNA concentrations were maintained equal within
20%. The Job plots were constructed by plotting the difference in the absorbance values at a specified
wavelength vs mole fraction of the porphyrin, X. Pink squares represent data collected by titrating
porphyrins into DNA; blue squares represent data collected by titrating DNA into porphyrins.

2.2. RLS Indicates the Formation of Discrete Stoichiometric Porprhyrin-Tel22 Complexes

Because UV-vis titrations yielded high stoichiometry for porphryin-Tel22 complexes, we employed
the RLS method [78] to check for possible aggregation. In RLS, porphyrin solution is excited close to
its Soret maximum and the scattering is measured at the same wavelength. If aggregated (alone or on
a substrate), porphyrins display enhanced Rayleigh scattering originating from electronic coupling
between the individual molecules in the assembly. To detect communication between porphyrins,
RLS experiments are performed under porphyrin excess, unlike UV-vis titrations, where DNA excess
is used.

The RLS intensity of TCPPSpm4 alone is low (Figure 4A), indicating an absence of aggregation in
agreement with UV-vis dilution studies (Figure S1). The addition of Tel22 does not change the RLS
signal in the [TCPPSpm4]/[Tel22] range of 40–8. Below this ratio, however, RLS signal starts to increase
and reaches a maximum at [TCPPSpm4]/[Tel22] = 2, suggesting the formation of an assembly with
strong electronic communication between porphyrins. Further addition of Tel22 does not change RLS,
indicating that the TCPPSpm4-Tel22 complex is stable. Adding more Tel22 to this solution eventually
leads to drastic decline in RLS signal, owing to the precipitation of the complex (data not shown).

ZnTCPPSpm4 does not aggregate alone or in the [ZnTCPPSpm4]/[Tel22] range of
40–14 (Figure 4B). When more Tel22 is added, however, stable aggregates are formed at
[ZnTCPPSpm4]/[Tel22] ~13, in line with the stoichiometry determined in UV-vis experiments.
Subsequent addition of Tel22 does not change RLS until [ZnTCPPSpm4]/[Tel22] ~2, at which point the
RLS signal rises up to 1:1 ratio then starts to decrease, although the observed changes are small.

Taken together, the RLS data allow us to (i) exclude porphyrin aggregation in the absence of DNA;
(ii) confirm formation of discrete porphryin-Tel22 complexes with a stoichiometry consistent with that
measured in UV-vis; and (iii) exclude existence of large, non-stoichiometric porphryin-Tel22 aggregates.
Overall, RLS and UV-vis data support our hypothesis of DNA-assisted porphyrin self-aggregation on
Tel22 which leads to strong electronic communication between individual porphyrins in the assembly.
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Figure 4. Representative RLS titration of 2.0 µM (A) TCPPSpm4 and (B) ZnTCPPSpm4 with 500
µM Tel22 at 25 ◦C. The amounts of Tel22 added are specified in the legend. Inset reports RLS
intensity at 450 nm vs [porphyrin]/[Tel22] ratio. Note, the scale in the inset is inverted to follow
the progress of the titration which starts with the solution of porphyrin and proceeds toward lower
[porphyrin]/[Tel22] ratios.

2.3. Fluorescence of TCPPSpm4 and ZnTCPPSpm4 Decreases in the Presence of Tel22 Suggesting
DNA-Assisted Porphyrin Self-Association

The steady-state fluorescence emission spectrum of a porphyrin is produced by the first excited
state, S1, and the charge-transfer state between the porphyrin ring and its peripheral substituents (in
this case carboxysperminephenyl groups). The coupling between these two states leads to quenching of
the fluorescence signal, which occurs in polar solvents or when the rotation of peripheral substituents
is unrestricted. TCPPSpm4 fluoresces in aqueous solution, producing a peak at 643 nm and a shoulder
at 702 nm, as has been previously observed [72]. At the same time, ZnTCPPSpm4 produces a split
peak at 607 and 657 nm, Figure 5, suggesting that the rotation of its side-chains is more restricted.

Position and intensity of the fluorescence peak of a porphyrin is strongly sensitive to its
environment and, thus, can report on porphyrin binding to GQ DNA [79]. Addition of Tel22 GQ to
TCPPSpm4 leads to a dramatic decrease in fluorescence intensity and a red shift of 10 and 15 nm
for the 643 and 702 nm peaks, respectively. The spectra at saturating amount of Tel22 are sharper
and better resolved, Figure 5A, suggesting restriction in rotation of the peripheral groups upon GQ
binding. Similarly, the fluorescence intensity of ZnTCPPSPm4 decreased dramatically upon addition
of Tel22, but the red shift observed was significantly smaller, i.e., 5 and 3 nm for the 607 and 657 nm
bands, respectively. In both cases, the original dramatic decrease in signal intensity is followed by a
small increase in the signal at high [Tel22]/[porphyrin] ratios (see Figure S2) suggesting a change in a
mechanism of ligand interactions with Tel22 or with each other. The strong decrease in fluorescence
could be explained by close interactions between porphyrins and Tel22 as well as by self-association of
porphyrins assisted by the DNA backbone. Such interpretation is consistent with reported high binding
stoichiometry, especially for ZnTCPPSpm4. Similar to our case, the steady-state fluorescence of the
Zn(II) derivative of a widely-studied porphyrin, TMPyP4, decreased upon addition of tetrastranded
parallel GQs [77] and poly(dG-dC) dsDNA [80], although in both cases the decrease was not as
dramatic as in the present case.
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presence of 19.5 fold excess of Tel22 and (B) 0.47 µM ZnTCPPSpm4 alone and in the presence of 9.1 fold
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2.4. FRET Studies Indicate that Both Porphyrins Have Exceptional Stabilizing Ability and Modest Selectivity
toward Tel22 GQ

FRET is a benchmark technique in the quadruplex field enabling facile and reliable measurement
of ligands’ stabilizing ability and selectivity for GQ DNA [81]. We used F21D, a 21-nt sequence of
the human telomeric DNA labeled with 6-FAM fluorescent dye at the 5′ end and a quencher, Dabcyl,
at the 3′ end (5′-6-FAM-GGG(TTAGGG)3-Dabcyl-3′). We have thoroughly characterized the fold and
stability of this sequence in our earlier work [19]. The addition of up to 7.5 eq. of TCPPSpm4 and up
to 20 eq. of ZnTCPPSpm4 to F21D resulted in a concentration-dependent increase in Tm of F21D by
36 ± 2 ◦C and 33 ± 2 ◦C, respectively (Figure 6A; raw data are shown in Figure S3). Our data shows
that both porphyrins stabilize Tel22 GQ to a great extent, but the stabilization curve for ZnTCPPSpm4
is sigmoidal, and only weak stabilization is observed up to 1.6 µM (8 eq.) of the porphyrin. This data
is in agreement with high stoichiometry of the ZnTCPPSpm4-Tel22 complex determined in UV-vis and
Job plot studies.
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Figure 6. Stabilizing ability and selectivity of TCPPSpm4 and ZnTCPPSpm4 toward human telomeric
DNA investigated via FRET. (A) Dose dependent stabilization, ∆Tm, of 0.2 µM F21D as a function
of porphyrin concentration. (B) Stabilization of 0.2 µM F21D with 0.75 µM TCPPSpm4 or 2.2
µM ZnTCPPSpm4 in the presence of increasing amount of CT DNA (equivalents relative to F21D
are specified in the legend). Concentration of porphyrins was chosen in order to achieve similar
starting Tm for the first sample before any CT DNA was added in order to facilitate the comparison.
The concentration of F21D is expressed per strand, while the concentration of CT DNA is expressed
per base pair. Note, all raw data are presented in Figure S3.
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Selectivity is an essential characteristic of an ideal anticancer GQ ligand, because a drug that
binds readily to dsDNA will require a greater concentration to achieve its therapeutic effect, or even
cause cytotoxicity. Thus, we conducted FRET competition studies in the presence of large excess of
CT DNA and a fixed ligand concentration (Figure 6B). The selectivity ratio, defined as the fold of
competitor necessary to reduce ∆Tm by 50%, was calculated to be 270 for TCPPSpm4 and 200 for
ZnTCPPSpm4. While the porphyrins prefer GQ to dsDNA, the observed selectivity ratios are rather
modest. Such modest selectivity is likely due to strong electrostatic interactions between the positively
charged porphyrins and negatively charged DNA (GQ, dsDNA, etc). This hypothesis is supported
by our earlier work showing that reducing the charge on a porphyrin increases its selectivity for
GQ DNA [44]. Our laboratory previously demonstrated that another Zn(II)-metallated porphyrin,
ZnTMPyP4, displays selectivity ratio of 100 toward F21D vs CT DNA, while its free-base analogue
displays a selectivity ratio of 300 [42]. These values are on the same scale and display the same trend as
the one obtained in this work. Overall, FRET studies suggest that both porphyrins are robust stabilizers
of human telomeric DNA, with TCPPSpm4 displaying both superior selectivity and stabilizing ability.

2.5. Circular Dichroism (CD) Signal Decreases upon Addition of Porphyrins Signifying Interaction between
Porphyrins and Tel22

To determine if porphyrin binding alters the topology of the Tel22 GQ, we performed CD
annealing and titration studies. CD is an excellent method to report on the type of GQ fold and
its alteration upon ligand binding. The CD signature of Tel22 in potassium buffer (5 mM KCl) is well
characterized in our previous works [19] and that of others [22], and contains a peak at 295 nm and a
shoulder at ~250 nm. Titration of TCPPSpm4 under kinetic conditions (with short 12 min equilibration)
did not alter the conformation of Tel22, but lead to dramatic decrease in the intensity of 295 nm
peak (Figure 7A). Under similar conditions, ZnTCPPSpm4 caused only a mild decrease of CD signal
intensity (Figure 7B). To investigate the system under thermodynamic equilibrium, Tel22 samples were
annealed with ~2 eq. of porphyrins and equilibrated overnight. The CD signals displayed stronger
decrease (Figure 7C,D), in part caused by minor precipitation. Decrease in CD signal intensity was
also observed upon interaction of TCPPSpm4 with (dTGGGAG)4 GQ aptamer [73]. Other metallated
porphyrins, such as PtTMPyP4 [43], CuTMPyP4, and NiTMPyP4 [82] caused decrease in the intensity
of Tel22 CD signal in potassium buffer, while CoTMPyP4 and ZnTMPyP4 did not [82].

The porphyrin-induced decrease in CD signal intensity could be explained, in part, by DNA
precipitation, most likely caused by highly charged spermine arms of the porphyrin ligands.
The precipitation was minor and was only observed at high porphyrin and DNA concentrations
(above 10 µM DNA). In addition, the observed behavior in CD titrations could be explained by
preferential binding of porphyrins to single-stranded (ssDNA), which disfavors GQ in the GQ DNA
↔ ssDNA equilibrium. This mode of binding was observed for TMPyP4 [83], triarylpyridines [84],
and anthrathiophenedione [85]. However, such data interpretation seems to contradict the observed
stabilization of human telomeric DNA in our FRET studies (Figure 6A). Alternatively, we can explain
the observed decrease in CD signal intensity by proposing that porphyrins bind to GQ DNA by
disrupting and replacing one or more of the G-tetrads, leading to unchanged or even enhanced
stability. Such explanation reconciles our CD and FRET data and was first proposed by Marchand et al.
on the basis of an extensive CD and mass spectrometry study [86].
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Figure 7. CD titration of 15.0 µM Tel22 with up to 4 eq. of (A) TCPPSpm4 and (B) ZnTCPPSpm4.
Samples were incubated for 12 min after each addition of the porphyrin. CD annealing of (C) 10.0 µM
Tel22 with 2.0 eq. of TCPPSpm4 and of (D) 15 µM Tel22 with 2.2 eq. of Zn TCPPSpm4. Data were
collected at 20 ◦C. We have also completed CD melting on the annealed samples and saw no-to-weak
stabilization (Figure S4).

2.6. The Presence of Induced CD (iCD) Confirms Close Contacts between Porphyrins and Tel22
Aromatic Systems

We further characterized porphyrin-Tel22 interactions by investigating changes in the CD Soret
region. Chromophoric but achiral porphyrins produce no CD signal in this region, and the DNA
CD signal is found exclusively in the UV region. However, when DNA and porphyrin interact,
the complex is both chiral and chromophoric, and will produce an iCD when the π-system of a
porphyrin is in close proximity to that of the DNA. For ligand binding to duplex DNA, the type of iCD
has been found to correlate with the binding mode: a positive iCD corresponds to external binding
and a negative one indicates intercalation [87,88]. However, a similar correlation has not yet been
established for porphyrin-GQ interactions due to the scarcity of empirical data on binding modes other
than end-stacking.

The addition of Tel22 to each porphyrin at stoichiometric amounts yielded a bisignate iCD
with a strong positive component (Figure 8). The trough and the peak occur at 410 and 426 nm for
TCPPSpm4-Tel22 and at 427 and 442 nm for ZnTCPPSpm4-Tel22, which is consistent with their Soret
band positions. Once we established the presence of the iCD, we conducted CD titrations in the Soret
region. Due to low iCD signal intensity, the data display high variability, but nevertheless indicate
that the strongest iCD is observed for complexes with the stoichiometric quantities of porphyrins
(4 eq. for TCPPSpm4 and ~12–15 eq. for ZnTCPPSpm4, Figure S5). In sum, the presence of iCD is
consistent with strong binding of both porphyrins to the Tel22, and suggests close proximity of the
porphyrin ring and G-tetrad(s), indicative of end-stacking. In addition, the split bisignate shape of
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iCD indicates that porphyrins are not disorderly distributed on Tel22 and that there is communication
between the porphyrins in the assembly, in agreement with the RLS data described earlier. The iCD
was likewise observed for TCPPSpm4 binding to (dTGGGAG)4 GQ aptamer [73] and to poly(dG-dC)
and CT DNA [89], and for ZnTCPPSpm4 binding to poly(dG-dC) in both B and Z conformations [90].
However, the shape of the iCD was different from that observed in this work, underlining differences
in the binding modes.
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3. Materials and Methods

3.1. Porphyrins and Oligonucleotides

TCPPSpm4 and ZnTCPPSpm4 were synthesized as described previously [72,90] and dissolved
in double-distilled water (ddH2O) at 1–5 mM and stored at 4 ◦C in the dark. The concentration
of TCPPSpm4 was determined via UV-Vis spectroscopy using the extinction coefficient of
3.0 × 105 M−1cm−1 at 415 nm at pH 6.5 [72]. The extinction coefficient for ZnTCPPSpm4 was
measured to be 1.34 × 105 M−1cm−1 at 424 nm at pH 7 using Beer’s law (Figure S1). Tel22 was
purchased from Midland Certified Reagent Company (Midland, TX, USA) and dissolved in 5K buffer
(10 mM lithium cacodylate, pH 7.2, 5 mM KCl and 95 mM LiCl). Calf thymus (CT) DNA was
purchased from Sigma-Aldrich and dissolved in a solution of 10 mM lithium cacodylate 7.2 and 1 mM
Na2EDTA at a concentration of 1 mM. The solution was then equilibrated for one week, filtered, and
stored at 4 ◦C. The fluorescently labeled oligonucleotide 5′-6-FAM-GGG(TTAGGG)3-Dabcyl-3′ (F21D)
was purchased from Integrated DNA Technologies (Coralville, IA, USA), dissolved at 0.1 mM in
ddH2O, and stored at −80 ◦C prior to use. The concentrations of all nucleic acids were determined
through UV-Vis spectroscopy at 90 ◦C using the extinction coefficients ε260 nm = 228.5 mM−1cm−1

for Tel22, 247.6 mM−1cm−1 for F21D, and 12.2 mM−1cm−1 (per base pair) for CT DNA. Extinction
coefficients were calculated with the Integrated DNA Technologies OligoAnalyzer (available at https:
//www.idtdna.com/calc/analyzer, accessed on November 20, 2018) which uses the nearest-neighbor
approximation model [91,92].

To induce GQ structure formation, DNA samples at the desired concentrations alone or in the
presence of 1–2 eq. of porphyrin were heated at 95 ◦C for ten minutes in 5K buffer, allowed to cool to
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room temperature over three hours, and equilibrated overnight at 4◦ C. All experiments were done in
5K buffer.

3.2. UV-Vis Titrations and Job Plot

UV-Vis experiments were performed on a Cary 300 (Varian) spectrophotometer with a
Peltier-thermostated cuvette holder (error of ± 0.3 ◦C) using 1 cm methylmethacrylate or quartz
cuvettes and dual beam detection. The sample cuvette contained 2.3–3.1 µM TCPPSpm4 or 1.0–6.4 µM
ZnTCPPSpm4 and the reference cuvette contained 5K buffer. UV-Vis titrations were conducted by
adding small volumes of concentrated Tel22 in a stepwise manner to a 1 mL of porphyrin solutions,
mixing thoroughly, and equilibrating for at least two minutes. UV-vis scans were collected in the range
of 352–500 nm. DNA was added until at least three final spectra were superimposable. All titrations
were performed at least three times. All spectra were corrected mathematically for dilutions, and
analyzed as described previously using a Direct Fit model [19,42] with GraphPad Prism software at
415 and 429 nm for TCPPSpm4 and 424 nm wavelengths for ZnTCPPSpm4. Job plot UV-Vis titration
experiments were performed to independently determine the stoichiometry of ligand-Tel22 binding
interactions. Job plot experiments were conducted for both porphyrins using the procedure and data
processing described in our earlier work [19]. Both porphyrins and DNA were prepared at 3–4 µM.
Job plot experiments were completed at least three times.

3.3. Fluorescence Spectroscopy

3.3.1. Resonance Light Scattering (RLS)

RLS experiments [78] were conducted using a conventional fluorimeter, Fluorolog FL-11
Jobin-Yvon Horiba. A 2.1 mL solution of 2 µM porphyrin in a 1 cm quartz cuvette was titrated
with 0.5 mM annealed and equilibrated Tel22 solution at 25 ◦C. Final concentration of Tel22 varied
between 0.05-10.0 µM, and the total volume of all additions was 42 µL (2%). After each addition of
Tel22, the cuvette was equilibrated for 10 min and the data was collected with the following parameters:
scan range of 380–630 nm, wavelength offset of 0 nm, increment of 1.0 nm, averaging time of 0.5 sec,
number of scans 3 (averaged), and 1.5 nm slits for both excitation and emission.

3.3.2. Fluorescent Titrations

Fluorescence titrations were performed on a Photon Technology International QuantaMaster
40 spectrofluorimeter. A 2.0 mL solution of porphyrin in a 1 cm black quartz cuvette was titrated with
annealed and equilibrated Tel22 solution at 20 ◦C. The concentration of TCPPSpm4 was 0.3 µM, and
the concentration of ZnTCPPSpm4 was ~0.5 µM. Tel22 was added from three different stocks with
increasing concentration: stock 1 was 3–4 µM, stock 2 was 95–150 µM, and stock 3 was 500–850 µM.
Total volume of addition was ~60 µL (3%). After each addition of Tel22, the cuvette was equilibrated
for at least two minutes and the scan was collected with the following parameters: excitation at 420 nm
(at the isosbestic point for TCPPSpm4), emission range of 575–750 nm, increment of 1.0 nm, averaging
time of 0.5 sec, one scan, and 3 nm slits both for excitation and emission.

3.4. Circular Dichroism (CD) Spectroscopy

CD scans and melting experiments were performed on an Aviv 410 spectropolarimeter equipped
with a Peltier heating unit (error of ± 0.3 ◦C) in 1 cm quartz cuvettes. The solution of 10–15 µM
Tel22 was annealed and equilibrated with 2 eq. of porphyrins and CD scans were collected with the
following parameters: 220 to 330 nm spectral width, 1 nm bandwith, 1 sec averaging time, 25 ◦C, and
3–5 scans (averaged). CD melting was performed on the same samples with the following parameters:
294 nm wavelength, 15–90 ◦C temperature range, 30 sec equilibration time, and 10 sec averaging time.
CD scans were collected before and after the melt to check if the melting process is reversible. CD data
were analyzed as described in our earlier work [19,42].
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Two sets of CD titrations were performed. First, 7–15 µM Tel22 was titrated with up to 4 eq.
of 0.44 mM TCPPSpm4 or 5.75 mM ZnTCPPSpm4 in 1 eq. increments. After each addition of the
porphyrin, the sample was equilibrated for 12 min after which CD scans were collected in 220–330 nm
region. Secondly, to detect induced CD signal (iCD) 2–6 µM porphyrin solution was titrated with small
increments of 100–200 µM Tel22. Samples were equilibrated for 10 min and CD spectra were collected
in the 375–480 nm region using 5–10 scans to obtain good signal-to-noise ratio.

3.5. Fluorescence Resonance Energy Transfer (FRET) Assays

FRET studies were conducted according to the published protocol [81]. A solution of 0.2 µM F21D
was incubated in the presence of 0–8 eq. of TCPPSpm4 or 0–20 eq. of ZnTCPPSpm4 and melting curves
were collected. FRET competition experiments were performed using 0.2 µM F21D in the presence
of fixed amounts of TCPPSpm4 (0.75 µM, 3.7 eq.) or ZnTCPPSpm4 (2.2 µM, 11 eq.) and increasing
amounts of CT DNA (up to 96 µM, 480 eq.), and analyzed as described previously [42].

4. Conclusions

There is a great need to develop ligands capable of binding to and regulating the stability of GQs
strongly and selectively. In this work, we characterized interactions of novel spermine-derivatized
porphyrins, TCPPSpm4 and ZnTCPPSpm4, with human telomeric DNA, Tel22. Both porphyrins bind
tightly to the GQ with Ka of (5–14) × 106 M−1 and provide strong stabilization, with the selectivity
ratio of 200–300 over dsDNA. Interestingly, we observe a high binding stoichiometry, which may
indicate multiple binding modes, the most prominent of which are end-stacking and DNA-assisted
self-association of porphyrins. In addition, the spermine arms of the porphyrins likely act as four
tentacles reaching into groves and stabilizing the GQ. The mild selectivity for GQ over dsDNA is likely
due to strong electrostatic interactions between the polycationic ligand and negatively charged DNA
backbone. Consistent with the prior work, addition of Zn(II) to the porphyrin core did not improve
selectivity, in spite of the presence of fifth axial water ligand, but increased Ka three-fold.

Overall, our findings demonstrate that spermine group derivatization is a valid strategy in the
design of novel GQ binders, especially given the fact that polyamines are taken up extensively by
cancer cells [67,68], and thus, could be used for selective cancer targeting. Future work will focus on
optimizing these porphyrins by decreasing their charge (limiting the number of spermine arms to 1–3)
and adding functional groups known to improve GQ selectivity. Biological studies of the new ligands
should also be a priority.
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Abbreviations

GQ Guanine Quadruplex
FRET Fluorescence Resonance Energy Transfer
CD Circular Dichroism
iCD Induced Circular Dichroism
TCPPSpm4 meso-tetrakis-(4-carboxysperminephenyl)porphyrin
ZnTCPPSpm4 Zn(II) meso-tetrakis-(4-carboxysperminephenyl)porphyrin
CT DNA Calf Thymus DNA
F21D 5′-6-FAM-GGG(TTAGGG)3-Dabcyl-3′
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