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Abstract: Gastric cancer is the third leading cause of cancer-related deaths and ranks as the fifth most
common cancer worldwide. Incidence and mortality differ depending on the geographical region
and gastric cancer ranks first in East Asian countries. Although genetic factors, gastric environment,
and Helicobacter pylori infection have been associated with the pathogenicity and development of
intestinal-type gastric cancer that follows the Correa’s cascade, the pathogenicity of diffuse-type
gastric cancer remains mostly unknown and undefined. However, genetic abnormalities in the cell
adherence factors, such as E-cadherin and cellular activities that cause impaired cell integrity and
physiology, have been documented as contributing factors. In recent years, H. pylori infection has
been also associated with the development of diffuse-type gastric cancer. Therefore, in this report,
we discuss the host factors as well as the bacterial factors that have been reported as associated factors
contributing to the development of diffuse-type gastric cancer.
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1. Introduction

Gastric cancer (GC) was the most common cancer as of 1975 [1] and because of the lack of
sophisticated advancements, most of the GC cases were diagnosed at the advanced stages with
poor prognosis [2]. However, relying on the development of advanced endoscopic techniques and
national policy on Helicobacter pylori eradication, currently GC can be detected at earlier stages and
better interventions can be provided to prevent its advance in some countries, such as Japan and
Korea [3,4]. In fact, the declining trend in the global incidence and mortality of GC has been observed
over past decades; however, it still ranks as the fifth most common cancer and the third leading
cause of cancer-related mortality worldwide with an estimated number of 841,000 deaths, including
530,000 deaths and 11.7 million disability-adjusted life years (DALYs) for men in 2013 [5]. Hence, GC is
still a significant public health issue and is still an area of focus for many international organizations
in terms of both the prevention and control of the disease. The incidence and mortality of GC varies
according to geographical region and it remains the highest in East Asian countries in comparison
with other parts of the world [1].

GC is a multifactorial, morphologically heterogeneous disease where adenocarcinoma accounts
for almost 90% of cases and lymphoma up to 5% [6,7]. Histologically, the adenocarcinomas originate
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from the glandular epithelium of gastric mucosa, whereas almost 90% of the primary gastrointestinal
lymphomas are of B cell lineage with few T-cell or Hodgkin lymphomas [6,8]. In general, most GCs are
sporadic (90%) and a positive family history exists in approximately 10% of cases, of which 1–3% are
hereditary [9,10]. Based on differences in morphology, epidemiology, pathology, and genetic profiles,
adenocarcinoma is classified as the well-differentiated or intestinal type gastric cancer (IGC) accounting
for 60% of cases that typically show cohesive groups of tumor cells with a well-defined glandular
architecture leading to expanding growth pattern. Poorly-differentiated or diffuse type gastric
cancer (DGC) accounts for 30% of cases; DGC lacks the intercellular adhesion, often observed with
scattered signet-ring cell morphology predisposed to the diffuse invasion growth pattern throughout
the stroma [11,12]. IGC is found in older patients and is associated more with environmental
factors, such as high salty diet, smoking, obesity, and alcohol consumption [13–15], as well as
H. pylori infection [16]. DGC is more commonly observed in younger patients [17,18]. IGC is
the more common variant and its carcinogenic pathway is mainly caused by H. pylori infection,
which predisposes a person to chronic gastritis, followed by atrophic gastritis, intestinal metaplasia,
dysplasia, and finally carcinoma through the Correa’s cascade [19]. The latter three lesions—atrophic
gastritis, intestinal metaplasia, and dysplasia—are considered precancerous lesions. IGC accounts for
the vast majority of GC. Although the pathogenicity of IGC has been well-characterized and studied,
that of DGC mostly remains undefined and is considered to be primarily genetically determined
and less associated with environmental factors and the inflammatory cascade. Even though DGC
accounts for a lower proportion, an increasing incidence of DGC has been reported [20]. Moreover,
a minor proportion of DGC (1–3%) has been inherently linked and associated with germline alterations
in cellular physiology, which is known as hereditary-DGC (HDGC) [21–23]. Along with the worse
prognosis characterized by early age of onset, rapid disease progression, being highly metastatic,
inherited possibility within family in comparison associated with IGC, DGC has become a challenge
for researchers and physicians. In practice, due to the clinical importance, several guidelines about
diagnosis criteria, treatment, and monitoring of hereditary DGC (HDGC) were established and updated
by a multidisciplinary group including clinical geneticists, gastroenterologists, surgeons, oncologists,
pathologists, molecular biologists, and dieticians [24–26]. Nonetheless, the underlying molecular
pathways of the disease have not yet been well-studied and understood. Notably, a report summarizing
the molecular pathogenicity of GC in general has been published previously [27]. However, in this
report, we summarized the current understanding of published knowledge to create a possible outline
of the contributing factors involved in the molecular pathogenicity of DGC in order to gain deeper
awareness about its mechanism (Table 1).

Table 1. Contributing factors for pathogenicity of diffuse type gastric cancer (DGC).

Factor Mechanism Effects References

Host Factor

E-cadherin (CDH1) Mutational alterations Deregulation of E-cadherin [28,29]
Over expression of

transcription repressor
Down regulation of

E-cadherin [30–32]

Post-translational modification Glycosylation modification of
E-cadherin [33]

Promoter hyper-methylation E-cadherin inactivation [34]
Promoter polymorphism Alterations in E-cadherin [35]

Ras homolog gene family A
(RHOA) Mutational alterations Loss of E-cadherin activity [36]

Sphingosine-1-phosphate
(S1P) Synthesis Development of DGC and

lymphatic invasion [37,38]

Adenomatous polyposis coli
(APC)

Mutations leading to altered
expression of APC protein

Accumulation of β-catenin
leading to the activation of

Wnt-signaling pathway
[39,40]
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Table 1. Cont.

Factor Mechanism Effects References

Host Factor

Fibroblast growth factor
receptor (FGFR2) Overexpression Inhibition in the cellular

activities [41,42]

Tumor protein 53 (TP53) Mutational alteration Loss of cell regulating
mechanism [43–46]

Helicobacter pylori

Non-phosphorylated CagA Binds with E-cadherin Dissociation of
E-cadherin-β-catenin complex [47]

Causes mutational alterations
in TP53

Impairment of E-cadherin
synthesis [48,49]

Causes hyper-methylation of
CDH1

Reduced E-cadherin
expression [50,51]

High temperature requirement
A (HtrA)

Causes cleavage of
extracellular domain of

E-cadherin

Disruption of normal cell
junctions [52–56]

2. Factors Associated with Molecular Pathogenicity of DGC

2.1. Role of E-Cadherin

For the normal maintenance of tissue morphogenesis and homeostasis, cell–cell adhesion
is a critical phenomenon, also important for other cellular processes such as cell differentiation,
cell survival, and cell migration, which are controlled by gene expression and signaling pathway
activation [57]. E-cadherin (calcium-dependent classical cadherin), a trans-membrane glycoprotein
consisting of three domains—extracellular, trans-membrane, and cytoplasmic—is involved in the
cell–cell adhesion and tight adherent junctions that define cell differentiation and proliferation
specificity of epithelial cells and invasion suppression [30,58–60]. The cytoplasmic domain of
E-cadherin forms a protein complex with β- or γ-, p120-, and α-catenins linking the domain with
the actin-myosin network that co-ordinates the specificity of cell shape, polarity, and function of the
epithelial cells [61,62]. The extra-cellular domain of E-cadherin from the adjacent cells is involved in
the cell adherence, providing a tight junction between the cells (Figure 1).

Figure 1. Cell–cell adhesion through E-cadherin. The extracellular domain of E-cadherin from adjacent
cells is involved in cell adhesion and tight junction. The cytoplasmic domain forming a protein complex
with catenins (α-, β-, and p120-) regulates the cytoskeleton protein and actin, which is an important
protein for normal cell integrity.
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The glycoprotein E-cadherin is encoded by the cadherin (CDH1) gene, which is located in
chromosome 16q22.1 and contains 16 exons with a 4.5-kb mRNA [63]. E-cadherin is one of the
major tumor suppressors in GC and the structural modifications in its encoding gene CDH1 or
alterations in its expression have been found as the common events that suppress the broad-ranging
functions of E-cadherin during cancer progression and contribute to the morphogenetic effects
in cancer [10,28,61]. The common mutations in CDH1 are the well-known mechanism for its
deregulation [29,64]. According to the human gene mutation database (HGMD), 121 variants have
been reported for CDH1 alterations to date [65,66]. In addition to the mutations, down regulation of
E-cadherin expression can also occur via other mechanisms, such as overexpression of transcription
repressor, alterations of microRNAs (miRNAs), protein trafficking deregulation, and post-translational
modification of the protein [30–32]. Recently, glycosylation of E-cadherin has been suggested as another
post-translational modification mechanism for its deregulation in many pathophysiological steps of
tumor development and progression [33]. The alterations mediated by promoter hyper-methylation
and epigenetic inactivation of CDH1 has been found most commonly in DGC, playing a vital role as
a second-hit mechanism in deregulation of the wild-type of CDH1 in HDGC patients [34,67]. In a recent
study, the substitution in CDH1 encoding for the extracellular domain, such as NM_004360.3: c.2076T
> C rs:1801552 in exon 13 together with c.348G > A as a new variant, were found to impair its cell
adhesion function and contributed to the development of DGC [64]. On the other hand, substitution
NM_004360.3: c.2253C > T rs:33964119 located in exon 14, encoding for the cytoplasmic domain of
E-cadherin, was also found in DGC [64]. The cytoplasmic domain of E-cadherin binding with β-catenin
plays a critical role in the inhibition of nuclear signaling pathways and tumor-suppression function [68].
In prior studies, the frequency of promoter polymorphism at the −160 position (C > A) of CDH1 was
found to be significantly greater in DGC than in the control groups. The three-marker haplotype
(−160C > A, 48 + 6T > C, 2076C > T) was found to significantly contribute to DGC, whereas ATC
and ACC haplotypes contributed to higher risk of the development of DGC [35,69,70]. Humar et al.
also confirmed that the three-marker haplotype (−160C > A, 48 + 6T > C, 2076C > T) was associated
with DGC [35]. In a recent study, impairment of E-cadherin expression was reported with a decreased
membranous expression in early lesions of DGC [71].

Park et al. performed a study of gastro-duodenal epithelium-specific knockout of one allele of
CDH1 and both alleles of tumor protein 53 (TP53) and SMAD4 (a homologous gene product to the
Caenorhabditis elegans gene (SMA) and the Drosophila gene ‘mothers against decapetaplegic’ (MAD)),
which are the most vulnerable to being inactivated in human GCs. The loss of E-cadherin function
together with SMAD4 was found, which underwent epithelium-mesenchymal transition (EMT) and
co-operated to promote the development of metastatic progression of TP53-null DGC [72]. This result
closely mimicked the human DGC and evaluated the possible role of E-cadherin and SMAD4 in the
development of DGC. In addition to its role in cell–cell adhesion, E-cadherin and the cadherin-catenin
complex have been demonstrated to modulate various signaling pathways in epithelial cells, such as
Wnt signaling, Rho GTPases (a Ras homolog that hydrolyzes the guanosine triphosphate), and nuclear
factor kappa-B (NF-κB) pathways [73]. Therefore, impairment of E-cadherin promotes dysfunctions of
these signaling pathways, thereby influencing cell polarity, cell survival, invasion and metastasis of
gastric cancer, and mainly promotes DGC through the EMT mechanism [74]. Therefore, the cellular
events and deregulation in E-cadherin results in the disruption of normal cellular functions (Figure 2).
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Figure 2. Pathogenicity and factors associated with the disruption of the normal cellular activity.
Hyper-methylation of the CDH1 gene and mutational alteration in TP53 protein causes the impaired
synthesis of E-cadherin. The truncated APC causes accumulation of β-catenin, which activates the
β-catenin-dependent genes and Wnt pathway, altering normal cellular functions. The Wnt pathway
after its activation causes the accumulation of β-catenins in cytoplasm and its translocation into the
nucleus where it transcriptionally activates the transcription factors belonging to the TCF family.
The recurrent mutation in RhoA is able to alter the RhoA pathway, which has a deleterious effect
on E-cadherin.

2.2. Alterations in Ras Homolog Gene Family A (RhoA)

Wang et al. conducted a study in 2014 utilizing primary mouse intestinal organoids and
determined that the recurrent mutations in RHOA (Y42C and L57V) inhibit the cell death induced
when anchorage-dependent cells detach from the surrounding extracellular matrix. This phenomenon
is known as anoikis and it plays a key role in the development of DGC [75]. It is well known
that the loss of E-cadherin leads to impairment of cellular adhesion, resulting in acute cell death
via anoikis. In other words, the alterations or impairment in RHOA function somehow impairs
E-cadherin function. Consequently, another study evaluated the role of RHOA mutations associated
with DGC [36]. These RHOA mutations in hotspot sites were Y42C, G17E, R5Q/W, and L57V with Y42C
being the most common mutation in the effector-binding region of RhoA. In 2014, The Cancer Genome
Atlas (TCGA) identified a rate of RHOA mutations in DGC [76]. The TCGA network also found
additional fusions in GTPase-activating proteins (GAPs), which are crucial in regulating RhoA activity.
More importantly, these mutations were generally found in DGC and not in IGC. Consequently,
Ushiku et al. also reported the RHOA mutations causing DGC in 2016 [77]. The impairment of
RhoA results in the loss of its expression and activity that may play a role in the development of
DGC [78]. RhoA, a member of the Rho family, is a small GTPase protein that plays a fundamental
role in regulating diverse cellular processes, such as cell growth, cell survival, polarity, adhesion,
cell migration, and differentiation [79–82]. The studies have shown that genetic alterations in the RhoA
pathway, including recurrent RHOA mutations and RhoGAP fusion along with the CDH1 mutations,
are quite common in DGC but not in other variants of gastric cancer [36,76]. These results suggest
a possible role of wild-type RhoA in the suppression of DGC development, whereas mutational
alterations in RhoA lead to its development, inhibiting the tumor suppression activity (Figure 2).
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2.3. Role of Sphingosine-1-Phosphate

Sphingosine-1-phosphate (S1P), a bioactive lipid mediator generated by sphingosine kinsase-1
(SphK1) inside the cancer cells, is a key regulatory molecule in cancer via cell proliferation, migration,
invasion, and angiogenesis [83–88]. S1P, after being generated by cancer cells, is exported to the tumor
microenvironment where binding to and signaling through specific G protein-coupled receptors,
known as S1PR1-5, regulates many functions [85–91]. The experimental models conducted by
Nagahashi et al. showed that S1P produced by SphK1 in cancer cells promotes lymph node metastasis
in tumor microenvironments and promotes lymphangiogenesis [37]. In a recent study, Hanyu et al.
reported the role of phosphorylated-SphK1 in the development of DGC and its lymphatic invasion [38].

2.4. Role of Adenomatous Polyposis Coli

The gene associated with human adenomatous polyposis coli (APC) is located on the long
arm of chromosome 5, which encodes a protein of 312 kDa with 2843 amino acids that acts as
a tumor-suppressive protein [92]. A Germline mutation of the APC gene and its inactivation
has been found responsible for familial adenomatous polyposis (FAP) [93,94]. Mutations in the
APC gene leading to the inactivation of this protein are involved in initiating the carcinogenesis
events [92]. The wild-type APC gene product has been found to interact with and degrade β-catenin,
whereas truncated APC promotes β-catenin accumulation, activating the members of Wnt signaling
pathway that stimulates cell division within intestinal crypts [95]. Therefore, maintenance of
low levels of cytosolic β-catenin by functioning APC proteins is essential to prevent excessive
cell proliferation [39]. In a recent study by Ghatak et al., the role of somatic mutations in APC
(g.127576C > A, g.127583C > T) in exon 14 altering the APC protein expression and cell cycle regulation
was shown to contribute to the development of DGC [40].

2.5. Role of Fibroblast Growth Factor Receptor (FGFR)

The overexpression of receptor tyrosine kinases (RTKs) has been correlated with the progression
and poor survival of GC, whereas the immuno-histochemical overexpression of RTKs variant
(i.e., human epidermal growth factor receptor 2—HER2) was found to be associated more frequently
in the development of IGC rather than DGC [96–98]. The role of genomic alterations in RTKs between
IDC and DGC has been revealed in comprehensive genomic analysis performed in TGCA [76].
The fibroblast growth factor receptor (FGFR) family comprises another type of RTKs that interacts with
fibroblast growth factors (FGFs) and regulates the essential developmental pathways participating in
several biological functions, such as angiogenesis and wound repair [41]. FGFRs also regulate essential
cell activities including cell proliferation, survival, migration and differentiation [41]. FGFR2 gene
amplification and protein overexpression was found in the GC cell line originating from DGC and
it has been recently reported in the development of GCs [99,100]. In a study, the significantly high
expression of the FGFR2 protein was commonly reported in DGC rather than IGC [42]. A similar
study also showed the significant association of FGFR2 protein overexpression with poor survival and
peritoneal dissemination of GC [97]. Moreover, a significant correlation of overexpression of FGFR1
and FGFR2 with tumor progression and survival was found only in DGC, which was also associated
with peritoneal dissemination [101]. Therefore, the findings of these studies suggest the possible role
of FGFR1 and FGFR2 in DGC development and their association with peritoneal dissemination.

2.6. Role of Growth/Differentiation Factor 15 (GDF15)

The results of another study reported the association of growth/differentiating factor 15 (GDF15)
with DGC; it was suggested that GDF15 may be the molecules involved in the progression of DGC [102].
Patients with DGC also showed significantly higher serum levels of GDF15, as analyzed by the
ELISA method [102]. The secreted growth factors, such as transforming growth factor-β (TGF-β),
platelet-derived growth factor (PDGF), and fibroblast growth factor-2 (FGF-2) released by cancer
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cells, play a key role in the activation of fibroblasts in DGC, and particularly in scirrhous GC [103].
The activated fibroblasts produce various growth factors that help in the progression of scirrhous GC
and the secreted proteins play a major role in the molecular pathology of DGC progression [103].

2.7. Li-Fraumeni Syndrome with Germline Mutations in Tumor Protein 53 (TP53)

Li-Fraumeni syndrome is genetically inherited in an autosomal dominant manner that is
characterized by an accumulation of brain tumors, sarcomas, and breast cancer. Li-Fraumeni syndrome
is caused by an alteration in TP53 (tumor protein 53 or p53), which is a tumor suppressive gene [104].
Upon activation under the cellular stress, the p53 protein performs several functions such as
induction of cell cycle arrest and apoptosis, inhibition of cell growth, and interaction with DNA
repair proteins [43]. The mutational alteration in TP53 is considered one of the most prevalent
genetic alterations in GC. However, the association of TP53 mutation with histological-type CG is
conflicting [105]. The truncating germline TP53 mutation was reported in a family characterized by
having both HDGC and Li-Fraumeni syndrome [106]. Several other studies highlighted a significant
association of the TP53 mutations with the development of DGC rather than IGC [44,45]. The frequent
mutations at TP53, CKLF-like MARVEL transmembrane domain-containing protein-2 (CMTM2),
CDH1, and RHOA were reported in DGC [46].

2.8. Role of Alteration in Other Genes

In addition to the alterations in the E-cadherin gene (CDH1), the mutations in the catenin
alpha-1 (CTNNA1), breast cancer gene (BRCA2), serine/threonine kinase-11 (STK11), succinate
dehydrogenase subunit-B (SDHB), serine protease-1 (PRSS1), ataxia-telangiectasia mutated gene
(ATM), macrophage scavenger receptor-1 (MSR1), and partner and localizer of BRCA2 (PALB2) genes
have been reported in the development of DGC [107]. In a recent study, the high frequency mutations
for DGC were also reported in lysine methyl-transferase-2D gene (KMT2D), AT-rich interactive
domain-containing protein 1A (ARID1A), APC, and phosphatidylinositol 3-kinase catalytic subunit
(PIK3CA), in addition to high frequency mutations in TP53, CDH1, and RHOA [108]. Alterations in new
candidates such as insulin receptor gene (INSR), F-box only protein 24 (FBXO24), and dot1-like histone
lysine methyltransferase (DOT1L) have also been reported for DGC susceptibility [109]. Choi et al.
found a novel mutation at CMTM2 in addition to the previously known mutations and they suggested
that it may play a crucial role in development of DGC [46]. CMTM2 is a chemokine-like factor
that regulates vesicular transport or membrane apposition events belonging to the CMTM family
(e.g., CMTM3, CMTM4, CMTM7, and CMTM8), which play a role in the tumor suppression [110–113].

3. Helicobacter pylori Infection and DGC

H. pylori colonizes the gastric epithelium and persists for several decades. Chronic infections have
been found to cause chronic gastritis and atrophic gastritis, a precancerous lesion of gastric cancer.
Based on the strong linking evidence of this bacterium with the development of peptic ulcers and
gastric cancer, the International Agency for Research on Cancer (IARC) categorized this bacterium as
a group I carcinogen (strong carcinogen) in 1994 [114,115]. H. pylori infection was initially believed
to be associated with the development of IGC, which arises from chronic gastritis, atrophic gastritis,
intestinal metaplasia, and dysplasia, whereas the sequence of events for DGC is poorly understood,
though it is thought that at least a subset of DGC is due to genetic abnormalities [19,116]. However,
unlike HDGC, H. pylori and/or Epstein-Barr virus (EBV) infections have been reported to play
an essential role in the development of sporadic DGC [117–119]. Several other studies have also
reported the association of H. pylori infection with the development of DGC [120–122]. A recent study
reported that patients with current infections were prone to developing DGC compared to patients
with past infections [123,124]. Similarly, the association of H. pylori was found in 85.36% of DGC [125].
There appears to be little difference in the sero-prevalence of H. pylori between the two types of
cancers, even after adjusting for age. Serological studies confirmed that H. pylori infection is associated
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with both histological types of GC. The studies suggested that patients with a low H. pylori-IgG titer
are more prone to developing IGC, whereas those with high H. pylori-IgG titer are at high risk for
developing DGC [18,122,126]. The progression of gastric mucosal atrophy associated with a decrease
in H. pylori titer may be attributable to the association between past infection or low H. pylori-IgG
titer and IGC [123]. Gong et al. also reported the association of high H. pylori-IgG titer with the
development of DGC [124].

H. pylori infection has been reported to inhibit several factors responsible for cell–cell adhesion
and DGC pathogenicity. Yang et al. demonstrated the cleavage of E-cadherin by H. pylori strains
SS1 and 26695, producing cytoplasmic fragments to induce apoptosis. Strain SS1 was found to
cleave E-cadherin more efficiently at 12 hour and 24 hour [127]. After translocation into the
gastric epithelium, the non-phosphorylated CagA binding with E-cadherin results in the separation
of E-cadherin and β-catenin complex, which causes accumulation of β-catenin in the cytoplasm
and nucleus, which ultimately trans-activates the β-catenin-dependent gene involved in cancer
progression [47]. The aberrant activation of β-catenin disrupts the normal apical-junctional complexes,
which lead to the loss of cellular polarity [128]. The binding of CagA with E-cadherin results in its
down-regulation, together with decreased expression of p120 and aberrant localization from membrane
to cytoplasm, which interacts with Rho GTPases and promotes motility and metastasis [129]. Moreover,
the unusual localization of p120 to the nucleus, preventing transcriptional repression of the matrix
metalloproteinase-7 (mmp7) gene, is involved in gastric carcinogenesis [130]. In a recent study, H. pylori
infection was found to degrade the membrane-bound β-catenin [131]. H. pylori infection has been also
shown to cause TP53 mutation and a decreased p27 protein expression [48,49]. Non-phosphorylated
CagA, in addition to E-cadherin, have been shown to target the phospholipase C-γ, the adaptor
protein Grb2, the hepatocyte growth factor receptor c-Met, and other components, leading to the
proinflammatory and mitogenic responses that disrupts cell–cell adhesion, cell polarity, and other
cellular physiology [132].

Impairment of myelocytomatosis oncogene (MYC) expression occurs in a broad range of human
cancers, indicating a crucial role in tumor progression [133,134]. The MYC gene, located on chromosome
8q24, encoding a transcriptional factor, plays a key role in the regulation of cell cycle progression, growth,
proliferation and apoptosis [135,136]. The results of a study indicated that the MYC protein plays a key
role in association with H. pylori for diffuse type gastric carcinogenesis, whereas it was concluded that the
MYC protein is not associated with the tumorigenic pathway of IGC [137].

Aberrant DNA hypermethylation and inactivation of the CDH1 gene have been found
in DGC [34,67]. H. pylori infection can induce aberrant hypermethylation of multiple genes,
including CDH1, leading to the reduction in E-cadherin expression in gastric mucosa, which increases
the risk for DGC [50,51]. H. pylori serine protease high temperature requirement A (HtrA) is a highly
active protein under extreme conditions and degrades the miss-folded protein in bacterial periplasm
that enhances the bacterial survival in adverse conditions [138]. In an in vitro infection experiment,
the HtrA protein was shown to cleave the extracellular domain of E-cadherin, which led to the opening
of the cell junctions in polarized cell monolayers [52]. The results of several other studies identified the
H. pylori HtrA protein as an E-cadherin targeting protease that directly cleaves-off the extracellular
domain of E-cadherin disrupting cell–cell adhesion, leading to cancer development [53–56]. Moreover,
a study conducted by Abdi et al. reported the H. pylori vacA d1 type as a potent bacterial virulence
factor significantly associated with the development of DGC [139]. Therefore, H. pylori proteins, such as
CagA, VacA, and HtrA, have regulatory effects on many cellular pathways, and in addition to their
role in IGC, they also contribute to the development and prognosis of DGC (Figure 3).
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Figure 3. H. pylori CagA has an inducible effect on the CDH1 methylation and TP53 mutational
alteration. CagA can directly degrade the β-catenin from the E-cadherin-catenins complex. CagA can
also degrade the E-cadherin directly. Bacterial HtrA protein can cleave the extracellular domain
of E-cadherin.

4. Hereditary Diffuse Gastric Cancer (HDGC) and Germline Mutations

Although the majority of the DGC cases are sporadic, approximately 1–3% of cases are
characterized by inherited syndrome, known as hereditary DGC (HDGC)—an autosomal-dominant
cancer susceptibility syndrome characterized by signet ring cell (diffuse) gastric cancer [21,22]. In DGC,
the somatic mutations of E-cadherin are described in up to 40–70% of cases, whereas the germline
mutations of E-cadherin (CDH1), causing loss of its function, are the only proven cause of HDGC,
found in approximately 40% of cases [23,140,141]. In 1994, Becker et al. first reported evidence of
an inherited form of DGC associated with E-cadherin mutations in specimens from sporadic DGC [113].
In 1998, Guilford et al. found multiple cases of early-onset DGC in Maori ethnic peoples of New
Zealand that were carriers of a three germline truncating mutation in the E-cadherin (CDH1) gene [23].
Several other publications emerged confirming the association of autosomal-dominant pattern of
inheritance with germline mutations of the CDH1 gene in the following years [26,71,90,107,140–145].
Sporadic DGC has shown germline mutations for CDH1 in a hot spot region between exons 7 and 9,
whereas genetic alterations scattered over the entire gene length have been observed for HDGC [146].
Individuals with germline CDH1 mutations have a single functional CDH1 allele, whereas the germline
CDH1 alterations in the entire coding region of the other allele may contain small frameshifts, splice-site,
nonsense, and missense mutations, as well as large rearrangements. The mutations causing the
truncating or pre-matured types are pathogenic, whereas several missense mutations cause impairment
of E-cadherin function [147]. Moreover, germline CDH1 mutations resulting in the complete loss of
E-cadherin expression is observed in about 80% of the cases due to the occurrence of premature stop
codons causing truncating or non-functional E-cadherin [148,149]. Also, missense-type mutations
substituting a single amino acid resulted in full-length E-cadherin in the remaining 20% of HDGC
cases [147,148,150,151].

The second hit molecular mechanism causing the inactivation of the remaining functional allele
by promoter hyper-methylation was demonstrated to be the most frequent cause of a second hit that
leads to the inactivation of both alleles of the E-cadherin (CDH1) gene, which is the trigger event for
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the development of DGC [31,152–154]. The second mutation or deletion is an apparently less frequent
cause of second hit molecular inactivation of E-cadherin [31,153].

The International Gastric Cancer Linkage Consortium has defined the well-characterized criteria
for ruling out HDGC: two GC cases in a family with one individual with confirmed DGC at any
age; or three confirmed cases in a family with GC in first- or second-degree relatives regardless
of age; or a single case of GC before 40 years of age; or a family history of GC and lobular breast
cancer, one diagnosed before 50 years of age [26]. In families meeting the consortium criteria for
HDGC carrying the germline mutations are predisposed to an extreme risk of developing DGC
from a relatively young age. Based on the familial trace-out of HDGC cases from around the world,
the estimated cumulative risk of developing DGC by the age of 80 years has been documented to be 70%
for men (95% confidence interval 59–80%) and 56% for women (95% confidence interval 44–69%) [155].
In addition to the risk for DGC, women carrying CDH1 mutations also possess a cumulative risk of
42% for developing breast cancer, typically the lobular type [155]. However, mutations in CDH1 are
not always associated with the development of GC. In another study, a CDH1 pathogenic mutation
was recorded in a patient but no history of DGC was found in three generations of that family [156].
Similarly, in another study, there was CDH1 germline missense mutation without any reported history
of DGC [157]. Moreover, approximately 60 to 70% of families that fulfill the current testing criteria for
HDGC do not possess the germline CDH1 mutations [152,155]. There has been a few, rare, and highly
penetrant familial GC genes; several other familial cancer syndromes also exist for which the GC has
a low penetrance feature [158]. Moreover, only about 40% of the probands meeting the 2010 consortium
criteria carry germline CDH1 alterations [159,160]; of the remaining 60%, a small percentage is due to
CDH1 deletions not detected by conventional DNA sequencing and others have shown mutations in
other genes such as CTNNA1 [161], MAP3K6 [162], INSR, FBXO24, and DOT1L [109]. Hansford et al.
showed results from targeted sequencing of 55 cancer-associated genes in 144 families with HDGC
who did not possess the detectable germline CDH1 mutations [155]. They identified two families
with germline mutations in CTNNA1 as well as germline mutations causing truncated type of BRCA2,
PRSS1, ATM, PALB2, SDHB, STK11, and MSR1 [155].

CTNNA1 encodes α-catenin, forming a complex with β-catenin to bind the cytoplasmic domain of
E-cadherin to the cytoskeleton, is involved in cell–cell adhesion [152]. In a recent study, the comparison
of caudal type homeobox-2 protein (CDX2) association with sporadic or HDGC showed that all HDGC
cases were negative for CDX2, whereas 19 out of 20 sporadic DGC cases showed CDX2 expression,
indicating that sporadic and HDGC may arise via different molecular carcinogenic pathways [163].
Other germline mutations described for familial DGC are in mitogene-activated protein kinase
kinase kinase 6 (MAP3K6) and myeloid differentiation primary response protein 88 (MYD88),
but their significance in causing DGC is not yet known [162,164]. In summary, germline CDH1
mutation—however not limited—is frequently associated with the development of HDGC, whereas the
mutations in TP53 and RHOA, in addition to the CDH1 mutations, are documented in sporadic-type
DGC. However, the detailed molecular mechanisms underlying the development of DGC have not yet
been clarified in detail [36,46,76].

5. Conclusions

Although the detailed pathogenicity of DGC is not well described, the combined information
presented in this report indicates that development of DGC involves multiple factors of cell signaling
pathways, cell–cell adhesion, and H. pylori infection. The E-cadherin and cell-signaling pathways play
a vital role in the maintenance of cell integrity and normal cell function. Deregulation and alterations in
these molecules disrupt the normal cellular functions that contribute to the initiation and progression
of gastric cancer. The alterations in E-cadherin have been known as a factor strongly associated factor
with DGC, with other less frequently associated and newly identified factors. Despite its role in IDC,
H. pylori has been found to influence the development of DGC. However, more details and further
investigations are needed.
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