
 International Journal of 

Molecular Sciences

Article

Discovery of Novel Acetylcholinesterase Inhibitors
as Potential Candidates for the Treatment of
Alzheimer’s Disease

Minky Son, Chanin Park, Shailima Rampogu, Amir Zeb and Keun Woo Lee *

Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology
and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS),
Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; minky@gnu.ac.kr (M.S.);
chaninpark0806@gmail.com (C.P.); shailima.rampogu@gmail.com (S.R.); zebamir85@gmail.com (A.Z.)
* Correspondence: kwlee@gnu.ac.kr; Tel.: +82-55-772-1360; Fax: +82-55-772-1359

Received: 14 January 2019; Accepted: 21 February 2019; Published: 25 February 2019
����������
�������

Abstract: Acetylcholinesterase (AChE) catalyzes the hydrolysis of neurotransmitter acetylcholine to
acetate and choline in a synaptic cleft. Deficits in cholinergic neurotransmitters are linked closely with
the progression of Alzheimer’s disease (AD), which is a neurodegenerative disorder characterized
by memory impairment, and a disordered cognitive function. Since the previously approved
AChE inhibitors, donepezil (Aricept), galantamine (Reminyl), and rivastigmine (Exelon), have side
effects and several studies are being carried out out to develop novel AD drugs, we have applied
a three-dimensional quantitative structure−activity relationship (3D QSAR) and structure-based
pharmacophore modeling methodologies to identify potential candidate inhibitors against AChE.
Herein, 3D QSAR and structure-based pharmacophore models were built from known inhibitors
and crystal structures of human AChE in complex with donepezil, galantamine, huperzine A,
and huprine W, respectively. The generated models were used as 3D queries to screen new scaffolds
from various chemical databases. The hit compounds obtained from the virtual screening were
subjected to an assessment of drug-like properties, followed by molecular docking. The final
hit compounds were selected based on binding modes and molecular interactions in the active
site of the enzyme. Furthermore, molecular dynamics simulations for AChE in complex with
the final hits were performed to evaluate that they maintained stable interactions with the active
site residues. The binding free energies of the final hits were also calculated using molecular
mechanics/Poisson-Boltzmann surface area method. Taken together, we proposed that these hits can
be promising candidates for anti-AD drugs.

Keywords: acetylcholinesterase; Alzheimer’s disease; molecular docking; molecular dynamics
simulation; pharmacophore modeling

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by multiple
cognitive impairments such as memory loss and difficulties in learning and/or thinking. It has
been investigated that the formation of cortical amyloid plaques and neurofibrillary tangles in
the brain are the fundamental hallmarks of AD patients. Furthermore, AD is closely related with
neurotransmitter acetylcholine deficiency in the hippocampus and cerebral cortex [1,2]. The hydrolysis
of acetylcholine to acetate and choline is catalyzed by acetylcholinesterase (AChE) in a synaptic cleft.
Currently, AChE inhibitors including donepezil (Aricept), galantamine (Reminyl), and rivastigmine
(Exelon), are widely used in symptomatic treatments for AD [3–6]. But the efficacy of these
drugs in hampered by their side effects, such as gastrointestinal disturbance, hepatotoxicity,
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and hypotension [7–11]. Therefore, inhibition of AChE still remains a promising strategy in AD
management [12–15].

The structure of human AChE (hAChE) consists of a central 12-stranded mixed β-sheet
surrounded by 14 α-helices. The active site of the enzyme is located near the bottom of a 20 Ǻ
deep narrow gorge and is formed by a catalytic anionic site (CAS) containing a catalytic triad of Ser203,
Glu334, and His447. The other key residues such as Asp74, Tyr124, Ser125, Trp286, Tyr337, and Tyr341
compose a peripheral anionic subsite (PAS) which is placed at the entrance of the active site gorge.
In addition, other functional subsites, known as anionic subsite (AS), acyl-binding pocket (ABP),
and oxyanion hole (OH), found in an active site gorge, are also reported to play important roles in the
recognition process of the enzyme. In this study, we have employed a three-dimensional quantitative
structure−activity relationship (3D QSAR) and structure-based pharmacophore modeling approach in
order to discover potential candidates of hAChE inhibitors. The generated pharmacophore models
were used for screening chemical databases, and then the obtained hit compounds were filtered by
drug-like property evaluation. The binding mode analyses for hit compounds were performed by
utilizing molecular docking and molecular dynamics (MD) simulation studies. The binding free energy
between the protein and the compound was calculated using molecular mechanics/Poisson-Boltzmann
surface area (MM-PBSA) method.

2. Results and Discussion

2.1. Generation of 3D QSAR Pharmacophore Model

A set of 60 compounds with diverse structural scaffolds were prepared for 3D QSAR
pharmacophore modeling. Their inhibitory activities ranged from 0.065 to 15,700 nM.
Among 60 compounds, 20 compounds were selected as a training set, which was used for the
generation of a 3D QSAR pharmacophore model. The 2D structures and IC50 values of the training set
were shown in Figure 1.
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Figure 1. 2D structures of 20 compounds in the training set. The inhibitory activity value (IC50) for
each compound was shown in nM.

The remaining 40 compounds were considered a test set which was used to validate the model
(Figure S1). All compounds in training and test sets were classified into four groups based on
their IC50 values: most active (IC50 < 20 nM), active (20 ≤ IC50 < 200 nM), moderately active
(200 ≤ IC50 < 2000 nM), and inactive (IC50 ≥ 2000 nM). A set of 10 hypotheses were constructed
using a training set of 20 compounds. The statistical parameters of the top 10 hypotheses were listed
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in Table 1. As shown in Table 1, the null cost and fixed cost were 215.87 and 79.29, respectively.
The cost analyses showed that Hypo (hypothesis) 1 and 2 have the largest cost difference of 116.592,
signifying the highest predictive power.

Table 1. 3D QSAR pharmacophore generation. Ten hypotheses were listed with their
statistical parameters.

Hypothesis Total Cost Cost Difference a RMSD b Correlation Features c

Hypo 1 99.280 116.592 1.323 0.943 HBA, HY-AL, HY-AR, RA
Hypo 2 99.280 116.592 1.324 0.943 HBA, HY-AL, HY-AR, RA
Hypo 3 99.681 116.191 1.343 0.941 HBA, HY-AL, HY-AR, RA
Hypo 4 99.751 116.121 1.331 0.942 HBA, HY-AL, HY-AR, RA
Hypo 5 99.957 115.915 1.340 0.942 HBA, HY-AL, HY-AR
Hypo 6 100.012 115.860 1.346 0.941 HBA, HY-AL, 2HY-AR
Hypo 7 105.818 110.054 1.606 0.914 HBA, HY-AL, HY-AR, RA
Hypo 8 106.957 108.915 1.620 0.913 HBA, HY-AL, HY-AR, RA
Hypo 9 108.050 107.822 1.650 0.908 HBA, HY-AL, HY-AR, RA

Hypo 10 108.40 107.474 1.663 0.908 HBA, HY-AL, HY-AR, RA
a Cost Difference = Null cost − Total cost. Null cost = 215.87, Fixed cost = 79.29 (All cost units are in bits).
b RMSD = Root Mean Square Deviation. c Features = HBA, hydrogen bond acceptor; HY-AL, hydrophobic aliphatic;
HY-AR, hydrophobic aromatic; RA, ring aromatic.

Among the generated hypotheses, Hypo 1 (named as Pharm 1) was selected as the best hypothesis
due to the highest cost difference, lowest total cost, lowest RMSD, and highest correlation coefficient.
Our results demonstrated that Pharm 1 consists of four pharmacophoric features including hydrogen
bond acceptor (HBA), hydrophobic aliphatic (HY-AL), hydrophobic aromatic (HY-AR), and ring
aromatic (RA) (Figure 2A). The most active and inactive compounds in the training set were aligned to
the pharmacophore model. The compound 1, one of the most active compounds, was well fitted into
all chemical features in Pharm 1 while compound 20, the inactive compound, was mapped only onto
two of four features (Figure 2B,C).
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Figure 2. The best hypothesis, Hypo 1, with their distance constraints. (A) Hypo 1 consists of four
pharmacophoric features such as HBA (green), HY-AL (blue), HY-AR (cyan), and RA (orange). (B) Hypo
1 overlay onto most active compound, compound 1 (IC50 = 0.4 nM) from the training set. (C) Hypo 1
overlay onto inactive compound, compound 20 (IC50 = 14700 nM) from the training set.
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To verify the predictive ability of the model, the activities of training set compounds were
estimated using regression analysis. The experimental and estimated activity values for each
compound in the training set were shown in Table 2.

Table 2. Experimental and estimated IC50 values of the training set using the best hypothesis, Hypo 1.

Compound No. Experimental
IC50 (nM)

Estimated
IC50 (nM) Error a Experimental

Scale b
Estimated

Scale b Fit Value c

1 0.4 1.5 +3.8 ++++ ++++ 7.21
2 0.56 0.93 +1.7 ++++ ++++ 7.42
3 2.8 3.2 +1.1 ++++ ++++ 6.89
4 3.26 4.7 +1.4 ++++ ++++ 6.72
5 4.97 2.2 −2.3 ++++ ++++ 7.05
6 8 8.9 +1.1 ++++ ++++ 6.44
7 26.2 20 −1.3 +++ +++ 6.08
8 38 120 +3.2 +++ +++ 5.30
9 47 130 +2.7 +++ +++ 5.29
10 58 140 +2.3 +++ +++ 5.26
11 140 150 +1.1 +++ +++ 5.21
12 425 850 +2 ++ ++ 4.46
13 530 260 −2 ++ ++ 4.98
14 610 130 −4.7 ++ +++ 5.28
15 710 510 −1.4 ++ ++ 4.68
16 1780 360 −4.9 ++ ++ 4.83
17 2500 980 −2.6 + ++ 4.40
18 3860 320 −12 + ++ 4.88
19 7300 15,000 +2 + + 3.23
20 14,700 89,000 +6.1 + + 2.44

a Error: Difference between the experimental and estimated IC50 values. Positive value indicates that the estimated
value is higher than the experimental value; negative value indicates that the estimated value is lower than
the experimental value. b Activity scale: ++++, IC50 < 20 nM (most active); +++, 20 ≤ IC50 < 200 nM (active);
++, 200 ≤ IC50 < 2000nM (moderately active); +, IC50 ≥ 2000 nM (inactive). c Fit value represents how well the
pharmacophoric features in the hypothesis overlap the chemical features in the compound.

As a result, 17 out of 20 training set compounds showed that the predicted activity scales were the
same as those of their experimental activity scale. Only one moderately active compound was predicted as
active, and two inactive compounds were classified into moderately actives. Pharm 1 was subsequently
validated using Fischer’s randomization and test set methods. In Fischer’s randomization test, 19 random
spreadsheets for training set compounds were generated. At 95% confidence level, Pharm 1 showed the
highest correlation of all the random spreadsheets (Figure 3A). This result indicated that Pharm 1 was not
generated by chance. For test set validation, the predicted activities for 40 compounds in the test set were
calculated with the same procedures as used in the training set (Table S1). The plot showed that correlation
coefficient between the experimental and predicted activity scales is 0.87 in the test set, confirming the
statistical significance of Pharm 1 (Figure 3B).
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2.2. Development of Structure-Based Pharmacophore Models

Structure-based pharmacophore models were generated using four complex structures with
different inhibitors (DNP, GNT, HUP, and HUW) of hAChE. During hypotheses generation,
water molecules in the crystal structures were included to consider water-mediated hydrogen bond
interactions. For each structure, the best pharmacophore model was selected based on the selectivity
score. The best hypothesis (Pharm 2), which was built by DNP-bound structure, has three HBA, one PI,
and one RA feature (Figure 4A). HBA features were obtained based on hydrogen bond interactions
with water molecules and Phe295. The PI feature represented the interaction point near Tyr337 to
harbor the positively ionizable group. The RA feature was matched with π–π interaction between
DNP and Trp86. In GNT-bound structure, the best hypothesis (Pharm 3) was comprised of four
pharmacophoric features such as one HBA, one HBD, one HY, and one PI (Figure 4B). HBA and HBD
features were represented by hydrogen bond interactions with a water molecule, Glu202, and Ser203.
HY and PI features corresponded with the hydrophobic and positive ionizable sites close to Phe295
and Tyr337, respectively. The hypothesis (Pharm 4) generated from HUP-bound structure consisted of
one HBA, one HBD, and one PI features (Figure 4C). HBA and HBD features represented hydrogen
bonds with Tyr133 and a water molecule, respectively. PI feature accounted for the interaction point
surrounded by two water molecules, Trp86 and Tyr337. The last hypothesis (Pharm 5), constructed
from the HUW-bound structure has two HBD and one RA feature (Figure 4D). The one HBD feature
was generated from a hydrogen bond interaction with Ser203 while another was from an interaction
with the water molecule. The RA feature reflected π–π interaction between HUW and Trp86. As a result
of the structure-based pharmacophore modeling, it was observed that most of the hypotheses share
the pharmacophoric features generated from Trp86, Ser203, Phe295, and Tyr337. This implicated
that molecular interactions with these residues were important for inhibitor binding to the active site
of hAChE.
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Figure 4. Structure-based pharmacophore models from hAChE-inhibitor complexes. Each model was
generated from (A) donepezil (DNP), (B) galantamine (GNT), (C) huperzine A (HUP), and (D) huprine
W (HUW) bound structure, respectively. The interacting residues of hAChE were displayed in yellow
stick models. The pharmacophoric features, HBA (green), HY-AL (blue), HY-AR (cyan), RA (orange),
and PI (red) were shown.
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2.3. Identification of Candidate Hits from Database Screening and Molecular Docking

All five pharmacophore models (Pharm 1 to 5) were used as 3D queries to screen hundreds of
thousands of chemical compounds. The databases used for the screening were ASINEX, Chembridge,
Maybridge, and NCI that contain 213,262, 50,000, 59,652, and 238,819 compounds, respectively.
Initially, compounds that matched all of the features of each model were screened and then further
selected based on a fit value. For the screened compounds from Pharm 1, the fit value of 8, which was
greater than maximum fit value of the training set, was used. In Pharm 2 to 5, the fit value from
each reference compound used to build the pharmacophore model was used. The next filtration was
done by applying Lipinski’s rule of five and ADMET properties in order to exclude non drug-like
compounds. The selected hit compounds which were specially predicted to have high Blood–Brain
Barrier (BBB) penetration ability were subjected to molecular docking. The number of hit compounds
in each step was shown in Figure 5 in accordance with database name.
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Figure 5. Database screening using pharmacophore models (Pharm 1–5). The number of hit compounds
in each filtration process was shown along with the database name.

The hit compounds retrieved from Pharm 1 and the training set were docked into DNP-bound
structures while the compounds from Pharm 2, 3, 4, and 5 were docked to their corresponding crystal
structure along with their co-crystal ligands. The GOLD fitness scores of each reference compound
were 48.38, 64.89, 64.81, and 41.70 for DNP in Pharm2, GNT in Pharm 3, HUP in Pharm 4, and HUW
in Pharm 5, respectively. The docked pose of each compound showed identical conformation to that in
the experimental one, signifying this docking approach can reproduce the experimentally determined
binding mode of the known AChE inhibitors. As a result of Pharm 1544 hit compounds which have
a higher GOLD fitness score than that of the most active compound in the training set were selected.
Subsequently, 4 hits compounds were chosen based on visual inspection and their interactions with
key residues of hAChE. Thereafter, hit compounds derived from Pharm 2 to 5 were also analyzed in
the same manner. Finally, 4, 2, 3, 2 hit compounds were selected from Pharm 2, 3, 4, and 5, respectively.
At the end, 15 hit compounds were further evaluated using MD simulation.

2.4. Selection of Hit Compounds and Their Binding Modes at the active Site of hAChE

To investigate the binding stability of each hit compound at the active site of hAChE,
MD simulation was performed. Our results identified that four hit compounds showed consistent
interactions with the active site residues of hAChE. The Cα RMSD and potential energy for 8 systems
(four of each reference and final hit) were computed to probe into overall stability of the simulations.
The RMSD values for all of the systems were converged to less than 0.2 nm (Figure 6A). The potential
energies were also well equilibrated, demonstrating that all of the simulations remained stable without
any abnormal behavior in the structures during the entire simulation period (Figure 6B). The binding
modes for final hits were analyzed using the representative structure with the lowest potential energy.
The structural alignment of all the reference and hit compounds suggested that each hit compound
occupied the active site of hAChE in a similar pattern as the reference compounds.
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The detailed molecular interaction analyses of Hit 1 revealed that the compound formed hydrogen
bond interactions with PAS residues of hAChE (Figure 7A). The pyridine ring established hydrogen
bonds with Tyr72 and Asp74. The methoxyethyl group displayed hydrogen bonding to Gln71, Ser125,
and Gly126, while the carbonyl group between methylbenzene and pyrrole moieties showed hydrogen
bond interactions with Tyr337 and Tyr341. The benzene ring of the compound interacted with the
aromatic rings of Tyr72 and Trp286 through π–π stacking. Also, the methylbenzene moiety formed
π–π stacking and π-alkyl interaction with Phe338 and Tyr341, respectively. The binding of Hit 2
was stabilized by molecular interactions with several key residues at the PAS site including Tyr72,
Tyr124, Trp286, and Tyr341 (Figure 7B). The compound formed hydrogen bond interactions with
Tyr337, Phe338, and catalytic triad His447. Also, the methylbenzene moiety of the compound formed
π–π stacking to the aromatic ring of Tyr341 while the methyl group of the methylbenzene moiety
made π-alkyl interactions with Tyr72, Tyr124, and Trp286. In Hit 3, hydrogen bonds between the
compound and the active site residues such as Thr83, Asn87, Gly121, Tyr124, Ser125, Glu202, Tyr337,
and His447 were observed (Figure 7C). The methylbenzene moiety of the compound located between
Tyr124 and Tyr341 by forming π–π T-shaped and π–π stacking interactions with their aromatic rings.
Additionally, the methyl group of the methylbenzene moiety formed π-alkyl interaction with Tyr72.
The morpholine ring moiety buried at the catalytic triad was found to have π-alkyl interactions with
Phe338 and His447, while dimethyl moiety exposed to ABP site had π-alkyl interactions with Trp286
and Phe297. The binding mode of Hit 4 showed that almost all residues in PAS and AS sites such
as Tyr72, Asp74, Trp86, Tyr124, Ser125, Tyr133, Tyr337, and Gly448 were involved in hydrogen bond
interactions with the compound (Figure 7D). The furan and benzene ring moieties of the compound
established π–π stacking and π–π T-shaped interactions with the aromatic rings of Trp86 and Tyr337,
respectively. The morpholine ring and methyl group at both ends of the compound formed π-alkyl
interactions with Val73, Tyr124, and Tyr341.

The details of the molecular interactions between each compound and hAChE were summarized
in Table 3. When compared to interaction of the reference compounds, the hits establish
diverse interaction networks with active site residues as well as encompass the interactions with
important residues including Trp86, Ser203, Phe295, and Tyr337 found in the reference compounds.
Moreover, the number of hydrogen bonds between hit compounds and hAChE was monitored during
the entire simulation time (Figure 8). The average number of hydrogen bonds were 1.37, 1.04, 2.79,
and 2.91 for Hit 1, Hit 2, Hit 3, and Hit 4, which is more than that of the reference compounds (0.91,
1.48, 1.09, 0.96 for DNP, GNT, HUP, HUW). It was observed that all of the hits formed stable hydrogen
bond interactions with the enzyme.



Int. J. Mol. Sci. 2019, 20, 1000 8 of 15

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 15 

 

 
Figure 7. Binding mode of the final hit compounds at the active site of hAChE. (A) Hit 1 (B) Hit 2 (C) 
Hit 3 (D) Hit 4. Each hit compound was drawn as blue, green, magenta, and purple stick model. The 
interacting residues are shown as gray stick models. Hydrogen bonds between hAChE and the 
compound are indicated as black dashed lines. Only polar hydrogens are shown for clarity. 

The details of the molecular interactions between each compound and hAChE were summarized 
in Table 3. When compared to interaction of the reference compounds, the hits establish diverse 
interaction networks with active site residues as well as encompass the interactions with important 
residues including Trp86, Ser203, Phe295, and Tyr337 found in the reference compounds. Moreover, 
the number of hydrogen bonds between hit compounds and hAChE was monitored during the entire 
simulation time (Figure 8). The average number of hydrogen bonds were 1.37, 1.04, 2.79, and 2.91 for 
Hit 1, Hit 2, Hit 3, and Hit 4, which is more than that of the reference compounds (0.91, 1.48, 1.09, 0.96 
for DNP, GNT, HUP, HUW). It was observed that all of the hits formed stable hydrogen bond 
interactions with the enzyme.  

Table 3. Molecular interactions between hAChE and the final hit compounds. 

No. Compound Hydrogen Bond (Ǻ) 
π–π 

Stacking 
π-

Alkyl 
Hydrophobic 

1 Hit 1 

H56—Gln71:OE (2.53); 
H48—Tyr72:O (2.66); 
N15—Asp74:H (2.47); 

H39—Ser125:OG (2.49); 
O23—Gly126:HA2 (2.73); 
O11—Tyr337:HH (1.88); 
O11—Tyr341:HH (2.83) 

Tyr72, 
Trp286, 
Tyr341 

Phe338 

Val73, Trp86, Pro88, Gly121, 
Tyr124, Ala127, Leu130, 
Tyr133, Glu202, Glu292, 
Ser293, Gly342, Gly448  

2 Hit 2 
O13—Tyr337:HH (1.87); 
H46—Phe338:O (2.70); 
H61—His447:O (2.47) 

Tyr341 
Tyr72, 
Tyr124, 
Trp286 

Asp74, Thr83, Trp86, Asn87, 
Ser125, Tyr133, Glu202, 
Glu292, Ser293, Val294, 
Phe295, Phe297, Leu339, 
Gly342, Ala343, Gly448, 

Ile451 
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Table 3. Molecular interactions between hAChE and the final hit compounds.

No. Compound Hydrogen Bond (Ǻ) π–π Stacking π-Alkyl Hydrophobic

1 Hit 1

H56—Gln71:OE (2.53);
H48—Tyr72:O (2.66);
N15—Asp74:H (2.47);

H39—Ser125:OG (2.49);
O23—Gly126:HA2 (2.73);
O11—Tyr337:HH (1.88);
O11—Tyr341:HH (2.83)

Tyr72, Trp286, Tyr341 Phe338

Val73, Trp86, Pro88, Gly121,
Tyr124, Ala127, Leu130,
Tyr133, Glu202, Glu292,
Ser293, Gly342, Gly448

2 Hit 2
O13—Tyr337:HH (1.87);
H46—Phe338:O (2.70);
H61—His447:O (2.47)

Tyr341 Tyr72, Tyr124,
Trp286

Asp74, Thr83, Trp86, Asn87,
Ser125, Tyr133, Glu202,
Glu292, Ser293, Val294,

Phe295, Phe297, Leu339,
Gly342, Ala343, Gly448,

Ile451

3 Hit 3

H58—Thr83:O (2.38);
N16—Asn87:HD21 (2.74);

H40—Gly121:O (3.05);
O10—Gly121:HA (2.51);
O15—Tyr124:HH (2.56);
O10—Ser125:HG (2.25);
H40—Ser125:OG (1.81);

H60—Glu202:OE2 (2.71);
O12—Tyr337:HH (2.16);
H52—His447:NE2 (2.55);
H53—His447:NE2 (2.72)

Tyr124, Tyr341 Tyr72, Trp286,
Phe297, Phe338

Asp74, Trp86, Pro88, Gly122,
Gly126, Ser203 Glu292,
Ser293, Val294, Phe295,

Arg296, Gly342

4 Hit 4

H50—Tyr72:O (2.02);
O20—Asp74:H (2.72);
H41—Trp86:O (2.97);
H46—Trp86:O (2.94);

O23—Tyr124:HH (2.41);
H44—Tyr124:OH (2.99);
N10—Ser125:HG (1.94);
O11—Tyr133:HH (2.85);
17—Tyr337:HH (2.92);

O14—Gly448:HA1 (2.84)

Trp86, Tyr337 Val73, Tyr124,
Tyr341

Gln71, Gly82, Thr83, Asn87,
Pro88, Gly120, Gly121,

Gly122, Gly126, Leu130,
Ser203, Phe297, Phe338,

Trp439, His447
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Figure 8. The number of hydrogen bonds between hAChE and hit compounds. Hydrogen bond
interactions for each hit compound were monitored during10 ns simulation time. The number of
hydrogen bonds for each hit compound are indicated as blue, green, magenta, and purple lines.

Binding free energies between the compounds and hAChE were predicted using MM-PBSA
method. Average binding free energies for reference compounds ranged from −172.86 kJ/mol to
−105.98 kJ/mol (Table 4). Average values for hit compounds were −147.77 kJ/mol, −165.51 kJ/mol,
−172.80 kJ/mol, and −146.96 kJ/mol for Hit 1, Hit 2, Hit 3, and Hit 4, respectively.

Table 4. Binding free energy (kJ/mol) calculated by MM-PBSA method. ∆Eelec, electrostatic energy;
∆Evdw, van der Waal energy; ∆Gpolar, polar solvation energy; ∆Gnonpolar, nonpolar solvation energy;
∆Gbinding, binding energy.

No. Compound ∆Evdw ∆Eelec ∆Gpolar ∆Gnonpolar ∆Gbinding

1 DNP −229.18 ± 11.96 −25.55 ± 6.77 104.57 ± 15.24 −22.69 ± 0.89 −172.86 ± 12.06
2 GNT −176.69 ± 8.24 −52.49 ± 18.03 116.92 ± 26.18 −16.00 ± 0.66 −128.25 ± 19.27
3 HUP −174.90 ± 6.68 −37.84 ± 9.05 121.42 ± 15.04 −14.65 ± 0.65 −105.98 ± 11.26
4 HUW −169.03 ± 13.95 −19.49 ± 15.20 89.95 ± 31.79 −17.54 ± 0.90 −116.11 ± 17.99
5 Hit 1 −246.59 ± 10.98 −26.22 ± 7.66 149.92 ± 18.92 −24.87 ± 0.99 −147.77 ± 17.30
6 Hit 2 −263.92 ± 14.68 −12.06 ± 9.93 137.80 ± 23.00 −27.32 ± 0.80 −165.51 ± 19.17
7 Hit 3 −273.73 ± 15.13 −51.68 ± 11.30 179.79 ± 24.75 −27.18 ± 0.94 −172.80 ± 20.28
8 Hit 4 −251.71 ± 16.46 −62.46 ± 15.70 190.82 ± 27.06 −23.61 ± 0.76 −146.96 ± 22.08

Our analyses showed that overall binding free energies for hit compounds were lower than those
of the reference compounds, revealing that the binding of the selected hit compounds to hAChE were
favorable (Figure 9). Finally, these hit compounds were suggested as novel hAChE inhibitors, and their
2D structures have been shown in Figure 10. Also, their physico-chemical properties were shown
in Table S2.
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Figure 9. Prediction of binding free energies by MM-PBSA calculation. Binding free energy between
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magenta, and purple lines, respectively.
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3. Materials and Methods

3.1. D QSAR Pharmacophore Modeling

A total of 60 compounds were collected from the literatures and the bindingDB database [16–35].
All compounds have the inhibitory activities (IC50) against hAChE which were determined under
the same biological assay conditions. The compounds were divided into training set and test set.
A training set of structurally diverse 20 compounds were used to build 3D QSAR pharmacophore
hypotheses. The 3D structures of the compounds were relaxed to the nearest local minimum by energy
minimization (EM). The EM with CHARMm force field was performed using Minimize Ligands
protocol with smart minimizer algorithm for 2000 steps implemented in Discovery Studio (DS) 2016
(BIOVIA, San Diego, CA, USA).

Ligand-based pharmacophore modeling was carried out by 3D QSAR Pharmacophore Generation
protocol with HypoGen algorithm in DS. Prior to model generation, the low energy conformations
were prepared by enabling the Conformation Generation option with BEST algorithm. The uncertainty
values for training set compounds were set to 2 or 3 while other parameters were used as
defaults. For hypotheses generation, pharmacophoric features such as hydrogen bond acceptor
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(HBA), hydrogen bond donor (HBD), ring aromatic (RA), negative ionizable (NI), positive ionizable
(PI), and hydrophobic (HY) features including hydrophobic aliphatic (HY-AL) and hydrophobic
aromatic (HY-AR) were considered. The generated hypotheses were ranked by statistical parameters,
which consist of null cost, total cost, fixed cost, root mean square deviation (RMSD), and correlation (r).
The significance of the hypotheses were assessed based on their statistical parameters by Debnath’s
method [36].

The best hypothesis was validated using Fischer’s randomization and test set methods.
In Fischer’s randomization test, the CatScramble program produces a set of 19 random spreadsheets
generating 10 hypotheses in each run and then calculates total cost value or correlation between the
chemical structures and the biological activity. A confidence level of 95% was used during the Fischer’s
randomization test. The hypothesis is considered to be generated by chance if any of the randomly
generated hypotheses showed better total cost or correlation than the best hypothesis. In the test set
validation, 40 test set compounds were used to verify whether the hypothesis was able to predict the
activity values and to classify the compounds into their experimental activity ranges. The validation
was performed using Ligand Pharmacophore Mapping protocol with FAST and Flexible search options
in DS. The low energy conformations of the test set compounds were generated by the same procedures
used for the training set.

3.2. Structure-Based Pharmacophore Modeling

The X-ray crystal structures of hAChE in complex with four different inhibitors, donepezil (DNP,
PDB ID: 4EY7), galantamine (GNT, 4EY6), huperzine A (HUP, 4EY5), and huprine W (HUW, 4BDT),
were obtained from RCSB Protein Data Bank (http://www.rcsb.org; accessed on 15 December 2018)
to generate structure-based pharmacophore models [37,38]. Missing regions in the structures were
recovered using Prepare Protein tool in DS. All other co-crystal ligands were removed. Structure-based
pharmacophore modeling was performed by Receptor-ligand pharmacophore generation protocol
of DS. This module predicts pharmacophoric features based on molecular interactions between
the active site residues of hAChE and the bound inhibitor. To consider the flexibility of protein,
Maximum hydrogen bond distance was changed from 3.0 to 3.5 Å and all other parameters were kept
as default values. The generated hypotheses were ranked by the selectivity score. Higher score implies
that the corresponding hypothesis has greater potential of target selectivity. Finally, the hypothesis
with highest selectivity score was selected as the best model.

3.3. Pharmacophore-Based Database Screening

Virtual screening of chemical databases was executed by Ligand Pharmacophore Mapping
protocol available in DS. During the database screening, the parameters were the same as those in 3D
QSAR pharmacophore modeling procedure, except that Conformation Generation option was changed
to FAST algorithm to reduce computational cost. The screened compounds were sequentially filtered
by evaluating drug-like properties such as Lipinski’s rule of five [39] and absorption, distribution,
metabolism, excretion, and toxicity (ADMET) [40]. The compounds passing all criteria were subjected
to molecular docking calculation.

3.4. Molecular Docking

Molecular docking of compounds into the active site of hAChE was performed through Genetic
Optimization for Ligand Docking (GOLD v5.2.2, The Cambridge Crystallographic Data Centre,
Cambridge, UK). GOLD is an automated docking software to predict the ligand conformational
flexibility by genetic algorithm [41,42]. The geometries of compounds were minimized using the same
protocol as described previously. The protonation states of all titratable residues in the protein were
set to pH 7.0 by Clean Protein tool implemented in DS. All atoms within 10 Å in the vicinity of the
bound inhibitor were defined as the binding site using the Define and Edit Binding Sites tool of DS.
The number of docking runs was set to 10. The docking poses were ranked by GOLD fitness score.

http://www.rcsb.org
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The most populated conformation with high score was selected as the best pose of the compound.
Final conformation was used as an initial structure for MD simulation.

3.5. Molecular Dynamics Simulation

MD simulation of protein-ligand complex was conducted with AMBER03 force field [43]
using GROMACS 5.1.4 package (GROningen MAchine for Chemical Simulations, www.gromacs.org).
To generate the topology file for a ligand, AnteChamber Python Parser interface (ACPYPE) was used [44].
The structure was inserted into dodecahedron box of TIP3P water model [45]. Periodic boundary conditions
were applied to avoid the edge effect. The system was neutralized by replacing water molecules with
counter-ions. EM procedure with steepest descent algorithm was performed until the maximum force
was converged to less than 1000 kJ/mol. The system was then equilibrated during 100 ps under NVT
ensemble. Subsequently, 100 ps of NPT equilibration was executed. After two phases of equilibration
procedures, 10 ns production run was performed under NPT ensemble. A constant temperature of 300 K
and a pressure of 1 bar was maintained through Nose-Hoover thermostat [46,47] and Parrinello-Rahman
barostat [48,49], respectively. All bond lengths were restrained by LINCS algorithm [50,51]. The water
molecules were constrained by SETTLE algorithm [52]. The particle mesh Ewald method [53,54] was used
to compute long-range electrostatic interactions. Cut-off values for calculating short-range electrostatic
and van der Waals interactions were 1.2 nm. The time step of the simulation was 2 fs, and the atomic
coordinates were saved every 1 ps.

3.6. Binding Free Energy Calculation

The MM-PBSA binding free energy between protein and ligand was calculated using the
g_mmpbsa tool [55] of GROMACS. This tool computes molecular mechanics potential energy which
is comprised of electrostatic and van der Waals interactions and solvation free energy, including
polar and nonpolar solvation energies. The entropic contribution was not considered in this method.
The binding free energy calculation was performed using 20 snapshots which were sampled every
500 ps from the trajectory of the 10 ns MD simulation, using the default parameters.

4. Conclusions

In our current study, we have developed one 3D QSAR pharmacophore model from structurally
diverse hAChE inhibitors and four structure-based pharmacophore models from hAChE structure
in complex with donepezil, galantamine, huperzine A, and huprine W. The validated best models
were used as 3D queries to screen ASINEX, Chembridge, Maybridge, and NCI chemical databases.
Subsequently, the retrieved compounds were filtered through drug-like properties evaluation and
molecular docking calculations. The binding of hit candidates with hAChE were assessed by MD
simulations and binding free energies calculation. Finally, four hit compounds which formed favorable
interactions at the active site of the enzyme were proposed as potential candidate molecules against
hAChE. Furthermore, our results might be helpful in designing novel inhibitors of AChE to be used
for the treatment of AD.
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