

PIEZO1 and TRPV4, which Are Distinct Mechano-Sensors in the Osteoblastic MC3T3-E1 Cells, Modify Cell-Proliferation

Maki Yoneda ^{1,2}, Hiroka Suzuki ¹, Noriyuki Hatano ¹, Sayumi Nakano ¹, Yukiko Muraki ¹, Ken Miyazawa ², Shigemi Goto ² and Katsuhiko Muraki ^{1,*}

- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
- ² Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
- * Correspondence: kmuraki@dpc.agu.ac.jp, Tel: +81-52-757-6788

Figure S1. PIEZO channel expression and effects of Yoda1 on HEK-CT and HEK-mPiezo1 cells. (A) The quantitative mRNA expression of mouse *Piezo1* and human *PIEZO1* was determined in HEK-CT and HEK-mPiezo1 cells. (B) To functionally confirm the basal expression of PIEZO1 in HEK-CT cells, Yoda1 applied to HEK-CT cells. The peak change in Ca^{2+} response to Yoda1 (ΔCa^{2+} if F_{340}/F_{380})) was summarized and a set of data was fitted with a concentration-response relationship. The same data sets in Fig.2A were used for HEK-mPiezo1 cells. Pooled data were averaged and expressed as mean \pm SEM. The numbers in parentheses indicate the number of independent experiments.

Figure S2. Selectivity of Yoda1, GSK, and HC against TRPV4 (A), PIEZO1 (B), and Yoda1-induced PIEZO1 response (C), respectively, was tested and the peak change in each Ca^{2+} response (ΔCa^{2+}) (F₃₄₀/F₃₈₀)) was summarized as a concentration response relationship. A set of data (C) was fitted with a concentration-response relationship. Pooled data were averaged and expressed as mean \pm SEM. The numbers in parentheses indicate the number of independent experiments.