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Abstract: Although Salvia miltiorrhiza has been reported to have anti-cancer mechanisms, such as
caspase activation, cell cycle arrest, an anti-angiogenesis effect, and Bcl-2 family regulation,
its underlying mechanism of endoplasmic reticulum (ER) stress-mediated apoptosis has never
been demonstrated. Thus, in this current study, ER stress-related apoptosis via miR-216b of the
ethanol extract of Salvia miltiorrhiza (SM) is elucidated for the first time. SM treatment inhibited
the viability of U266 and U937 cells in a concentration-dependent manner. However, SM-exposed
Raw264.7 cells were intact compared to U266 or U937 cells. Treatment with SM significantly
elevated the generation of reactive oxygen species (ROS). The anti-proliferative effect of SM was
reversed by pretreatment with the ROS scavenger, N-acetyl-L-cysteine (NAC), compared to cells
treated only with SM. Also, SM treatment increased the ER stress by elevation of phosphorylated
activating transcription factor 4 (p-ATF4), phosphorylated eukaryotic Initiation Factor 2 (p-eIF2),
and phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (p-PERK) expression.
Caspase-3 and Poly (ADP-ribose) polymerase (PARP) were cleaved and CCAAT-enhancer-binding
protein homologous protein (CHOP) was activated by SM treatment. PARP cleavage and CHOP
activation were attenuated by NAC pretreatment. Furthermore, SM increased the tumor suppressor,
miR-216b, and suppressed its target, c-Jun. miR-216b inhibitor attenuated the apoptotic effect of SM.
Taken together, SM treatment induced apoptosis through regulation of miR-216b and ROS/ER stress
pathways. SM could be a potential drug for treatment of multiple myeloma and myeloid leukemia.

Keywords: Salvia miltiorrhiza; oxidative stress; endoplasmic reticulum stress; C/EBP homologous
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1. Introduction

Myeloid-originated hematological malignancies, including multiple myeloma and myeloid
leukemia, have been continuously increasing worldwide [1,2]. Multiple myeloma, known as plasma
cell myeloma, arises through the expansion of malignant plasma cells derived from B cells in bone
marrow. Patients with multiple myeloma often suffer from hypercalcemia, fractures, renal insufficiency,
and neuropathy [3,4]. Human myeloid leukemia represents an increase in the number of myeloid
cells and their abnormal differentiation in the bone marrow, leading to hematopoietic insufficiency.
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Patients diagnosed with human myeloid leukemia have symptoms of fatigue, hemorrhage, infection,
and organ infiltration, such as hepatomegaly and splenomegaly [5–8].

Myeloid-originated hematological malignancies are able to escape programmed cell death or
suppression of proliferation and metastasis. Therefore, induction of apoptosis has been regarded as
a target for cancer treatment [9–12]. Normally, apoptosis is implemented by intrinsic and extrinsic
pathways. Recent studies have suggested that endoplasmic reticulum (ER) stress mediates apoptosis
in cancer cells [13,14]. Furthermore, several studies relevant to ER stress-mediated apoptosis in
myeloid-originated hematological malignancies have been reported [8,15,16].

ER provides a principal site for functional protein folding and synthesis. However, the protein-folding
machinery in ER is challenged by oxidative stress, hypoxia, or the low potential of hydrogen (pH) [17,18].
In particular, reactive oxygen species (ROS) promote the accumulation of misfolded protein in ER, which
is termed “ER stress”, by damaging calcium (Ca2+) homeostasis in ER lumen [19]. In response to ER stress,
cells initiate an adaptive response named unfolded protein response (UPR), which reduces misfolded
protein load. However, when cells undergo irreversible ER stress, UPR triggers apoptosis by upregulating
an apoptotic effector named C/EBP-homologous protein (CHOP) [20–22].

Moreover, UPR has been identified to be associated with regulation of microRNA (miR) [23,24].
MicroRNA is composed of 20~22 nucleotide molecules that generally affect target mRNAs [25,26].
Among the many types of microRNAs, miR-216b is known to mediate the inhibition of progression and
pathogenesis of liver and colorectal cancers [27,28]. In particular, CHOP has been involved in targeting
post-transcriptional miR-216b, which reduce c-Jun expression and increase caspase-3, resulting in
facilitating cell death [29].

To find anti-cancer effects of medical herbs against myeloid-originated hematological
malignancies, a screening test was conducted with Salvia miltiorrhiza (SM), Cnidium officinale Makino
(COM), Achyranthes bidentata Blume (ABB), Eupolyphaga sinesis Walker (ESW), and Hirudo nipponica
Whitman (HNW) (Supplementary Figures S1 and S2). Among these medical herbs, SM and COM were
evaluated to have apoptotic effects.

Salvia miltiorrhiza is a traditional medical herb that belongs to the family of Labiatae. It has
been used for such clinical applications as activating blood circulation, removing blood stasis,
and nourishing blood [30]. Previously, several studies have reported its biological anti-cancer effects in
hematological malignancies through cytotoxic effects [31], suppression of Bcl-2 [32], and activation
of Bax and caspase-3 [33]. However, the apoptotic effect of Salvia miltiorrhiza ethanol extract in
myeloid-originated cancer cells, via regulation of miR-216b and ER stress, has not yet been elucidated.
Thus, for this study, we used multiple myeloma cell line U266, myeloid leukemia cell line U937,
and murine macrophage cell line Raw264.7. U266 cells are described to express a malignant disorder
of differentiated human B cells. U937 represents myeloid leukemia and is known to differentiate into
morphologically immature white blood cells.

In this study, the ER stress-mediated apoptotic effect of SM through miR-216b activation in
myeloid-originated hematological malignancies cell lines has been studied.

2. Results

2.1. Salvia miltiorrhiza (SM) Suppresses the Growth of U266 and U937 Cells in a Concentration-
Dependent Manner

To examine the cytotoxic effect of SM in U266 and U937 cells, an EZ-Cytox assay was conducted.
Cells were treated with different concentrations of SM (12.5, 25, 50, 100, and 200 µg/mL) for 24 h.
As shown in Figure 1, SM hampered the viability of U266 cells, with the death rates around 16% at a
dose of 25 µg/mL, 37% at a dose of 50 µg/mL, and 50% at a dose of 100 µg/mL. Also, SM-treated U937
cancer cells showed cytotoxicity, with death rates of approximately 33% at a dose of around 25 µg/mL,
45% at a dose of 50 µg/mL, and 51% at a dose of 100 µg/mL. However, SM exhibited a lower cytotoxic
effect on the normal macrophage cell line Raw264.7, with around 1% at a 25 µg/mL, 4% at a dose of
50 µg/mL, and 13% at a dose of 100 µg/mL.
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Figure 1. Salvia miltiorrhiza (SM) exerts a cytotoxic effect on U266 and U937 cells. Raw264.7 (murine 
macrophage), U266 (human multiple myeloma), and U937 (human myeloid leukemia) cells were 
grown in microplates (96 wells) at a density of 2 × 104 cells/well. Those cell lines were treated with the 
indicated concentrations of SM (0, 12.5, 25, 50, 100, or 200 µg/mL) for 24 h. Cell viability was assessed 
by an EZ-cytox enhanced cell viability assay kit. Values represent the means of three experiments ± 
SD; ##, p < 0.01; ###, p < 0.001 versus an untreated control group (U937 cells); ***, p < 0.001 versus 
untreated control group (U266 cells). 

2.2. SM Increases Reactive Oxygen Species (ROS) Generation and Cytotoxic Effect Is Dependent on ROS 

To reveal the role of ROS in SM-induced apoptosis, ROS generation was measured. Cells were 
treated with 50 µg/mL of SM for 24 h. SM significantly increased the ROS production in U266 and 
U937 cells. The elevation of ROS generation is reversed by NAC pretreatment in both cells (Figure 
2a,b). Furthermore, the decreased cell viability of SM-treated cells was recovered by NAC 
pretreatment (Figure 2c,d). 
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Figure 2. SM increases reactive oxygen species (ROS) production and ROS is required for an SM-
induced cytotoxic effect on U266 and U937 cells. (a) U266 cells were treated with SM (50 µg/mL) for 
24 h with or without pre-treatment of NAC (5 mM) for 1 h. ROS production was analyzed using a 2′,7′ 
-dichlorofluorescin diacetate (DCFDA) ROS detection assay kit. Values represent the means of three 
experiments ± SD; **, p < 0.01 versus the SM-only treated group; (b) U937 cells were processed under 
the same conditions; (c) U266 cells were treated with SM (50 µg/mL) for 24 h with or without pre-
treatment of NAC (5 mM) for 1 h. Cell viability was determined by an EZ-cytox enhanced cell viability 
assay kit; (d) U937 cells were processed under the same conditions. Values represent the means of 
three experiments ± SD; ***, p < 0.001 versus an SM-only treated control. 

Figure 1. Salvia miltiorrhiza (SM) exerts a cytotoxic effect on U266 and U937 cells. Raw264.7 (murine
macrophage), U266 (human multiple myeloma), and U937 (human myeloid leukemia) cells were grown
in microplates (96 wells) at a density of 2 × 104 cells/well. Those cell lines were treated with the
indicated concentrations of SM (0, 12.5, 25, 50, 100, or 200 µg/mL) for 24 h. Cell viability was assessed
by an EZ-cytox enhanced cell viability assay kit. Values represent the means of three experiments ± SD;
##, p < 0.01; ###, p < 0.001 versus an untreated control group (U937 cells); ***, p < 0.001 versus untreated
control group (U266 cells).

2.2. SM Increases Reactive Oxygen Species (ROS) Generation and Cytotoxic Effect Is Dependent on ROS

To reveal the role of ROS in SM-induced apoptosis, ROS generation was measured. Cells were treated
with 50 µg/mL of SM for 24 h. SM significantly increased the ROS production in U266 and U937 cells.
The elevation of ROS generation is reversed by NAC pretreatment in both cells (Figure 2a,b). Furthermore,
the decreased cell viability of SM-treated cells was recovered by NAC pretreatment (Figure 2c,d).
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Figure 2. SM increases reactive oxygen species (ROS) production and ROS is required for an
SM-induced cytotoxic effect on U266 and U937 cells. (a) U266 cells were treated with SM (50 µg/mL)
for 24 h with or without pre-treatment of NAC (5 mM) for 1 h. ROS production was analyzed using a
2′,7′ -dichlorofluorescin diacetate (DCFDA) ROS detection assay kit. Values represent the means of
three experiments ± SD; **, p < 0.01 versus the SM-only treated group; (b) U937 cells were processed
under the same conditions; (c) U266 cells were treated with SM (50 µg/mL) for 24 h with or without
pre-treatment of NAC (5 mM) for 1 h. Cell viability was determined by an EZ-cytox enhanced cell
viability assay kit; (d) U937 cells were processed under the same conditions. Values represent the means
of three experiments ± SD; ***, p < 0.001 versus an SM-only treated control.
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2.3. SM-Induced ER Stress Mediates Apoptosis

To investigate whether the anti-proliferative effect of SM is associated with apoptosis, Western
blot analysis was performed. As illustrated in Figure 3a,b, SM increased ER stress-related proteins,
such as p-ATF4, p-eIf2, p-PERK, and CHOP, in U266 and U937 cells. SM caused CHOP activation
and PARP and caspase-3 cleavage in U266 and U937 cells at a concentration of 25 and 50 µg/mL
(Figure 4a,b). To further substantiate the role of ROS in the apoptotic effect of SM, the expression of
CHOP and cleaved PARP was measured without or with NAC. Cells were exposed to 25 or 50 µg/mL
of SM for 24 h with/without NAC pretreatment. As shown in Figure 4c,d, SM activated CHOP and
cleaved PARP. However, activated CHOP and PARP cleavage were reversed by NAC-pretreated U266
and U937 cells.
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Figure 3. SM induces endoplasmic reticulum (ER) stress-related proteins in U266 and U937 cells.
(a) U266 cells were treated with SM (25 or 50 µg/mL) for 24 h, and Western blot analysis was assayed
for expression of P-PERK, P-eIF2α, P-ATF4, and β-actin; (b) U937 cells were experimented with under
the same conditions.
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Figure 4. NAC reverses the expression of C/EBP homologous protein (CHOP) and cleavage of PARP
in U266 and U937 cells. (a) U266 cells were treated with SM (25 or 50 µg/mL) for 24 h, and Western blot
analysis was performed for cleaved PARP, cleaved caspase-3, and CHOP; (b) U937 cells were processed
under the same conditions; (c) U266 cells were treated with SM (50 µg/mL) for 24 h with or without
pre-treatment of NAC (5 mM) for 1 h. Cell lysates were prepared and subjected to Western blot analysis
for CHOP and cleavage of PARP; (d) U937 cells were processed under the same conditions.
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2.4. SM Increases Expression of miR-216b and Decreases Its Target, c-Jun, in U266 and U937 Cells

miR-216b is reported as a tumor suppressor miRNA that targets c-Jun. To elucidate the further
mechanism of SM-induced apoptosis, real-time PCR and Western blot analysis were performed.
As depicted in Figure 5a, the expression level of miR-216b was significantly increased in SM-treated
U266 and U937 cells, by 9-fold and 16-fold, respectively. Also, the target protein of miR-216b, c-Jun,
was notably hampered in SM-treated cells (Figure 5b).
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2.5. Inhibition of miR-216b Reverses SM-Induced Apoptosis

To identify the role of miR-216b in SM-induced apoptosis, miR-216b was inhibited and real-time
PCR for miR-216b and a cell viability assay and Western blot analysis for cleaved PARP, cleaved
caspase-3, and CHOP were performed. As shown in Figure 6a, SM increased miR-216b in both U266
and U937 cells. Also, the cytotoxic effect of SM was found to be upregulated (Figure 6b). However,
increased miR-216b was significantly suppressed by miR-216b inhibitor transfection in both U266
and U937. In line with these data, the cytotoxic effect of SM was found to be notably decreased by
the miR-216b inhibition (Figure 6b). In addition, SM increased expression of cleaved PARP, cleaved
caspase-3, and CHOP. In contrast, the cleaved PARP and caspase-3 and activated CHOP by SM
treatment were attenuated by miR-216b inhibition (Figure 6c).
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inhibitor and treated with SM (50 µg/mL) for 24 h. Real-time PCR for miR-216b expression was
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with miRNA inhibitor negative control or miR-216b inhibitor and treated with 50 µg/mL of SM for
24 h. Western blot analysis was conducted for cleaved PARP, cleaved caspase-3, and CHOP. Mock,
group treated with transfection reagent only; SM, SM-treated group.

3. Discussion

Human multiple myeloma and myeloid leukemia are broadly representative types of
myeloid-originated hematological malignancies. Multiple myeloma is a clonal proliferation of
malignant plasma cells and human myeloid leukemia is an aberrant accumulation of immature
white blood cells. Nearly all patients with myeloid-originated hematological malignancies succumb to
a relapse and long-term survival is poor for most cases [34,35].

In the context of cancer therapy, several natural products have been discovered to possess
anti-cancer effects, including cell cycle arrest, an anti-angiogenesis effect, and autophagy. [36–38].
Recent studies reported Salvia miltiorrhiza-induced anti-carcinogenic effects in multiple myeloma
and human myeloid leukemia [30,39]. Further, in our previous article, we demonstrated that
Salvia miltiorrhiza induces G2/M arrest in multiple myeloma [40] and autophagic cell death in multiple
myeloma and human chronic myelogenous leukemia [31].

Traditional medicines have been used for thousands of years to treat all kinds of diseases,
including cancer, in the world. In Korea, traditional medicine is still well-used under the supervision
of the Ministry of Health and Welfare of Korea by licensed traditional doctors. There is a categorized
list of herbs, named Hwal-Hyeol-Geo-Yeo (HHGY) herbs, including Cnidium officinale Makino
(COM), Salvia miltiorrhiza, Achyranthes bidentata Blume (ABB), Eupolyphaga sinesis Walker (ESW),
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and Hirudo nipponica Whitman (HNW). They help smooth blood circulation and decrease the viscosity
of blood by anti-thrombotic activities. Hematological cancer induces a hypercoagulability state of
patients with at least one marker of thrombosis shown in 82.7% of patients, which increases morbidity
and mortality [41]. In that respect, the HHGY herbs could be effective anti-multiple myeloma drug
candidates. Thus, anti-MM effects and mechanisms of HHGY herbs were studied (Supplementary
Figures S1 and S2). COM showed anti-MM properties via ROS generation-dependent ER stress-induced
apoptosis similar to SM. However, there are differences in epigenetic mechanisms between COM and
SM. COM suppressed one of the onco-miRNA, miR-211, which in turn targeted and repressed the
CHOP [42]. SM induced apoptosis by miR-216b upregulation, which attenuated c-Jun expression.

Salvia miltiorrhiza has been applied in the treatment of blood-related diseases, including blood
stasis, premenstrual syndrome, insomnia, and cancer. Its active compounds are tanshinone I,
tanshinone IIA, cryptotanshinone, salvianolic acid B, protocatechuic aldehyde, etc. [43]. It has been
reported to have an anti-inflammatory effect [44], an anxiolytic effect [45], and anti-cancer effects [46,47].
However, ER stress-mediated apoptotic effects of SM correlated with regulation of miR-216b have
not been fully revealed yet. Therefore, we focused on finding anti-cancer effects of Salvia miltiorrhiza
through CHOP-dependent miR-216b downstream using multiple myeloma cell line U266 and human
myeloid leukemia cell line U937.

The endoplasmic reticulum (ER), where the initial steps for the maturation of protein are processed,
is significantly responsible for the protein folding that is synthesized in the secretory pathway [48].
In the present study, an anti-proliferative effect of SM against U266 and U937 cells was identified
(Figure 1). Also, Salvia miltiorrhiza-induced ROS, which is an ER stress factor, was demonstrated
by pretreatment with NAC, an ROS scavenger (Figure 2). Furthermore, Salvia miltiorrhiza-induced
ROS generation increased expression of CHOP and this was proven by pretreatment with NAC,
an ROS scavenger (Figure 4c,d) These findings are in agreement with a previous report that suggested
Tanshinone IIA, one of the phytocompounds of SM, increases ROS in ER-mediated apoptosis [49].

A massive accumulation of unfolded proteins is sensed by the ER stress sensors activate
transcription factor 6 (ATF6), inositol-requiring protein 1 (IER1), and protein kinase RNA-like ER
kinase (PERK). If ER stress is facilitated to the extent that UPR is unable to cope with unfolded
protein accumulation, three branches of UPR, ATF6, IRE1, and PERK signaling, transduce an apoptotic
downstream pathway [12].

Out of the three branches, PERK signaling in particular mediates phosphorylation of eukaryotic
translation initiator factor 2α (eIF2α). Phosphorylation of eIF2α also allows for the expression of
activate transcription factor 4 (ATF4), thereby leading to accumulation of the C/EBP-homologous
protein (CHOP) involved in apoptosis [21]. In agreement with this, we found that SM triggered the
PERK signaling pathway (Figure 3). Furthermore, we indicated that SM induced PERK-dependent
CHOP expression and increased the apoptotic marker cleaved PARP, which is in accordance with
previous studies (Figure 4) [50,51].

In addition, PERK has been reported to regulate directly miRNA expression, which shifts the
balance between survival and cell death during ER stress [52]. Recently, miR-216b was shown to
induce arrest in tumor growth [53,54]. A previous study indicated that PERK-signaling-dependent
miR-216b is proven to be a direct transcriptional target of CHOP [29].

In fact, miR-216b, a post-transcriptional target of CHOP, suppresses c-Jun expression, which protects
cells from apoptosis of tumor necrosis factor-α (TNF-α) [55,56]. In accordance with these previous reports,
we observed that SM increased the expression level of miR-216b in both U266 and U937 cells and its role
in SM-induced apoptosis was confirmed by cell viability assay and Western blot analysis with miR-216b
inhibitor. Moreover, downregulation of c-Jun expression is observed (Figure 5b).

The downregulation of c-Jun is known to trigger caspase-3, ultimately inducing cleaved PARP,
which increases susceptibility to apoptosis [29,57,58]. Indeed, production of caspase-3 and its substrate
PARP were observed after treatment with SM (Figure 6).
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Still, SM-mediated microRNA regulation in cell death pathways under ER stress needs further
investigation. As noted above, SM and COM have similarities and differences in their efficacies.
So, comparative experiments are needed with constituents of SM/COM and a combination treatment
of SM and COM. Also, additional studies using various cancer cell lines, such as breast cancer,
hepatocellular cancer, and rectal cancer, and animal studies are required to expand the therapeutic use
of SM in cancer treatment.

4. Materials and Methods

4.1. Chemicals and Reagents

Dried Salvia miltiorrhiza (SM, Beijing, China) (1 kg) was extracted with 99.9% ethyl alcohol (Duksan,
Gyeonggi-do, Korea) for 48 h at room temperature. The solution was filtered and evaporated using a
Yamato Vacuum rotary evaporator (EYELA, Yamato, Tokyo, Japan) at 40 ◦C and lyophilized at −80 ◦C
in a vacuum freeze-dryer (EYELA, Yamato, Tokyo, Japan) to yield 40.319 g of crude extract. The
lyophilized Salvia miltiorrhiza extract was then made into a powder form according to a previously
described method [59]. It was dissolved in dimethyl sulfoxide (Duksan, Gyeonggi-do, Korea) as a
stock solution (200 mM) and then stored at −20 ◦C. Its main constituents were previously reported to
be cryptotanshinone, tanshinone I, and tanshinone IIA [60].

4.2. Cell Culture

Human multiple myeloma U266 cells were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). Human myeloid leukemia U937 cells and mouse macrophage Raw264.7
cells were obtained from the KCLB (Korean cell line Bank, Seoul, Korea). They were grown in RPMI
1640 (Welgene, Daegu, Korea) medium supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin at 37 ◦C in a humidified incubator under 5% CO2.

4.3. Cytotoxicity Assay

The cell viability of SM was measured by an EZ-cytox cell viability assay kit (DoGen, Seoul,
Korea). U266 and U937 cells were seeded onto 96-well microplates at a density of 2 × 104 cells per
well and treated with various concentrations of SM (0, 12.5, 25, 50, 100, or 200 µg/mL) for 24 h with or
without pre-treatment of NAC (5 mM) for 1 h. Then, a volume of 10 µL of EZ-cytox kit solution was
added to each well and incubated for another 2 h at 37 ◦C. Optical density (OD) was calculated using a
microplate reader (Bio-Rad, Hercules, CA, USA) at 450 nm. Cell viability was shown as a percentage
of the absorbance present in the SM-treated group compared with control cells.

4.4. Western Blot Analysis

U266 and U937 cells (1 × 106 cells/mL) were treated with indicated concentrations of SM (25
or 50 µg/mL) for 24 h. Then, the cells were lysed with RIPA buffer (1 M EDTA, 1 mM Na3VO4,
1 mM NaF, 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholic acid)
containing a protease inhibitors cocktail (Amresco, Solon, OH, USA). The protein supernatant was
collected and quantified for protein concentration by using an RC DC protein assay kit II (Bio-Rad,
Hercules, CA, USA). The proteins (30 µg) were separated via SDS-polyacrylamide gel electrophoresis
and transferred to nitrocellulose membranes that were blocked with 5% skim milk in Tris-buffered
saline with 0.05% Tween 20 and incubated with the required antibodies. Primary antibodies, including
cleaved PARP (1:1000, 89 kDa), CHOP (1:500, 27 kDa), P-eIF2α (1:500, 38 kDa) (Cell Signaling, Beverly,
MA, USA), P-ATF4 (1:500, 39 kDa) (Thermo Fisher, Waltham, MA, USA), P-PERK (1:500, 125 kDa)
(Thermo Fisher, Waltham, MA, USA), c-Jun (1:1000, 39 kDa), and β-actin (1:1000, 43 kDa) (Santa Cruz,
Dallas, TX, USA), were used at a 1:500~1000 dilution (5% bovine serum albumin) and secondary
antibodies at a 1:1000 dilution (5% skim milk) (Santa Cruz, Dallas, TX, USA). After detected protein
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bands were visualized by Hybond ECL (Amersham Pharmacia, Piscataway, NJ, USA), the blots
were scanned.

4.5. Measurement of ROS Generation

U266 and U937 cells were seeded onto 96-well microplates at a final concentration of 1 × 105 cells
per well and treated with SM (50 µg/mL) for 24 h with or without pre-treatment of NAC (5 mM) for
1 h. After staining the cells in 2′,7′-dichlorofluorescin diacetate (DCFDA) Cellular Reactive Oxygen
Species Detection Assay Kit (Abcam, Cambridge, UK) Solution (20 µM), they were incubated at 37 ◦C
for 30 min in the dark. Plate measurement was performed on a fluorescence plate reader (Bio-Rad,
Hercules, CA, USA) at Ex/Em = 485/535 nm in end point mode in the presence of compounds, media,
or buffer. An identical untreated control and an NAC-only treated group were used on a screening test
of Salvia miltiorrhiza and Cnidium officinale Makino.

4.6. Real-Time Polymerase Chain Reaction

U266 and U937 cells (2 × 105 cells/mL) were treated with indicated concentrations of SM (25 or
50 µg/mL) for 24 h. Afterward, total RNA was extracted from individual SM-treated samples using the
TRIzol extraction method as described by the manufacturer (Invitrogen, Carlsbad, CA, USA). RNA was
reverse transcribed using a Mir-X miRNA First-Strand Synthesis Kit (Takara Bio, Mountain View,
CA, USA) according to the manufacturer’s protocol. Quantitative PCR was conducted using a standard
protocol from the SYBR Premix Ex Taq II (Takara Bio, Mountain View, CA, USA). Primer sequences
(human) were as follows: mature hsa-miR-216b Forward 5′-AAATCTCTGCAGGCAAATGTGA-3′ and
U6 primers using (Cat. #638313, Takara Bio, Mountain View, CA, USA).

4.7. SiRNA Transfection

The siRNA transfection was performed using a TransITX2® Dynamic Delivery System kit (Mirus,
MD, USA). U266 and U937 cells were seeded onto 6-well plates at a density of 2.5~5.0 × 105 cells
per well and the cell cultures were incubated overnight. Opti-MEM I Reduced-Serum medium was
added to 25 nM siRNA and 7.5 µL TransIT-X2 and gently mixed then incubated at room temperature
for 15–30 min. Then, U266 and U937 cells were exposed to SM (50 µg/mL) for 24 h. Primer
sequences (human) were as follows: Anti-has-miR-216b:5′-Mu/ZEN/mCmAmCmAmUmUmUmGm
CmCmUmGmCmAmGmAmGmAmUmU/3ZEN/-3′. miRNA inhibitor negative control #1 was
purchased (Cat. #SMC-2101, BIONEER, Seoul, Korea).

4.8. Statistical Analysis

Data were expressed as mean ± SD from at least three independent experiments. Statistical
evaluation of the data was performed using one-way analysis of variance (ANOVA) tests and Student’s
t test for independent or correlated samples. A difference was considered significant if the p value was
less than 0.05.

5. Conclusion

The results herein indicate that SM induces ER stress by producing ROS and the activated
CHOP expression is followed by an elevated level of miR-216b expression in both U266 and U937.
Also, SM reduced protein expression of c-Jun, which is a target of miR-216b, correlating to induction of
cleavage of caspase-3 and PARP. However, the SM-treated U266 cells showed a more powerful effect
on cytotoxicity than SM-treated U937 cells. The difference might be due to a different ROS generation
level and a different miR-216b modification level.
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