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Abstract: Bone regeneration represents a complex process, of which basic biologic principles have
been evolutionarily conserved over a broad range of different species. Bone represents one of few
tissues that can heal without forming a fibrous scar and, as such, resembles a unique form of tissue
regeneration. Despite a tremendous improvement in surgical techniques in the past decades, impaired
bone regeneration including non-unions still affect a significant number of patients with fractures.
As impaired bone regeneration is associated with high socio-economic implications, it is an essential
clinical need to gain a full understanding of the pathophysiology and identify novel treatment
approaches. This review focuses on the clinical implications of impaired bone regeneration, including
currently available treatment options. Moreover, recent advances in the understanding of fracture
healing are discussed, which have resulted in the identification and development of novel therapeutic
approaches for affected patients.
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1. Clinical Challenge of Impaired Fracture Healing

In the majority of patients with a long bone fracture, the fracture ends meet to reform a mature
and mechanically stable bone: Especially in the case of long bone fractures, this is usually achieved
by surgical state-of-the-art treatment. In a significant number of cases, however, fractures do not
heal and show no or insufficient signs of union [1]. The development of non-union is a devastating
complication and a challenge for both patients and physicians. The treatment of non-unions often
requires several revision surgeries, which result in prolonged treatment that affects the patient’s
mental and physical health and thus represents a major socio-economic burden [2,3]. Delayed unions
show a clinically and radiologically prolonged bone healing process which usually resolves once
adequate measures are taken, whereas definite fracture non-union occurs when a fractured bone fails
to heal at all. To date, several definitions for non-union exist. For example, the European Society of
Tissue Regeneration in Orthopedics and Traumatology (ESTROT) defines a non-union as a fracture,
which will not heal or consolidate without further intervention, regardless of the previous treatment
duration [4]. According to the U.S. Food and Drug Administration (FDA), a non-union is defined as a
fracture, which is at least nine months old and has not shown any signs of healing for three consecutive
months [5]. Clinically, non-unions are classified according to their morphology and radiographic
appearance in hypertrophic and atrophic non-unions [6]. Their appearance correlates with characteristic
pathophysiologic processes at the fracture site. Hypertrophic non-unions are characterized by vital,
regenerating bone tissue with good blood perfusion of the fracture ends and the availability of
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necessary molecular mediators, progenitor cells, osteoconductive matrix, and immunoregulatory
cells among others. However, hypertrophic non-unions fail to heal because of insufficient mechanical
stabilization and consecutive excessive mobilization, which results in an increased callus formation
trying to compensate for the lack of stability. Despite high regenerative potential, fracture union is
thus prevented by the instability and high mobility of the fragments. In contrast, atrophic non-unions
are characterized by the lack of regenerative potential, which is often associated with insufficient blood
supply of the fracture ends and the surrounding soft tissue, or low-grade infections of the fracture
site. Despite adequate mechanical fixation, bone regeneration fails in these cases and the fracture
ends atrophy.

The reasons for the formation of non-unions are complex and manifold (Table 1). The prevalence
regardless of individual risk factors is about 10–15% [7]. Above all, higher age, smoking, vascular
disease, former fractures, diabetes mellitus and metabolic diseases are among the primary risk factors
of impaired bone healing. In addition to the severity and complexity of the fracture, pronounced soft
tissue trauma and inadequate blood supply is also predisposing. Non-unions due to bacterial infection
of the fracture site often develop after high-energy trauma with open fractures and severe soft tissue
damages. In this case, low-grade infections are of increasing clinical relevance, as they are suspected to
cause non-unions in a large percentage of affected patients and often are difficult to detect clinically,
even with state-of-the art diagnostics methods.

Table 1. Summary of risk factors for impaired bone regeneration (modified according to [8]).

Patient-Related Cause Patient-Unrelated Cause

Age
Gender (Male)

Open fracture (initial bone loss and soft tissue injury)
Displaced fracture

Smoking 1

Alcohol 1
Wedge and multi-fragmentary fracture pattern

Injury location (tibia)
High Body mass index 1

Malnutrition 1 (Calcium, Vitamin D, etc.)
Soft tissue damage - vascularisation 2

Open reduction - quality of primary osteosynthesis 2

Osteoporosis 2

Diabetes 2
Compartment syndrome 2

Presence of fracture gap post-surgery 2

Peripheral vascular disease 2

Chronic inflammatory disease 2 Poor mechanical stability by initial implant 2

Medication 2 (Insulin, Chemotherapeutics, Steroids,
Antibiotics, Anticoagulants, NSAIDs, Opiates)

Renal insufficiency
Radio therapy

1 Improvable, 2 Potetially improvable.

2. Basic Biological Principles of Bone Regeneration

Even though stiff and sturdy, bone tissue is biologically very active and constantly remodeled
through the balanced activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Similar to
bone remodeling in healthy skeletal tissue, bone regeneration represents a complex process which
basic biologic principles have been evolutionary conserved over a broad range of different species.
It is known that bone represents one of the few tissues that can heal without forming a fibrous scar.
As such, the process of fracture healing is considered to recapitulate bone development and resembles
a unique form of tissue regeneration. In this context, callus remodeling represents an important aspect
of fracture repair, resulting in bone quality and strength comparable to the pre-fracture state [9].

Fracture healing is traditionally subdivided into various biological phases which follow a
chronological order. These particular phases help to understand the biology of fracture repair on
a mechanistic level, however they cannot be strictly separated as they occur simultaneously at
different sites and at different rates throughout the fracture callus. In general, tissue healing is
characterized by an inflammatory, a proliferation/differentiation, as well as a remodeling phase.
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The same applies for fracture healing but has to be extended by matrix ossification, which occurs
between the proliferation/differentiation and the remodeling phase [10].

2.1. Hematoma Formation and Inflammatory Response

As a first consequence of fracture and vascular disruption, bone marrow and vascular leakage create
a local hematoma containing bone and immune cells [11]. The formation of the fracture hematoma
is essential for adequate bone healing, as it is characterized by high osteogenic potency [12,13].
This characteristic is mainly attributed to cells first described in the 1962 as unspecialized osteoprogenitor
cells, nowadays known as mesenchymal stem cells (MSC) [14,15]. They possess osteogenic,
chondrogenic and adipogenic differentiation potential [16]. Additional cells found abundantly in the
fracture hematoma include platelets and macrophages. Of note, particular cytokines which activate
the clotting cascade in the fracture hematoma also activate local phagocytic effector cells such as
macrophages which remove bone and tissue debris at the fracture site [17]. Although temporary,
local hypoxia causes bone and soft tissue necrosis at the fracture site, cytokine release and migration of
pro-inflammatory immune cells. This creates an inflammatory environment that is characterized by
increased local blood flow and vascular permeability, promoting further influx of pro-inflammatory
cells and increased cytokine production [10,11].

Pro-inflammatory cytokines in the innate response to a fracture include interleukin (IL) -1β, IL-6
and tumor necrosis factor-α (TNF-α) [18]. While IL-1β and TNF-α peak early at 4 h after fracture,
IL-6 peaks at 12 h and a second TNF-α peak is seen at 24 h [19]. Deficiency in IL-6 was found
to be associated with delayed callus mineralization and increased cartilage and collagen content
accompanied by a decreased osteoclast activity, suggesting impaired remodeling [20]. Additionally,
reduced callus strength and impaired osteoclastogenesis two weeks after fracture were reported in IL-6
deficient mice [21]. Both studies found the effects of IL-6 deficiency to be of transient nature [20,21].
TNF-α is essential for adequate enchondral ossification by mediating chondrogenic differentiation
and enchondral tissue resorption. Impaired TNF-α activity is associated with reduced chondrocyte
apoptosis and pro-resorptive cytokine production [22]. Further, TNF-α was also shown to promote
muscle-derived stomal cell (MDSC) migration and osteogenic differentiation, summing up to an
accelerated fracture healing. However, impaired fracture healing was seen in the presence of high
concentrations [23].

2.2. Proliferation and Differentiation

While the above described inflammatory processes subsequently decline, the reparative phase
begins in parallel by the formation of granulation tissue. As mesenchymal stem cells emerge and
differentiate into fibroblasts, they produce extracellular matrix proteins such as collagens type I and
II [7,24]. Due to local hypoxia, the formation and invasion of blood vessels is promoted. MSC differentiate
into chondrogenic and osteogenic cells and form soft callus tissue, which provides a first degree of
mechanical stability.

On a molecular level, these reparative processes are mediated by particular growth factors like
transforming growth factor-β (TGF-β), bone morphogenic proteins (BMP), fibroblast growth factor
(FGF), insulin like growth factor (IGF) and platelet derived growth factor (PDGF). TGF-β acts as
pleiotropic growth factor stimulating undifferentiated MSC proliferation while BMPs promote MSC
differentiation to chondrocytes and osteoblasts. FGF and PDGF act mitogenic on MSCs and osteoblasts.
While FGF is critical for angiogenesis, PDGF also acts in macrophage chemotaxis. IGF promotes
proliferation and differentiation of osteoprogenitor cells [25].

2.3. Ossification

Since the soft callus itself only provides basic mechanical stability, it is subject to ossification that
is achieved through incorporation of calcium phosphate into the extracellular matrix. Ossification is
distinguished in intramembranous and enchondral ossification which occur under different conditions
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and are likely to occur simultaneously at different zones in the fracture site [7]. In intramembranous
ossification, bone develops without cartilaginous intermediates. Upon stimulation, MSC differentiate
into osteoblasts that produce the extracellular matrix primarily composed of type I collagen and other
osteoblast-specific proteins including osteocalcin. The extracellular bone matrix then calcifies through
the activity of osteoblasts which deposit calcium phosphate crystals within the extracellular matrix.
As osteoblasts become “trapped” in the calcified extracellular matrix, they terminally differentiate into
mechanosensitive osteocytes. In contrast to intramembranous ossification, bone healing is achieved
through cartilaginous intermediates in enchondral ossification. Here, chondrocytes differentiated from
MSC produce a chondrogenic matrix that bridges the fracture. Eventually, chondrocytes undergo
apoptosis, while the cartilaginous tissue rich in collagen type II is enzymatically degraded and replaced
by osseous tissue containing predominantly collagen type I [26].

2.4. Remodeling Phase

Independent of whether bone is restored via intramembranous or enchondral ossification,
mechanically inferior woven bone is created at first. Woven bone is characterized by a random
organization of collagen fibers and mineralized tissue. In order to generate mechanically stable lamellar
bone, the woven bone is subsequently remodeled to form mechanically competent lamellar bone.
Similar to healthy bone of which 10% is replaced and remodeled each year in humans [27], the transition
of woven to lamellar bone is mediated by the balanced activity of osteoblasts, osteocytes and osteoclasts.
This process is associated with final changes in bone architecture and allows the former fracture site to
adapt to the current mechanical demands.

2.5. Mechanical Aspects of Fracture Healing

The outcome of bone regeneration depends on both the biological and the mechanical environment.
The mechanical environment primarily influences whether bone heals primary (direct) or secondary
(indirect). Primary bone healing can be observed in anatomically reduced fractures with rigid fixation
and interfragmentary compression. In this case, the fracture heals only through bone remodeling,
without the formation of a fracture callus [9,28]. In contrast, secondary bone healing describes bone
tissue formation via intramembranous and enchondral ossification of callus tissue, and represents the
most common form of bone regeneration in clinical practice [29]. Secondary fracture healing applies to
fractures treated without surgery as well as fractures treated with intramedullary nails or external
fixation that do not achieve the rigidity and interfragmentary compression required for primary bone
healing [30].

As both, intramembranous and enchondral ossification, are observed in secondary bone healing,
the degree of fixation determines the principle way of ossification. Experimentally, Thompson et al.
could show that externally stabilized fractures healed primarily via intramembranous ossification
in a standardized mouse model of tibial fracture, while the expression of collagen type IIa pointed
towards enchondral ossification in non-stabilized fractures. Moreover, the authors concluded that the
mechanical environment influences cell fate and thus the course of ossification as soon as day 4 in
their mouse model, highlighting the importance of the early fracture hematoma for successful bone
regeneration [31].

3. Current State-of-the-Art Therapy for Impaired Fracture Healing

3.1. Case History, Physical and Radiological Examination

Regardless of past, current or future treatment concepts, a detailed medical history of the patient
and the individual case is paramount for an optimal and individual therapy of non-unions. For this
purpose, it is important to establish a chronological list of the previous course of treatment with all
therapeutic interventions, as well as risk factors, pre-existing illnesses and long-term medication.
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Often neglected is the thorough study of medical and surgical reports including microbiological and
histological findings, the previous drug history and the chronological course of the infection parameters.

Clinical symptoms of non-union include persistent, often relapsing stress-related pain in the area
of the former fracture. Malposition or load-dependent and reproducible instability may be present.
Clinical examination should include a detailed inspection of the soft tissue, the scars and a blood flow
assessment at the affected limb. In case of evidence for impaired vascularization, CT-angiography is
indicated. Moreover, a detailed study of existing radiographic imaging should be performed as it is
crucial not only to review the latest radiographs, but also the initial accident images, the intraoperative
fluoroscopy and the follow-up images during the healing process chronologically. Only in combination
of all relevant findings it is possible to classify a non-union as precisely as possible and to establish an
individual treatment strategy. With correlating clinical symptoms, a whole-limb radiograph should be
performed in order to detect malposition or axial deviation. For accurate analysis and pre-operative
planning, a computed tomography is of utmost importance. In selected cases, further imaging
using contrast-enhanced CT, magnetic resonance imaging, angiography or PET-CT provide further
information regarding osteomyelitis, blood perfusion, and soft tissue coverage.

3.2. Current Treatment Concepts

Restitutio ad integrum is the intended goal of any non-union treatment. In addition to achieving a
pain-free and load-stable situation, the chosen approach ideally results in full restoration of the axis and
length of the affected limb, as well as in complete healing of the bone defect. Apart from various surgical
approaches, conservative treatment options are also available in individual cases, e.g., in delayed
unions with prior sufficient fracture immobilization through stable osteosynthesis. In the case of
non-unions with no signs of osseous consolidation, however, revision surgery is usually indicated.
The treatment is usually based on the “Diamond Concept” [32], a conceptual framework which gives
equal importance to mechanical stability, the biological environment, adequate bone vascularity and
the physiological state of the patient. Depending on the pathology, individual or combined measures
are possible, and two-stage procedures may be necessary, for example in the case of infected or atrophic
non-unions, sequesters, and critical-size bone defects. As a general guideline, Calori et al. presented a
novel score for the classification and treatment algorithm of non-unions [32]. Based on a calculated
score, therapeutic recommendations for the treatment of non-unions are derived, which take into
account the localization of the injury, soft tissue damage, bone quality and the individual risk of
the patient.

3.3. Conservative Therapy

Conservative treatment of delayed and non-unions requires sufficient mechanical stability as well
as an intact biological environment at and around the fracture site. Therefore, conservative therapeutic
approaches are mainly considered in early phases of non-union treatment. In addition to stimulate
fracture healing through an increased mechanical strain (e.g., dynamization of intramedullary fixation,
increased weight bearing), low-intensity pulsed ultrasound (LIPUS) or extracorporal shock wave
therapy (ESWT) may be applied locally [33,34]. Depending on the treatment units, the time frame of
the treatment with LIPUS is 3–6 months with a daily application of 20 min [35]. Criteria for a possible
treatment of non-union with LIPUS and ESWT include sufficient mechanical stability of the fracture
fixation, no evidence for high- or low-grade infection, and a defect size of less than 10 mm. Nevertheless,
a systematic review and meta-analysis of non-unions treated with LIPUS showed a healing rate of
hypertrophic non-unions older than 8 month of up to 84% [36]. An average treatment success with
LIPUS of >80% shows a comparable success rate with the surgical treatment of non-infected non-unions,
while the authors state that LIPUS could be most useful for patients with increased surgical risk [36].
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3.4. Surgical Therapy

While the efficacy of LIPUS and ESWT require further clinical research, to date the standard
treatment of fracture non-union is surgical. The surgical intervention begins with the careful exposure
of the fracture site and the debridement of sclerotic edges in order to obtain a vital and bleeding surface.
Thereafter, the intramedullary cavities of fragments may be opened in order to facilitate the blood
flow. As vital fracture ends are aligned rigid fixation may be performed. In many cases, resection of
the malunion consisting of fibrous, often atrophic tissue, results in bone defects, which require bone
grafting to bridge the fracture ends and to facilitate bone healing.

Despite all efforts in the research of artificial bone substitutes, the harvest and transplantation
of autogenous bone from the iliac crest still represents the “gold standard” to support bone healing
in non-unions as it combines osteogenic, osteoinductive and osteoconductive properties. However,
autografts are only limited available and accompanied with high morbidity during harvest, including
wound infection and postoperative pain [14,37]. An innovative intervention to obtain autologous
spongiosa is the Reamer-Irrigator-Aspirator System (RIA). The RIA technic enables the collection of
almost 80 cm3 of bone marrow aspirate and has gained wide acceptance in the treatment of non-unions
over the last years [38,39]. Studies showed significantly higher concentrations of growth factors relevant
for bone healing with significantly lower complications for autologous bone graft harvesting via RIA
compared to iliac crest grafts [40,41]. Even though having similar osteogenic and osteoinductive
properties as iliac crest bone grafts, the RIA bone marrow aspirate lacks osteoconductive properties as
it lacks intrinsic biomechanical stability [42].

Allogenic bone grafts provide a relatively safe alternative as autografts have limited availability
and harvesting is associated with longer operation time and donor site morbidity. Allografts are usually
used as cancellous bone chips providing some degree of structural strength. Due to their porous nature,
ready-to-use bone allografts have very good osteoconductive properties. However, processing in terms
of sterilization and storage causes loss of osteogenic and osteoinductive capability [42]. While the use
of allografts was shown beneficial in the treatment of acute metaphyseal fractures, the results for long
bone fracture non-unions are disappointing [43–45]. Finally, demineralized bone matrix (DBM) can be
obtained from allograft bone by acid extraction [46]. This process allows the conservation of type I
collagen and non-collagenous proteins such as BMPs, TGFs, IGFs and FGFs exerting osteoinduction.
Even though mechanical support is limited, DMB provides an osteoconductive scaffold. Hierholzer et al.
could show DBM to achieve results comparable to those of cancellous autografts in humeral shaft
fracture non-union treatment [47]. Osteoinductivity differs among manufacturers and extraction
regimes suggesting a major influence of processing on the osteoinductive potential [48,49].

Based on the different underlying causes described above, the different forms of non-unions
require specific surgical strategies. In case of hypertrophic non-unions, a more rigid fixation is required
to allow proper fracture union through replacement of the osteosynthesis and/or additional stabilization.
Apart from locking plates, intramedullary nail osteosynthesis is often used, especially in the shaft area,
which provides the advantage of early patient mobilization under full load weight bearing. In contrast,
atrophic and defect non-unions are often associated with an impaired biological environment at the
fracture site due to metabolic, vascular or infectious co-morbidities of the patient. Complete and
rigorous resection of the non-union is required, as incomplete removal of atrophic tissue to avoid
larger bone defects usually leads to failure of fracture union and is associated with poor outcome.
Following resection, reconstruction of the defect zone may be performed through bridging with
autologous spongiosa or, in the case of larger defects, additional application of an osteoconductive
scaffolds (e.g., of allogenic bone graft). If the bone defect is critical (>2 cm or >5 cm3), or if infection
is suspected, a multi-stage procedure with temporary implantation of a cement spacer to induce a
Masquelet membrane is recommended (Figure 1). The cement spacer is removed after an interval of
6–8 weeks, and autologous spongiosa is filled into the resulting lumen of the Masquelet membrane,
allowing ossification and subsequent bridging of the bone defect [50,51]. In the case of very large
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defects, Masquelet bone reconstruction, bone segment transport by callus distraction with a ring fixator
(Figure 2), or vessel-guided bone grafting must be performed.

Similar to atrophic or defect non-unions, infected non-unions usually require a multi-step and
often an interdisciplinary approach. The initial surgical treatment is used exclusively to eliminate the
infection and requires the complete resection of the infected and avital bone. Surgical debridement
must be executed rigorously and address all infected tissue to avoid repeated surgery due to persistent
infection. As part of the primary procedure, histological and microbiological samples should be
obtained for antibiogram/resistogram adjusted antibiotic therapy. Only after complete resolution of
infection, the reconstruction of the bone defect for successful healing of the non-union can be performed
in a secondary surgery. Here, reconstruction of the bone defect is carried out according to the standards
for atrophic non-unions as described above.
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Figure 1. Case example of infected non-union treated with Masquelet technique and
Reamer–irrigator–aspirator. (a,b) Ap and lateral radiograph of a multi-fragmentary Gustilo–Anderson
Type II open tibia and fibula fracture of a 74-year-old man. (c) Ap radiograph after surgical treatment.
(d) 7 month after surgery: re-presentation of the patient with an infected non-union of the tibia with
re-fracture and failure of the osteosynthesis material. (e,f) Postoperative Radiograph of the lower leg
(ap and lateral): Condition after removal of the broken osteosynthesis material. Large, bone defect
of the tibia after extensive debridement, reaming of the medullary canal, radical resection of the
non-union and temporary immobilization with an external fixator. The microbiological samples taken
intraoperatively revealed the presence of Staphylococcus caprae. Antibiotic therapy was carried out
according to the recommendations of the interdisciplinary infection board. (g) Re-osteosynthesis of
tibia and fibula after resolution of infection. Temporary treatment of the bone defect with a cement
spacer to induce a vascularized foreign-body membrane (Masquelet membrane). (h) Intraoperative
radiograph after removal of the cement spacer 2 months after implantation. (i–k) Harvest of autologous
bone graft (bone marrow, morselized bone) from the femur using the Reamer–irrigator–aspirator
(RIA). (l,m) Picture and intraoperative radiograph after filling of the bone defect with autologous bone.
(n,o) Ap and lateral radiograph of the left lower leg demonstrate healing of the bone defect 4 month
after surgery.



Int. J. Mol. Sci. 2019, 20, 5805 8 of 26

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 26 

 

 
Figure 2. (a) Ap radiograph of the right lower leg of a 24-year-old man with an atrophic non-union of 
the tibia after an open fracture in Albania 5 years ago. (b,c) Enlargement of the non-union in an ap 
and lateral radiograph. According to the patient’s history: condition after 4 surgical trials in 3 
countries. (d) Intraoperative ap radiograph after positioning of the Taylor Spatial Frame (TSF) 
external fixator and radical resection of the atrophic non-union. (e) Resected tibia non-union with 
atrophic bone over a length of 7 cm. (f) Intraoperative positioning of the tibia and the TSF for the 
planned bone segment transport by callus distraction. (g) Postoperative picture of the attached TSF. 
(h) Radiograph of the tibia during the distraction process (0.5 mm/day over a period of 140 days) with 
constant substitution of calcium and vitamin D. (i) X-ray of the tibia after the end of the distraction 
with already clearly visible bone formation. (j) Postoperative radiograph after removal of the ring 
fixator and angular stable plate osteosynthesis. (k) Radiological control at the end of treatment with 
healed bone defect 3 months after TSF removal. 

4. Novel Approaches for Impaired Fracture Healing 

Although non-unions can be treated successfully in the majority of cases using the approaches 
described above, the often highly specialized and individual treatment concepts are expensive, time-
consuming and a large burden to affected patients. Therefore, it is essential to establish novel 
therapeutic approaches, which either prevent impaired bone healing or facilitate bone regeneration 
when non-union has occurred. These include, but are not limited to, molecular mediators which 
promote the formation of new bone, as well as bone grafts or substitute materials which serve as a 
scaffold for osseous bridging of bone defects. 

4.1. Molecular Targets for Local and/or Systemic Application 

Investigations in both humans and animal models have provided valuable insights into the 
pivotal pathways that regulate bone regeneration in health and disease. Although the role of many 

Figure 2. (a) Ap radiograph of the right lower leg of a 24-year-old man with an atrophic non-union of
the tibia after an open fracture in Albania 5 years ago. (b,c) Enlargement of the non-union in an ap and
lateral radiograph. According to the patient’s history: condition after 4 surgical trials in 3 countries.
(d) Intraoperative ap radiograph after positioning of the Taylor Spatial Frame (TSF) external fixator and
radical resection of the atrophic non-union. (e) Resected tibia non-union with atrophic bone over a
length of 7 cm. (f) Intraoperative positioning of the tibia and the TSF for the planned bone segment
transport by callus distraction. (g) Postoperative picture of the attached TSF. (h) Radiograph of the tibia
during the distraction process (0.5 mm/day over a period of 140 days) with constant substitution of
calcium and vitamin D. (i) X-ray of the tibia after the end of the distraction with already clearly visible
bone formation. (j) Postoperative radiograph after removal of the ring fixator and angular stable plate
osteosynthesis. (k) Radiological control at the end of treatment with healed bone defect 3 months after
TSF removal.

4. Novel Approaches for Impaired Fracture Healing

Although non-unions can be treated successfully in the majority of cases using the approaches
described above, the often highly specialized and individual treatment concepts are expensive,
time-consuming and a large burden to affected patients. Therefore, it is essential to establish novel
therapeutic approaches, which either prevent impaired bone healing or facilitate bone regeneration
when non-union has occurred. These include, but are not limited to, molecular mediators which
promote the formation of new bone, as well as bone grafts or substitute materials which serve as a
scaffold for osseous bridging of bone defects.



Int. J. Mol. Sci. 2019, 20, 5805 9 of 26

4.1. Molecular Targets for Local and/or Systemic Application

Investigations in both humans and animal models have provided valuable insights into the
pivotal pathways that regulate bone regeneration in health and disease. Although the role of many
mediators expressed in cells of the fracture callus is not fully understood, research in the past decades
has identified several key molecules, which may potentially be used to promote bone regeneration
(Figure 3).

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 26 

 

mediators expressed in cells of the fracture callus is not fully understood, research in the past decades 
has identified several key molecules, which may potentially be used to promote bone regeneration 
(Figure 3). 

 
Figure 3. Sequential need for growth hormones and their effect on fracture repair. Platelet derived 
growth factor (PDGF) acts in recruitment and proliferation of mesenchymal stem 
cells/osteoprogenitor cells (MSC/OPC), exerts positive effects on angiogenesis via vascular 
endothelial growth factor (VEGF) and acts chemotactic on immune cells. Platelet derived growth 
factor receptor β (PDGFRβ) signaling suppresses osteogenic differentiation. Bone morphogenic 
protein-2 (BMP-2) promotes osteoblastic and chondrocyte differentiation. Fibroblast growth factor-2 
(FGF-2) acts mitogenic on MSC/OPC, osteoblasts, chondrocytes and osteoclasts, and enhances matrix 
synthesis and angiogenesis. Fibroblast growth factor 23 (FGF-23) inhibits osteoblast differentiation 
and matrix synthesis. Fibroblast growth factor receptor 3 (FGFR3) signaling inhibits osteoclastic bone 
resorption. Parathyroid hormone (PTH) enhances differentiation and proliferation of osteoblasts, 
enhances differentiation of chondrocytes, enhances matrix synthesis and activates osteoclasts and 
bone remodeling. 

4.1.1. Parathyroid Hormone 

Parathyroid hormone (PTH) is a polypeptide hormone composed of 84 amino acids and is 
produced by the parathyroid glands. PTH regulates calcium hemostasis by increasing calcium 
resorption from bone and kidney directly as well as indirectly via vitamin D from the intestines [52]. 
In 1997, Dobnig et al. demonstrated that PTH could exert anabolic effects on bone when used in a 
pulsatile manner, while catabolic effects were observed during continuous exposure. Instead of using 
the 84 amino acid PTH, he used the amino terminal fragment known as teriparatide (PTH 1–34) [53]. 
Clinical trials proved both, PTH and teriparatide, beneficial in the treatment of postmenopausal 
osteoporosis by increasing bone mineral density (BMD), improvement of bone microarchitecture and 
a reduction in vertebral fractures [54,55]. A new agent, abaloparatide, a parathyroid hormone related 
protein (PTHrP) analogue, was shown to be beneficial in the treatment of postmenopausal 
osteoporosis and even superior to teriparatide in terms of vertebral fracture prevention, increase in 
BMD and overall response rate [56,57]. 

Intermittent PTH enhances bone formation by inhibiting proliferation of osteoblast progenitors 
determining them for osteoblast differentiation and inhibiting osteoblast apoptosis [58]. The positive 
effects of PTH/teriparatide on BMD and bone microarchitecture make its use in the treatment of 
impaired fracture healing appealing. A study with proximal tibial osteotomy in ovariectomized and 
sham rats could demonstrate an improved cancellous union rate with intermittent administration of 
teriparatide in either group [59]. Conflicting data was provided by Aspenberg et al. who could show 

Figure 3. Sequential need for growth hormones and their effect on fracture repair. Platelet derived
growth factor (PDGF) acts in recruitment and proliferation of mesenchymal stem cells/osteoprogenitor
cells (MSC/OPC), exerts positive effects on angiogenesis via vascular endothelial growth factor (VEGF)
and acts chemotactic on immune cells. Platelet derived growth factor receptor β (PDGFRβ) signaling
suppresses osteogenic differentiation. Bone morphogenic protein-2 (BMP-2) promotes osteoblastic
and chondrocyte differentiation. Fibroblast growth factor-2 (FGF-2) acts mitogenic on MSC/OPC,
osteoblasts, chondrocytes and osteoclasts, and enhances matrix synthesis and angiogenesis. Fibroblast
growth factor 23 (FGF-23) inhibits osteoblast differentiation and matrix synthesis. Fibroblast growth
factor receptor 3 (FGFR3) signaling inhibits osteoclastic bone resorption. Parathyroid hormone (PTH)
enhances differentiation and proliferation of osteoblasts, enhances differentiation of chondrocytes,
enhances matrix synthesis and activates osteoclasts and bone remodeling.

4.1.1. Parathyroid Hormone

Parathyroid hormone (PTH) is a polypeptide hormone composed of 84 amino acids and is produced
by the parathyroid glands. PTH regulates calcium hemostasis by increasing calcium resorption from
bone and kidney directly as well as indirectly via vitamin D from the intestines [52]. In 1997,
Dobnig et al. demonstrated that PTH could exert anabolic effects on bone when used in a pulsatile
manner, while catabolic effects were observed during continuous exposure. Instead of using the
84 amino acid PTH, he used the amino terminal fragment known as teriparatide (PTH 1–34) [53].
Clinical trials proved both, PTH and teriparatide, beneficial in the treatment of postmenopausal
osteoporosis by increasing bone mineral density (BMD), improvement of bone microarchitecture and a
reduction in vertebral fractures [54,55]. A new agent, abaloparatide, a parathyroid hormone related
protein (PTHrP) analogue, was shown to be beneficial in the treatment of postmenopausal osteoporosis
and even superior to teriparatide in terms of vertebral fracture prevention, increase in BMD and overall
response rate [56,57].

Intermittent PTH enhances bone formation by inhibiting proliferation of osteoblast progenitors
determining them for osteoblast differentiation and inhibiting osteoblast apoptosis [58]. The positive
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effects of PTH/teriparatide on BMD and bone microarchitecture make its use in the treatment of
impaired fracture healing appealing. A study with proximal tibial osteotomy in ovariectomized and
sham rats could demonstrate an improved cancellous union rate with intermittent administration of
teriparatide in either group [59]. Conflicting data was provided by Aspenberg et al. who could show a
shortened time to cortical bridging in conservatively treated distal radius fractures in postmenopausal
women with the injection of once daily teriparatide for 8 weeks at 20 µg, but not 40 µg [60]. A further
study on unilateral pelvic fractures in osteoporotic women could show enhanced radiographic healing
and improved functional outcome with once daily injection of 100 µg PTH. All pelvic fractures showed
radiographic healing after 8 weeks in the PTH group while only 10% had healed in the control group
at that time [61]. Despite these encouraging findings, dosing remains conflicting and requires further
studies [60,61].

Bukata et al. addressed the use of teriparatide in cases of impaired fracture healing. 88% of the
patients in their study either failed primary surgery, presented with delayed or non-union or were
high-risk patients for impaired healing. Of 145 patients with complicated fracture healing, a 93%
success rate with 12 weeks of adjuvant teriparatide treatment at 20 µg daily was observed. The authors
propose teriparatide as a potential agent in complicated fractures and point out the need for prospective
clinical trials [62]. Further clinical indications for the use of teriparatide might be found in arthroplasty.
For example, teriparatide could reduce pain and increase periprosthetic BMD in the case of a 74-year
old patient who had already undergone revision surgery and further surgery was no option due to
comorbidities [63].

As of now, most studies on the use of teriparatide in fractures focused on the cancellous
metaphyseal region. In human osteoporosis, Jiang et al. could show a positive effect of teriparatide on
cancellous bone architecture as well as cortical thickness after 12-month of treatment [64]. Ogura et al.
propose the PTH effect to be facilitated by different mechanisms in cancellous and cortical bone.
The authors studied osterix expression as a marker for osteoprogenitor cell development, and osteocyte
sclerostin expression. After 5 days of PTH treatment in rats, they observed an increased number of
osterix-positive cells without a change in osteocyte sclerostin expression in cancellous bone. In cortical
bone however, the number of sclerostin positive osteocytes was reduced [65]. Sclerostin is exclusively
expressed by osteocytes, inhibits bone formation and is known to be suppressed by PTH [66,67].
However, cortical and cancellous bone formation is enhanced by PTH in a Wnt/β-catenin dependent
manner after 28 days of application [68].

4.1.2. Wnt Signaling and Sclerostin

Wnt signaling is crucial in regulating diverse processes in tissue development and also plays
a pivotal role in bone formation. Mechanistically, Wnt ligands bind to the Frizzled receptor (Fz)
which forms a complex with the LDL receptor-related protein 5/6 (LRP5/6) co-receptor. Subsequently,
LRP5/6 and Fz deactivate the β-catenin destruction complex, which leads to accumulation of β-catenin
within the cell. β-catenin translocates to the nucleus, where it regulates the transcription of specific
Wnt target genes and thus osteogenesis (Figure 4). For example, Wnt10b induces a shift towards
osteoblastic differentiation by inducing the transcription factors runt-related transcription factor
2 (Runx2), distal-less homebox 5 (Dlx5) and osterix, while adipogenic transcription factors are
suppressed [69]. Moreover, Cawthorn et al. demonstrated that the induction of osteoblastogenesis
through Wnt6, Wnt10a and Wnt10b is dependent on β-catenin signaling [70]. In line with this, β-catenin
levels in callus tissue were increased throughout the process of bone healing in mice as well as humans,
and exerted different effects during the course of fracture healing. Wnt signaling was found to control
the osteoblast/chondrocyte ratio in early stages, while it enhanced osteoblast differentiation and
function as healing progressed. The authors point out that increased β-catenin levels at the early
stage have a negative effect on healing time and emphasize the importance of adequate dosing [71].
Importantly, in a mouse fracture model, increased expression of Wnt4, Wnt5a/b and Wnt10b as well
as nuclear β-catenin was achieved through the administration of teriparatide. Those findings were
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associated with enhanced callus formation and earlier chondrocyte hypertrophy, and indicate an
involvement of Wnt signaling in the osteoanabolic effects of PTH [72].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 26 
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Figure 4. Synergy of parathyroid hormone (PTH), fibroblast growth factor 2 (FGF-2) and bone
morphogenic protein-2 (BMP-2) in the activation of osteogenic gene transcription. PTH upregulates
FGF-2, and PTH and FGF-2 synergistically activate Wnt signaling via lipoprotein receptor 5/6 (LPR5/6)
and Frizzled receptor (Fz). Receptor activation inhibits the β-catenin destroy complex (DC) and
β-catenin (β-cat) induces osteogenic gene transcription. FGF-2 enhances BMP-2 which activates
transcription factor runt-related transcription factor 2 (Runx2), distal-less homebox 5 (Dlx5) and Osterix
via Smad1/5/8 / Smad4 signaling. Osteocyte derived Sclerostin (Scl) inhibits Wnt signaling by LPR5
blockage and osteocyte Scl production is inhibited by PTH.

As mentioned above, Wnt ligands induce various transcription factors. Runx2 is considered the
master transcription factor in osteoblast differentiation, as it controls the osteoblast-specific cis acting
element present in the promoter of several osteoblast specific genes and thus regulates the expression
of major bone matrix proteins [73]. Genetically engineered bone marrow stomal cells overexpressing
Runx2 accelerated healing in critical size femoral bone defects in rats compared to unmodified cells.
However, after 12 weeks no difference in defect bridging or biomechanical function could be observed,
pointing to a temporary benefit [74].

Sclerostin, a product of the SOST gene, is expressed in osteocytes and a well-established inhibitor of
Wnt signaling and thus, bone formation [67] (Figure 4). Sclerostin has been described as a direct inhibitor
of LPR5, since sclerostin inactivation leads to the same bone phenotype as activating mutations of LRP5
with enhanced bone growth known as sclerosteosis [75,76]. In osteoporosis, one of the most prevalent
bone diseases worldwide, a monoclonal antibody inhibiting sclerostin known as romosozumab,
was shown to reduce the risk for vertebral fractures in postmenopausal women within a 12 months
period [77]. As a potential therapeutic agent in osteoporosis and thus, also impaired bone healing,
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application of a sclerostin neutralizing antibody has also been shown to enhance metaphyseal bone
healing in rats [78].

4.1.3. Bone Morphogenic Proteins

To achieve enhanced osteogenesis, osteoconductive scaffolds can be used in combination with
osteoinductive agents. Such agents were first described in the 1960s, when Urist showed that
acellular, devitalized and decalcified bone matrix could induce bone formation in ectopic tissue [46].
Today, the best studied group of growth factors used in the treatment of skeletal defects are bone
BMPs. BMPs belong to the TGF-β superfamily and are known to promote MSC differentiation into
chondroblasts or osteoblasts and facilitate bone formation [79]. BMPs act via the Smad dependent
canonical pathway or the Smad independent non-canonical pathways including the mitogen-activated
protein kinase (MAPK) signaling cascade [80]. Ligand binding to the type I and II serine/threonine
kinase receptor containing heterotetrametric receptor complex leads to phosphorylation of Smad1/5/8
which further associates with Smad4 and translocates to the nucleus where it induces target gene
transcription. Downstream targets of BMP-2 for example include Runx2, Dlx5 and osterix [81–83]
(Figure 4).

Recombinant human BMP-2 (rhBMP-2) and rhBMP-7 were approved by the FDA for specific
clinical indications. The use BMP-2 was shown beneficial in the treatment of acute tibial fractures [84].
Augmentation of cancellous allograft with rhBMP-2 achieved similar healing rates as iliac crest
autografts in the treatment tibial shaft fractures with cortical defects [85]. In spine surgery, rhBMP-2
proved to be beneficial in cases of anterior interbody lumbar fusion and was approved by the FDA in
2002 [86,87]. Its use, also off-label in other forms of lumbar as well as cervical fusion has increased
tremendously after approval, however, significantly declined after safety concerns emerged in 2008 [88].
Higher rates of adverse effects like implant displacement, subsidence and infection for anterior cervical
fusion as well as radiculitis, osteolysis and ectopic bone formation for posterior lumbar body fusion
were observed [89,90]. Further, even acute life-threatening complications requiring intubation or
tracheotomy due to cervical swelling and consecutive airway compression where described for the use
rhBMP-2 [89]. In the treatment of complex tibial plateau fractures, an increased risk of heterotopic
ossification was described for the use of rhBMP-2 [91].

Independent of their potential adverse effects, BMPs are still considered potent inductors of
bone formation and researchers are trying to adapt these proteins in order to make their use save.
Since efficacy of BMP-2 was shown to be dose dependent, the described side effects may, at least partly,
be explained by relatively high concentrations used [84]. The right dosage balancing induction of bone
formation and reduction of adverse effects is jet to be confirmed by clinical trials [92]. Ectopic bone
formation and major complications such as spinal cord compression may be reduced by minimizing
perifocal leakage and optimizing positioning of BMP-2 containing material [93,94]. Addition of
bisphosphonates was intended to reduce osteoclast activity, possibly causing osteolysis and subsidence.
However, the risk for heterotopic ossification was increased [95]. Adverse BMP-2 effects such as
swelling, seroma formation and wound complications may be attributed to its proinflammatory
properties [96,97]. A study from 2013 could demonstrate reduced edema and inflammatory response
with the administration of dexamethasone during rodent spinal surgery [98]. Due to the well described
negative effects of glucocorticoids on bone formation, their positive effects in bone healing must
be questioned until proven otherwise. More advanced approaches to reduce inflammation were
demonstrated by Gleaser et al. They could demonstrate a reduction in local inflammation with even
higher bone volume and reduced trabecular spacing after adding NEMO binding domain peptide
(NBD) to BMP-2. NBD is an inhibitor of NF-κB mediated inflammation and was investigated in a rat
model of spinal fusion. Local edema, mononuclear cell infiltration and the expression of inflammatory
markers was reduced when BMP-2 was used with NBD compared to BMP-2 alone [99].
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4.1.4. Platelet Derived Growth Factor

As the strive for iliac crest autograft substitutes continues, PDGF was found to be a promising
candidate to promote bone regeneration. PDGF is found in the early fracture hematoma where it is
expressed by endothelial and mesenchymal cells following the primary insult. In the course of fracture
healing, it is also expressed by osteoblasts, chondrocytes and even osteoclasts [100]. PDGF acts as a
chemotactic as well as mitogenic agent on MSCs, promoting osteoblast and chondrocyte differentiation.
Additionally, PDGF upregulates VEGF which enhances angiogenesis [101]. The chemotactic potential
of PDGF on MSC was shown to be dose dependent and superior to the chemotactic effects of other
cytokines [102]. Further, the PDGF-BB homodimer was found to exhibit superior chemotactic and
proliferative effects on MSC compared to other PDGF isoforms and different growth factors [103].
PDGF signals through the PDGF receptors α and β, which may be present as homo- or heterodimers
and signal via a tyrosine kinase. PDGF-BB has the potential to activate either isoform of the dimeric
receptor [104].

In terms of fracture healing PDGF must be used with caution. Imatinib, a monoclonal antibody
inhibiting tyrosine kinase activity, was shown to promote osteoblast differentiation by inhibiting
PDGF receptor β (PDGFRβ) signaling [105]. Further it was demonstrated that PDGFRβ signaling
induces MSC proliferation and migration but inhibits osteogenic differentiation [106]. A recent study
by Wang et al. found an increased expression of PDGFRβ early after fracture within the thickened
periosteum as well as the fracture callus. Those finding were associated with increased proliferation
and decreased apoptosis of PDGF receptor expressing periosteum-derived progenitor cells (PDC) upon
PDGF stimulation. Surprisingly though, PDGF inhibited BMP-2 induced osteogenesis via PDGFRβ
signaling. ERK1/2 MAPK and PI3K/AKT were identified as two downstream signaling pathways
exerting the suppressive PDGF/PDGFRβ effects on BMP-2 induced PDCs [107]. Obviously PDGF
exerts a strong proliferative effect on osteoblasts while inhibiting their differentiation.

Preclinical trials on the use of PDGF overexpressing hematopoietic stem cells in mice demonstrated
increased trabecular bone formation and trabecular connectivity as well as decreased cortical porosity,
adding up to a 45% increase in bone strength with low dose treatment [108]. Those effects were attributed
to enhanced proliferation of MSC and angiogenesis. The therapeutic effect though, appears highly
dependent on adequate dosing, since higher concentrations of PDGF induced largely unmineralized
bone. In clinical applications, PDGF is established in ankle and hindfoot arthrodesis. Recombinant
human PDGF-BB homodimer (rhPDGF-BB) in combination with an osteoinductive tricalcium phosphate
(TCP)-collagen matrix was shown to be a safe and effective alternative to autografts in terms of clinical,
functional and radiologic outcomes, eliminating harvesting site morbidity [109]. Similar results were
reported for the use of an injectable TCP-collagen matrix in combination with rhPDGF-BB [110].
FDA approval for rhPDGF-BB/TCP-collagen in ankle and/or hindfoot fusion was granted in 2015 and
extended to an injectable form in 2018.

4.1.5. Fibroblast Growth Factor

FGFs describe a large family of 22 ligands binding to four receptor tyrosine kinases essential for
proper tissue development and metabolism [111]. The important role of FGFs and their corresponding
receptors in osteogenesis is well established by various studies, but their function in fracture repair is
incompletely understood [112]. FGF-2 is probably the most studied FGF in terms of bone metabolism.
FGF-2 has well established anabolic as well as catabolic function. While low concentrations favor
osteoclastic bone resorption, high concentrations are osteoanabolic [113]. Intravenous application
of FGF-2 was found to stimulate osteoblast proliferation and new bone formation in rats [114]. In a
rat fibula fracture model, local FGF-2 injection immediately after fracture could increase the mineral
content and callus volume resulting in superior mechanical properties [115]. Those anabolic effects
were supported by Nakamura et al. in 1998 and extended by the observation of an increased number
of osteoclasts upon FGF-2. The authors attribute the positive effect of FGF-2 on bone healing to its
induction of bone remodeling, rather than purely anabolic effects [116]. Kawaguchi et al. conducted
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a trial on the use of recombinant human FGF-2 (rhFGF-2) in patients with high tibial closed wedge
osteotomies due to medial compartment osteoarthritis. Patients received a total dosage of 200, 400 or
800 µg of rhFGF-2 in a biodegradable hydrogel carrier. The authors found a dose dependent positive
effect on radiographic union, accelerated union and better clinical outcomes. No adverse effects were
observed [117]. Similarly, a later study by the same group showed beneficial effects on radiographic
union of local rhFGF-2 application in nailed tibial fractures [113]

FGF-2 interacts closely with other mediators involved in bone metabolism described above.
Xiao et al. described a low molecular weight isoform of FGF-2 to carry out the anabolic FGF-2 function
by modulating Wnt signaling [118]. Overexpression of this isoform in the osteoblastic lineage resulted
in accelerated fracture healing due to faster cartilage formation, bone union and callus remodeling in a
tibial mouse fracture model [119]. Interestingly, FGF-2 and BMP-2 were shown to act synergistically
in bone formation. Deficiency in FGF-2 leads to reduced expression and function of BMP-2 [120].
Additionally, the FGF-2 enhanced enchondral ossification potential of periosteal cells is driven by an
increased production of BMP-2 [120,121]. PTH has also been described do exert its effects on bone
metabolism, at least in part, through FGF-2 by upregulating FGF-2 and FGFR mRNA expression in
osteoblastic cells in vitro [122]. The same group could show an impaired osteoanabolic response to
PTH in FGF-2-deficient mice, possibly due to impaired Wnt/β-catenin signaling that was significantly
decreased in bone marrow stromal cells during osteoblast differentiation [123,124].

Most research has been focused on enhancing the anabolic effects of FGFs, while blockage of
inhibitory effects of FGFs could be just as valuable. Overexpression of FGF-23 has been shown to inhibit
osteoblast differentiation and matrix mineralization in vitro [125]. For osteocytes PTHR signaling was
shown to increase FGF-23 expression [126].

Besides FGFs itself, FGF receptors (FGFR) and their downstream signaling have moved into focus
of research. Impaired FGFR3 signaling was found to be associated with defects in skeletogenesis.
While activating mutations cause small statue, inactivating mutations result in tall statue [127,128].
In a rat femur fracture model, Rundle et al. could show a differential expression of the FGFR genes.
While FGFR1 and 2 are expressed throughout fracture repair, FGFR3 expression is seen in chondrocytes
and osteoblasts from day 10 on and persisted during enchondral bone formation [129]. Paradoxically,
deficiency as well as overactivation of FGFR3 signaling is associated with osteopenia [130,131].
A more recent study demonstrated accelerated fracture healing in FGFR3-deficient mice. This effect
was attributed to increased cartilage and fracture callus formation plus a more a rapid enchondral
ossification. The authors postulate that blockage of FGFR3 signaling could be beneficial in the treatment
of patients with impaired fracture healing [132]. However, an isolated deletion of FGFR3 signaling
in osteoclasts leads to impaired callus remodeling in fracture repair due to reduced osteoclast bone
resorption. This study could also demonstrate a reduced, but not entirely abolished, response to FGF-2
induced osteoclastic bone resorption in FGFR3 deficient osteoclast [133].

4.2. Novel Bone Grafts

As described above, research in the past decades has identified various osteoanabolic agents
which are currently under further investigation and some of which are already applied clinically.
While systemic diseases such as osteoporosis increase the risk for impaired bone regeneration, young and
healthy individuals may also experience non-unions, pointing towards a local pathology. From a clinical
point of view, local therapy is therefore preferable as it additionally minimizes the risk for possible
side effects. The locally applied agent’s potential to promote bone formation will, however, depend on
a suitable scaffold, allowing adequate cell migration, proliferation, and differentiation as well as matrix
production and degradation. While currently used natural bone grafts have been discussed above,
an increasing number of artificial bone grafts may be applied in the treatment of fracture non-union.
Importantly, artificial bone grafts, as an alternative to natural auto- and allografts, are not associated
with donor site morbidity or the possibility of immunogenic complications. Additionally, they exist,
at least theoretically, at unlimited availability. The ideal bone graft shows osteogenic, osteoinductive and
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osteoconductive properties, is perfectly biocompatible with no immunogenic reaction, biodegradable
without harmful byproducts, allows or even induces neovascularization, and provides a certain degree
of mechanical stability.

4.2.1. Calcium-Based Bone Grafts

Calcium based bone grafts include calcium phosphate ceramics, calcium phosphate cements
and calcium sulfate. Calcium phosphate-based biomaterials were shown to have osteoconductive
properties that are attributed to their microporous structure [134]. Calcium sulfates miss a porous
microstructure which implies a lack of osteoconductivity. Furthermore, calcium sulfates are associated
with early resorption within 4–8 weeks and inferior mechanical strength which limits their use to small
bone defects or in combination with rigid fixation. [135]. Additionally, calcium sulfates have been
associated with prolonged serous wound drainage as calcium sulfate is degraded [136].

Calcium phosphates such as hydroxyapatite (HA) and TCP have been widely investigated and
used in bone defects. In healthy bone, HA is produced by osteoblasts and represents the major anorganic
component of the bone matrix. The biocompatibility of HA bone grafts is thought to result from its
structural similarity to natural bone matrix [137]. Scaffolds made from HA show good mechanical
strength but are resorbed slowly, adding to fracture risk of new bone. TCP in contrast shows weak
mechanical properties but is biodegraded quickly [138]. Biphasic ceramics composed of HA and
TCP allow to achieve the desired mechanical and biodegradable characteristics depended on the
HA/TCP ratio [139]. Calcium phosphate cements (CPC), in contrast to ceramics, are composed of a
combination of calcium phosphates which are soluble and self-harden under in vivo conditions [140].
Their solubility and easy processability make them convenient for filling bone defects [141]. CPC exert
osteoconductive properties and show adequate biodegradability, and bone healing potential can be
enhanced by adding osteoinductive growth factors [142].

Nowadays however, modern scaffolds are generally produced from a biodegradable polymer and
the ceramic component. Advanced biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA)
and poly(L-lactic acid) (PLLA) in the combination with a ceramic were able to overcome limitations
of conventional ceramic bone substitutes [143,144]. Additionally, new methods of fabricating those
scaffolds including the use of gas forming and particulate leaching (GF/PL) instead of solvent casting
and particulate leaching (SC/PL) could even enhance their bone regeneration efficacy, possibly due to
better exposure of HA to osteogenic cells [145]. Both polymer/HA as well as CPC scaffolds have been
successfully used as a delivery system for pluripotent stem cells in animal trials [144,146].

4.2.2. Bioactive Glass

Bioactive glass describes silicate-based ceramics with bioactive properties. It was first described
in 1971 and recognized for its ability to bind host bone [147]. Besides this characteristic, bioglass
exhibits osteoconductive properties due to its porous nature and is resorbed quickly with only little
inflammatory response [148]. Besides their positive effects on osteoinduction, they were also described
to have antimicrobial activity. During bioglass degradation, dissolving salts create a local increase
in pH and osmotic pressure which was reported to be bacteriocidal [149,150]. Most interestingly,
in the field of orthopedic surgery, in vitro studies demonstrated bioactive glass S53P4 to suppress
Staphylococcus aureus biofilm formation on titanium plates. Such effect could be of tremendous
importance in aseptic or septic exchange arthroplasty and the treatment of osteomyelitis [151]. In this
respect, Drago et al. reported healing in 24 out of 27 patients with osteomyelitis of long bones after
surgical debridement and defect filling with bioactive glass [152]. Today, bioactive glass has been
approved for several indications in North America and Europe and is considered a valuable bone
substitute for long bone infections [153,154]. Further interest has risen in the use of therapeutic ions
which can be released from bioactive glass and display antibacterial, anti-inflammatory as well as
osteogenic and angiogenic properties. The list of ions includes silver, lithium, fluoride, calcium,
strontium, manganese, magnesium, zinc, copper, cobalt, cerium, gallium, boron, iron, europium,
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silicon, phosphate and niobium. Despite their encouraging characteristics, the right dosing preventing
unwanted cytotoxicity and controlled release from the delivery vehicle remains challenging [154].

4.2.3. Organic Bone Grafts

Organic bone grafts are nanocomposites of mainly type I collagen mimicking the natural collagen
scaffold. Mineralization is mainly attributed to non-collagenous proteins (NCPs) and collagen is
considered to provide a passive mechanical support for mineralization [155]. However, several studies
also demonstrated that collagen actively controls mineralization by synergizing with inhibitors of
hydroxyapatite nucleation [156,157]. To enhance osteoconductive characteristics, collagen scaffolds
are generally combined with calcium phosphates, growth factors or even stem cells [144,158,159].
Besides natural collagen polymers, synthetic resorbable polymers have been introduced. Those include
PLLA and PLGA polymers which can be used alone or as extenders for auto- and allografts, and in
combination with ceramics or stem cells [42,143,144].

4.2.4. Innovative Biomaterials

As new technologies are developed and, in several cases, have revolutionized whole industries,
the field of medicine is no exception. Huge progress has been made in the field of tissue engineering.
One the one hand, advances in biology allow the production of bioinspired tissue which resembles the
properties of native tissue. On the other hand, modern technologies such as 3D printing enable scientists
to produce customized implants with high structural complexity on the nanoscopic level. In the case
of non-unions with impaired local biology combined with the challenging tissue characteristics of
bone and the often-large defects, patients could profit tremendously from these novel approaches,
and current expectations are high. Up to now, 3D printed scaffolds are used in orthopedic trauma
surgery to improve pre-operative planning with personalized anatomic models, and to overcome
complex anatomic differences or defects which cannot be met with conventional implants [160].
3D printed implants are successfully used in maxillofacial and pelvic reconstructive surgery [161,162],
however, currently used implants have no or only limited biologic activity. This is surprising, as 3D
printed scaffolds were experimentally shown to be able to exert osteoconductive effects. Therefore,
future research will focus on how to enhance the biologic activity of these implants by adding
osteoinductive and osteogenic properties by integration of growth factors or stem cells. Furthermore,
their function as a vehicle for drug delivery must be addressed [163,164].

Despite these limitations, recent advances in biomaterials are promising. Bioinspired composite
matrices composed of a crystalline, rod-shaped nanoHA core and an amorphous silica sheath
(Si-nHA) were shown to have good biocompatibility, osteogenic differentiation, vascularization
and bone regeneration potential. In a critical size femoral defect rat model, this matrix resulted
in complete bridging and union of the bone gap [165]. Turner et al. demonstrated a method of
biomineralization of HA, creating the favorable biogenic HA instead of the widely used biomimetic
HA [166]. Moreover, biomimetic vascularized organoids demonstrating fundamental tissue functions
can now be fabricated [167].

Since tissue, including bone repair, is a precisely regulated process with a wide diversity of
growth factors and cell types exerting their function at a different time, sequential stimulation is
attracting attention. Incorporation of growth factors and even cells into implants and their release at a
desired point of time promises a more specific and hopefully effective support in tissue regeneration.
Electrochemical-, pH- and UV triggered agent release were demonstrated [168–170]. For in vivo use
even more relevant, He et al. could demonstrate inflammation-induced and rate-dependent release of
indomethacin conjugated to a porous hydrogel coating, holding great potential for the prophylaxis of
heterotopic ossification [171].

One last aspect of implants is that of degradability. Patients with implant-associated pain or
foreign body feeling may require an additional surgical intervention for implant removal, with the
potential for peri-operative complications [172]. Therefore, implants providing mechanical support
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after fracture fixation but subsequent degradation after fracture union are most desirable. As described
above, biodegradable polymers are currently available, but only suitable for low-load bearing fracture
sites [42]. As of now, magnesium-based orthopedic implants show promising results, since they combine
biodegradability with appropriate mechanical strength and additionally promote the formation of new
bone [173].

5. Conclusions

Despite tremendous scientific and clinical effort, impaired bone healing still represents a complex
and challenging complication following a fracture. A detailed case history, state-of-the-art diagnostics,
and individualized treatment concepts are crucial for optimal patient outcome. Scientific advances
in deeper understanding the molecular processes governing fracture healing have resulted in the
identification of key mediators which can potentially be targeted to promote bone regeneration.
The improvement of currently available bone substitute materials and the development of innovative
biomaterials have significantly contributed to expand available treatment options. Therefore,
further research and identification of novel therapeutic approaches with adequate safety profiles fulfills
an essential clinical need, to promote bone regeneration and restore bone defects in patients suffering
from non-unions.
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Abbreviations

BMD Bone mineral density
BMP Bone morphogenic proteins
CPC Calcium phosphate cements
DBM Demineralized bone matrix
Dlx5 Distal-less homebox 5
ESTROT European Society of Tissue Regeneration in Orthopedics and Traumatology
ESWT Extracorporal shock wave therapy
FDA Food and Drug Administration
FGF Fibroblast growth factor
FGFR FGF receptors
Fz Frizzled receptor
GF/PL Gas forming and particulate leaching
HA Hydroxyapatite
IGF Insulin like growth factor
IL Interleukin
LIPUS Low-intensity pulsed ultrasound
LRP5/6 LDL receptor-related protein
MAPK Mitogen-activated protein kinase
MDSC Muscle-derived stomal cell
MSC Mesenchymal stem cells
NBP NEMO binding domain peptide
NCPs Non-collagenous proteins
PDC Periosteum-derived progenitor cells
PDGF Platelet derived growth factor
PDGFRβ PDGF receptor β
PLGA Poly(lactic-co-glycolic acid)
PLLA Poly(l-lactic acid)
PTH Parathyroid hormone
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PTHrP Parathyroid hormone related protein
rhBMP-2 Recombinant human BMP-2
rhFGF-2 Recombinant human FGF-2
rhPDGF-BB Recombinant human PDGF-BB homodimer
RIA Reamer-Irrigator-Aspirator System
Runx2 Runt-related transcription factor 2
SC/PL Solvent casting and particulate leaching
TCP Tricalcium phosphate
TGF-β Transforming growth factor-β
TNF-α Tumor necrosis factor-α
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