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Abstract: Due to their beneficial effects on human health, antioxidant peptides have attracted much
attention from researchers. However, the structure-activity relationships of antioxidant peptides have
not been fully understood. In this paper, quantitative structure-activity relationships (QSAR) models
were built on two datasets, i.e., the ferric thiocyanate (FTC) dataset and ferric-reducing antioxidant
power (FRAP) dataset, containing 214 and 172 unique antioxidant tripeptides, respectively. Sixteen
amino acid descriptors were used and model population analysis (MPA) was then applied to improve
the QSAR models for better prediction performance. The results showed that, by applying MPA,
the cross-validated coefficient of determination (Q2) was increased from 0.6170 to 0.7471 for the FTC
dataset and from 0.4878 to 0.6088 for the FRAP dataset, respectively. These findings indicate that the
integration of different amino acid descriptors provide additional information for model building
and MPA can efficiently extract the information for better prediction performance.

Keywords: quantitative structure-activity relationship; QSAR; antioxidant tripeptides; model
population analysis; amino acid descriptors

1. Introduction

Bioactive peptides, usually containing 2–20 amino acid residues, are typically derived from the
enzymatic hydrolysis of proteins [1]. They are inactive within the sequence of proteins, but they can
exert various physiological functions after release. Antioxidant peptides are one of the most important
groups of bioactive peptides, which can prevent oxidative stress and they have notable contributions
to human health [2]. Antioxidant peptides have been isolated and purified from sources, such as
cereals, milk, meat, and fish [3]. The methods to assess the antioxidant capacities of peptides include
the Trolox equivalent antioxidant capacity (TEAC), the ferric ion reducing antioxidant power (FRAP),
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the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity (DPPH), the oxygen radical absorbance
capacity (ORAC), the total radical trapping antioxidant parameter (TRAP), etc. [4]. However, it is
impossible to test all of the peptides to find valid antioxidants, when considering the large number of
theoretical possible peptides, i.e., 400 dipeptides, 8000 tripeptides, 160,000 tetrapeptides, etc.

The activities of peptides are determined by the amino acid compositions, sequences,
and structures. Quantitative structure-activity relationship (QSAR), which is a well-recognized tool
for estimating chemical activities, has been widely applied for bioactive peptides prediction [5]. The
QSAR models have been successfully built on ACE-inhibitory peptides [6], antimicrobial peptides [7],
antioxidant peptides [8–10], antitumor peptides [11], bitter peptides [12], and etc. The QSAR study of
antioxidant peptides mainly focused on di and tripeptides, because they can be absorbed intact from the
intestinal lumen into the bloodstream and then produce biological effects at the tissue level [13]. When
compared to dipeptides, tripeptides were reported to exhibit higher levels of antioxidant activity [14].
Besides, tripeptides had much larger structural diversity than dipeptides, which is a good property for
developing multifunctional food additives [15].

The prediction performances need to be further improved, although plenty of QSAR models have
been built on antioxidant peptides. The relationship between peptide structure and antioxidant
activity is still unclear. This may be due to the restriction of model building methods. Model
population analysis (MPA) provides a new strategy of model building, which is to use multi-models
instead of a single model to improve prediction ability and interpretability [16,17]. Previous studies
showed that, through the application of MPA strategy, the performance of regression models could be
improved [6,18].

In this study, we built QSAR models based on two antioxidant tripeptides datasets. The
first dataset contains 214 artificially designed tripeptides and the second dataset contains 172
β-Lactoglobulin derived tripeptides, which represent designed or food originated tripeptides,
respectively. 16 amino acid descriptors were used to construct sophisticated data for the comprehensive
information of peptides. The MPA strategy was applied to extract useful information from the data
and to optimize the models. The aim of this study is not to build a new set of descriptors, but to
integrate different descriptors under the framework of MPA for better QSAR model performance on
antioxidant tripeptides data. The improved method for QSAR modelling will help in discovering new
antioxidant tripeptides for future drugs or food additives.

2. Results

2.1. FTC Dataset

The results of QSAR models on the FTC dataset are displayed in Table 1. Before outlier
elimination, the largest Q2 value of 0.4901 is obtained on the VSW descriptor. After outlier elimination,
the HSEHPCSV descriptor showed the largest Q2 value of 0.6170 among the 16 amino acid descriptors.
The integration of 16 descriptors gave rise to an improvement of the model performance (Q2 = 0.6818).
Finally, the model prediction performance was further improved (Q2 = 0.7471) after variable selection
while using the BOSS method.

In this study, an MPA-based outlier elimination procedure [19] was carried out to remove outliers
one by one (Figure 1). For the integrated data, samples of no. 181, 183, 182, 134, 151, 153, and 188 were
removed in sequence. Finally, all of the samples were within the range according to the three-sigma
rule after outlier removal (Figure 1H, dashed line).
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Table 1. Comparisons among different quantitative structure-activity relationships (QSAR) models on
ferric thiocyanate (FTC) dataset a.

Descriptors
Before Outlier

Elimination After Outlier Elimination

Q2 R2 optPC Q2 R2 optPC Outlier

HSEHPCSV 0.3861 0.5781 4 0.6170 0.7338 20 183, 182, 181, 134
ST-scale 0.4268 0.5733 12 0.5993 0.6844 13 183, 182, 181, 134
HESH 0.4091 0.5366 2 0.5968 0.7047 10 183, 181, 182, 134, 129
VSW 0.4901 0.5771 3 0.5925 0.6768 5 181, 183, 182, 134, 151

G-scale 0.4516 0.5527 6 0.5843 0.6574 9 181, 183, 182, 134, 118
FASGAI 0.4814 0.5457 5 0.5544 0.6130 6 129, 181, 128

DPPS 0.4740 0.5637 7 0.5379 0.6278 8 181, 182, 183, 134
E-scale 0.4956 0.5451 4 0.5144 0.5582 4 181, 182, 183, 112

5Z-scale 0.3903 0.4626 12 0.3974 0.4653 9 181, 182, 183, 172
VHSE 0.4265 0.5432 12 0.3974 0.514 8 181, 182, 183, 172
T-scale 0.3280 0.4215 9 0.3728 0.4362 9 181, 182, 183
V-scale 0.3371 0.3785 5 0.3070 0.3458 6 181, 183, 182
Z-scale 0.2814 0.3398 4 0.2678 0.3415 4 181
ISA-ECI 0.1493 0.1916 6 0.1572 0.1836 6 183, 182, 181

MS-WHTM1 0.0736 0.1488 3 0.1036 0.1678 3 181, 183, 182
MS-WHTM2 0.0775 0.1445 3 0.0882 0.1617 3 181, 182, 183
Integrated
descriptors 0.4811 0.5843 3 0.6818 0.7964 8 181, 183, 182, 134, 151,

153, 188
BOSS 0.7471 ± 0.0032 0.7931 ± 0.0062 9.72 ± 3.2199

a R2 is the coefficient of determination; Q2 is the cross-validated R2; optPC is optimal principal components for
PLS regression model; the results of BOSS are shown in the form of mean value ± standard deviation in 100 runs;
the top ranked Q2 scores were marked in bold.
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Figure 1. The process of model population analysis (MPA)-based outlier elimination on the FTC 
dataset of integrated descriptors. The dashed line is defined as the boundary for outliers, which is 
mean ± 3× standard deviation of prediction errors. (A) No outlier was eliminated, (B) sample No. 181 
was eliminated, (C) sample No. 183 was eliminated, (D) sample No. 182 was eliminated, (E) sample 

Figure 1. The process of model population analysis (MPA)-based outlier elimination on the FTC
dataset of integrated descriptors. The dashed line is defined as the boundary for outliers, which is
mean ± 3× standard deviation of prediction errors. (A) No outlier was eliminated, (B) sample No. 181
was eliminated, (C) sample No. 183 was eliminated, (D) sample No. 182 was eliminated, (E) sample No.
134 was eliminated, (F) sample No. 151 was eliminated, (G) sample No. 153 was eliminated, and (H)
sample No. 188 was eliminated and all of the outliers were removed.
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Figure 2 showed the selected variables by the BOSS method in 100 runs. The variables being
selected more frequently reflect high variable importance. The top 11 variables (frequency>75),
in descending order, were as follows: C-VSW-5 = N-G-7 > C-ST-3 > M-ST-7 > N-DPPS-8 > C-HESH-2
> N-FASGAI-5 > M-G-6 > N-VSW-3 > C-VHSE-6 >C-HSEHPCSV-9, which are marked on Figure 2.
All the top 11 variables originated from the best preformed amino acid descriptors, i.e., HSEHPCSV,
ST-scale, HESH, G-scale, FASGAI, and DPPS (Table 1). It showed that the ultimate model has the merit
of the best performed models that were constructed by single amino acid descriptors.
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Figure 2. Frequency of variables selected by the bootstrapping soft shrinkage (BOSS) method on the
FTC dataset in 100 runs. The higher frequency denotes higher variable importance. The top 11 variables
with frequency larger than 75 were marked in the figure.

2.2. FRAP Dataset

The results of QSAR models on FRAP dataset are displayed in Table 2. Before logarithmic
transformation of response vector Y, the largest Q2 value of 0.1408 is obtained on 5Z-scale descriptor.
The low Q2 value indicated that the tripeptide structures and their antioxidant activities that were
evaluated by FRAP assay did not share a linear relationship. After logarithmic transformation,
the VHSE descriptor showed the largest Q2 value of 0.4878. Through integrating the 16 descriptors,
the Q2 value was increased slightly to 0.4953. The prediction performance of the model was promoted
after variable selection using the BOSS method (Q2 = 0.6088). It indicated that a linear relationship
between the structures and the activities was built after the logarithmic transformation of Y and the
MPA strategy was efficient in improving the model.

Similarly, an MPA-based outlier elimination procedure was carried out on the FRAP dataset.
No outlying sample was detected, since all of the samples gather within the range according to
the three-sigma rule (Figure 3A, dashed line). The important variables that were selected by BOSS
are displayed in Figure 3B. The six most important variables (frequency > 75) are C-Z5-5, M-Z5-5,
N-VSW-9, N-VHSE-8, N-ST-3, and C-VSW-2, respectively. Most of the important variables originated
from three well performed descriptors, i.e., VHSE, 5Z-scale, and ST-scale. However, there still some
variables selected from the poorly performed descriptor, such as VSW. It suggested that descriptors
with poor performance also contained useful information for model building.
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Table 2. Comparisons among different QSAR models on FRAP dataset a.

Descriptors Before Logarithmic Transformation After Logarithmic Transformation

Q2 R2 optPC Q2 R2 optPC

VHSE 0.0042 0.2655 3 0.4878 0.6122 6
5Z-scale 0.1408 0.3177 2 0.4809 0.5568 3

DPPS 0.0059 0.2290 3 0.4147 0.5463 4
ST-scale 0.0263 0.3220 8 0.3968 0.5410 9
FASGAI 0.0470 0.2753 2 0.3735 0.5006 4
E-scale 0.0560 0.2521 1 0.3714 0.4734 5
HESH 0.0444 0.2818 10 0.3668 0.5290 3

HSEHPCSV 0.0259 0.2475 7 0.3624 0.4952 3
G-scale 0.1066 0.2334 5 0.2836 0.3850 1
VSW 0.0130 0.3071 1 0.2382 0.4361 2

MS-WHTM2 0.0342 0.0370 3 0.1728 0.2594 3
MS-WHTM1 0.0452 0.0329 9 0.1207 0.1941 4

T-scale 0.0682 0.0706 2 0.0750 0.2129 10
V-scale 0.0293 0.0748 4 0.0699 0.1495 1
Z-scale 0.0052 0.1445 1 0.0301 0.1456 6
ISA-ECI 0.0242 0.0141 1 0.0071 0.0411 1

Integrated
descriptors 0.1069 0.4212 3 0.4953 0.6423 3

BOSS 0.6088 ± 0.0041 0.6655 ± 0.0094 3.5100 ± 2.5086
a R2 is the coefficient of determination; Q2 is the cross-validated R2; optPC is optimal principal components for
PLS regression model; the results of BOSS are shown in the form of mean value ± standard deviation in 100 runs,
the top ranked Q2 scores were marked in bold.
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Figure 3. The result of QSAR model building on the FRAP dataset. (A) The result of MPA-based
outlier detection on the FRAP dataset of integrated descriptors. No outlier was detected. (B) Frequency
of variables selected by the BOSS method on the FRAP dataset in 100 runs. The higher frequency
denotes higher variable importance. The six top variables with frequency larger than 75 are marked in
the figure.

3. Discussion

3.1. Comparison with the Reported Models

For the FTC dataset, our method showed higher prediction accuracy (Q2 = 0.7471), when compared
to the previous report (Q2 = 0.6310) [20]. Note that 41 sample were eliminated as outliers in the previous
study, while only seven outliers were eliminated in this study. A much larger number of samples was
used in our model, which is more representative. It showed that our method exhibited a model with
higher prediction performance and the relatively larger applicability domain.

Similarly, for FRAP dataset, our method showed a higher prediction accuracy (Q2 = 0.6008) when
compared to the previous report (Q2 = 0.5410) [21]. It should be noted that, in the previous study, five
samples with the highest activities and 14 inactive samples were removed, while in our study, only



Int. J. Mol. Sci. 2019, 20, 995 6 of 14

inactive samples were removed. Thus, our model showed improved prediction accuracy and enlarged
applicability domain.

3.2. Relationship between Antioxidant Activities and Peptide Structures

Previous studies showed that the N-terminus and C-terminus amino acids are important in
relating to antioxidant activities [20]. Our results are in agreement with the previous findings that most
of the important variables that were selected by BOSS originated from the N-terminus or C-terminus
(Figures 2 and 3B). In addition, studies showed that tripeptides containing Cys (C), Trp (W), and Tyr (Y)
residues exhibited strong antioxidant activities [8,10]. Tripeptides YHY and LTC, for the two datasets,
respectively, having the highest antioxidant activities is confirmed by our study.

On the FTC dataset, a linear relationship between antioxidant activities and peptide structures
was constructed. However, on the FRAP dataset, the relationship was only built on the log-transformed
activities and structure properties. It indicates that the antioxidant activity and peptide structures
on the FRAP dataset exhibits a non-linear relationship. Data transformation is crucial before model
building on this kind of data. The different performance of the two datasets may be attributed to the
structure diversities of peptides. In the FTC dataset, tripeptides contain either the His or Tyr residue,
which have similar structures, while the structure diversity in the FRAP dataset is much larger.

3.3. The Integration of Amino Acid Descriptors

A number of amino acid descriptors have been developed and applied in the QSAR studies of
bioactive peptides. Each descriptor has its merits and demerits. Our study shows that an optimal
descriptor does not exist. Instead, all of the descriptors are data dependent, which means that each
descriptor performs well on different datasets. It makes the researches difficult to select descriptors.
By integrating different descriptors, each one can contribute particular information to the model
and create a new possibility for further improvement of the model. Subsequently, the next question
has become how to efficiently extract information from different descriptors and to get rid of the
redundancy of the data? Model population analysis (MPA) may provide a solution for that. It uses
multi-models instead of a single model for prediction. Each sub-model contains a random combination
of different descriptors. Through statistical analysis of the sub-model outcomes, the informative
variables from the descriptors are extracted and an optimized descriptor combination is obtained [22].
Finally, the optimized model performs better than any of the single descriptor model, as it is shown
in Tables 1 and 2. To summarize, the aim of this study is not to build a new set of descriptors, but to
provide a general framework to integrate different descriptors. The framework can take in any newly
developed descriptor and fit on different datasets. The more diverse the integrated descriptors are,
the better performance the model can be.

4. Materials and Methods

4.1. Data Collection

4.1.1. Ferric Thiocyanate (FTC) Dataset

A dataset of 214 antioxidant tripeptides that contain either His or Tyr residue was obtained from
the published literatures [20,23]. All of the tripeptides were chemically synthesized using solid phase
Fmoc Chemistry and their antioxidant activities were measured by the FTC method [23]. Test samples
(500 µg) in 0.5 mL of deionized water were mixed with linoleic acid emulsion (1.0 mL, 50 mM) and
phosphate buffer (1.0 mL, 0.1 M) in glass test tubes (5 mL). The tubes were sealed with silicon rubber
caps and then kept at 60 ◦C in the dark. 50 µL reaction mixtures were taken out at different intervals
during incubation. The degree of oxidation was measured by sequentially adding ethanol (2.35 mL,
75%), ammonium thiocyanate (50 µL, 30%), and ferrous chloride (50 µL, 20 mM in 3.5% HCl). After
the mixture had stood for 3 min, the absorbance of the solution was measured at 500 nm with a Jasco
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model Ubest 30 spectrophotometer (Tokyo, Japan). A control was performed containing the same
contents with test sample but without the peptides. The number of days that was taken to attain
the absorbance of 0.3 was defined as the induction period. The relative activities were calculated by
dividing the induction period of test samples by that of the control (Table 3). All of the experiments
were carried out in triplicate and averaged.

4.1.2. Ferric-reducing Antioxidant Power (FRAP) Dataset

A dataset of 172 antioxidant tripeptides were derived from β-Lactoglobulin, where all possible
tripeptides were collected based on its amino sequence [21]. All of the tripeptides were chemically
synthesized while using solid phase Fmoc Chemistry and their antioxidant activities were evaluated
using the FRAP assay [24]. Ten microliters of 100 mmol/mL tripeptide solution were incubated at
37 ◦C with 100 µL of FRAP reagent, containing 10 mmol/L of 2,4,6-tripyridyl-s-triazine and 20 mmol/L
of FeCl3. The absorption values were read at a wavelength of 570 nm using a microplate reader (Model
680, Bio-Rad, Hercules, CA, USA) after 10 min reaction. Aqueous Fe2+ solutions at concentrations
that ranged from 10 to 1000 µmol/L were used to produce a calibration curve. The results were
expressed as micromoles Fe2+ equivalents per mole of the sample based on the standard curve. All
of the experiments were carried out in triplicate and then averaged. The activities were logarithmic
transformed prior to modeling, where 14 inactive peptides (activity = 0) were removed (Table 4). The
measured activities before logarithmic transformation were displayed in Table S1.

The two datasets are representative for artificially designed or food protein originated tripeptides,
respectively. Both of the datasets have been used for building QSAR models before. Thus, it is suitable
for model comparison.
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Table 3. Sequences and antioxidant activities of tripeptides on ferric thiocyanate (FTC) dataset a.

No. Sequence Activity No. Sequence Activity No. Sequence Activity No. Sequence Activity No. Sequence Activity No. Sequence Activity

1 LHA 3.918 37 PHA 5.793 73 RHA 5.205 109 DHH 0.9045 145 HHH 0.0635 181 YHY 9.886
2 LHD 3.593 38 PHD 4.622 74 RHD 3.304 110 EHH 0.9045 146 HHK 0.0635 182 YKY 9.886
3 LHE 6.136 39 PHE 6.152 75 RHE 5.096 111 HHH 0.0000 147 HHR 0.0635 183 YRY 9.886
4 LHF 3.628 40 PHF 3.916 76 RHF 3.300 112 KHH 0.0000 148 HHA 0.0680 184 YAY 3.607
5 LHG 6.697 41 PHG 5.197 77 RHG 5.725 113 AHH 2.020 149 HHI 0.0680 185 YIY 3.607
6 LHH 4.836 42 PHH 6.051 78 RHH 3.296 114 IHH 2.020 150 HHL 0.0680 186 YLY 3.607
7 LHI 6.531 43 PHI 4.916 79 RHI 4.806 115 FHH 1.803 151 HHF 3.612 187 YFY 2.233
8 LHK 4.225 44 PHK 3.426 80 RHK 2.694 116 WHH 1.803 152 HHW 3.612 188 YWY 2.233
9 LHL 5.920 45 PHL 5.311 81 RHL 3.501 117 YHH 1.803 153 HHY 3.612 189 YYY 2.233
10 LHM 4.504 46 PHM 3.714 82 RHM 3.218 118 GHH 1.089 154 HHG 0.3170 190 YGY 3.366
11 LHN 5.148 47 PHN 6.061 83 RHN 5.713 119 NHH 1.089 155 HHN 0.3170 191 YNY 3.366
12 LHQ 4.136 48 PHQ 3.718 84 RHQ 3.108 120 QHH 1.089 156 HHQ 0.3170 192 YQY 3.366
13 LHR 5.184 49 PHR 4.751 85 RHR 4.302 121 MHH 2.015 157 HHM 0.0817 193 YMY 1.780
14 LHS 4.293 50 PHS 4.042 86 RHS 3.386 122 SHH 1.320 158 HHS 0.0862 194 YSY 3.447
15 LHT 5.584 51 PHT 6.247 87 RHT 5.987 123 THH 1.320 159 HHT 0.0862 195 YTY 3.447
16 LHV 3.481 52 PHV 3.335 88 RHV 3.206 124 CHH 0.9369 160 HHC 0.1277 196 YCY 3.087
17 LHW 6.791 53 PHW 6.535 89 RHW 5.878 125 HDH 1.477 161 DYY 3.417 197 YYD 4.116
18 LHY 4.203 54 PHY 4.227 90 RHY 3.378 126 HEH 1.477 162 EYY 3.417 198 YYE 4.116
19 LWA 1.192 55 PWA 1.396 91 RWA 1.212 127 HHH 0.0441 163 HYY 2.257 199 YYH 5.303
20 LWD 1.717 56 PWD 1.096 92 RWD 0.9091 128 HKH 0.0441 164 KYY 2.257 200 YYK 5.303
21 LWE 1.717 57 PWE 1.096 93 RWE 1.091 129 HRH 0.0441 165 RYY 2.257 201 YYR 5.303
22 LWF 1.414 58 PWF 0.9192 94 RWF 0.9091 130 HAH 0.9518 166 AYY 3.071 202 YYA 3.344
23 LWG 1.313 59 PWG 2.687 95 RWG 1.717 131 HIH 0.9518 167 IYY 3.071 203 YYI 3.344
24 LWH 3.212 60 PWH 1.184 96 RWH 1.091 132 HLH 0.9518 168 LYY 3.071 204 YYL 3.344
25 LWI 1.111 61 PWI 1.396 97 RWI 1.232 133 HFH 2.026 169 FYY 1.911 205 YYF 4.050
26 LWK 1.899 62 PWK 0.4066 98 RWK 0.6061 134 HWH 2.026 170 WYY 1.911 206 YYW 4.050
27 LWL 0.6060 63 PWL 1.096 99 RWL 3.212 135 HYH 2.026 171 YYY 1.911 207 YYY 4.050
28 LWM 1.394 64 PWM 0.7955 100 RWM 0.7273 136 HGH 0.8318 172 GYY 5.071 208 YYG 2.996
29 LWN 1.313 65 PWN 2.104 101 RWN 2.404 137 HNH 0.8318 173 NYY 5.071 209 YYN 2.996
30 LWQ 2.505 66 PWQ 1.202 102 RWQ 0.6061 138 HQH 0.8318 174 QYY 5.071 210 YYQ 2.996
31 LWR 2.909 67 PWR 2.705 103 RWR 2.384 139 HMH 0.8734 175 MYY 1.991 211 YYM 2.103
32 LWS 2.020 68 PWS 1.096 104 RWS 0.8081 140 HSH 0.7304 176 SYY 3.070 212 YYS 3.983
33 LWT 2.020 69 PWT 2.598 105 RWT 3.818 141 HTH 0.7304 177 TYY 3.070 213 YYT 3.983
34 LWV 1.616 70 PWV 1.008 106 RWV 0.6061 142 HCH 0.9747 178 CYY 0.4699 214 YYC 0.6369
35 LWW 3.515 71 PWW 2.899 107 RWW 2.707 143 HHD 0.1877 179 YDY 3.047
36 LWY 2.222 72 PWY 1.114 108 RWY 0.8081 144 HHE 0.1877 180 YEY 3.047 � � �

a The data containing 214 antioxidant tripeptides was collected from the literature of Saito et al. [23] and Li et al. [20]. Antioxidant activities of tripeptides were measured by the FTC
method and were relative values by adjusting the control to 1.0.
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Table 4. Sequences and activities of tripeptides on ferric ion reducing antioxidant power (FRAP) dataset a.

No. Sequence Activity No. Sequence Activity No. Sequence Activity No. Sequence Activity No. Sequence Activity No. Sequence Activity

1 LTC 2.83 30 LPM 1.04 59 YKK 0.25 88 NGE −0.30 117 ELK −0.66 146 KIP −1.15
2 CQC 2.53 31 TDY 1.01 60 AQA 0.22 89 QSA −0.33 118 PEQ −0.66 147 LLD −1.22
3 GTW 2.52 32 QCH 1.00 61 LRV 0.20 90 DAQ −0.34 119 IDA −0.68 148 DLE −1.22
4 LFC 2.07 33 TWY 0.96 62 PTP 0.18 91 ENS −0.34 120 LLA −0.70 149 PEV −1.22
5 CLV 2.06 34 RVY 0.95 63 ALN 0.18 92 ENG −0.37 121 ALA −0.72 150 LKP −1.40
6 QKW 2.03 35 KWE 0.90 64 LEI 0.16 93 NSA −0.37 122 GLD −0.72 151 ALE −1.52
7 CME 1.99 36 CLL 0.89 65 LVR 0.13 94 EKT −0.38 123 DIS −0.72 152 TQL −1.52
8 YLL 1.91 37 LAM 0.85 66 HIR 0.12 95 EQS −0.38 124 PEG −0.72 153 LEE −1.52
9 QCL 1.69 38 YSL 0.81 67 KKI 0.11 96 AMA −0.41 125 LDI −0.74 154 LEK −1.70

10 LAC 1.69 39 MKG 0.80 68 SFN 0.07 97 KID −0.41 126 AEP −0.74 155 DAL −2.00
11 GEC 1.64 40 QTM 0.80 69 SLL 0.06 98 GAQ −0.43 127 ALI −0.77 156 EVD −2.00
12 EQC 1.52 41 LAL 0.76 70 PAV 0.04 99 PLR −0.44 128 LDA −0.77 157 VDD −2.00
13 FCM 1.51 42 QAL 0.73 71 RLS 0.04 100 ILL −0.46 129 VFK −0.77 158 DEA −2.00
14 CHI 1.45 43 MEN 0.73 72 AGT 0.04 101 VRT −0.46 130 ALK −0.77 159 ALT -
15 ACQ 1.38 44 MKC 0.72 73 LLF 0.02 102 IAE −0.49 131 AQK −0.82 160 KGL -
16 EEL 1.33 45 LSF 0.69 74 PMH 0.00 103 QSL −0.49 132 IIA −0.82 161 IQK -
17 WEN 1.31 46 TCG 0.67 75 EEQ −0.01 104 KTK −0.51 133 LIV −0.85 162 QKV -
18 VYV 1.19 47 SLA 0.65 76 LVL −0.02 105 ASD −0.52 134 EGD −0.85 163 GDL -
19 MHI 1.16 48 TMK 0.64 77 QLE −0.05 106 APL −0.52 135 QKK −0.85 164 EIL -
20 CAQ 1.12 49 LDT 0.62 78 FDK −0.07 107 AQS −0.57 136 IPA −0.85 165 KII -
21 WYS 1.12 50 EKF 0.54 79 LLL −0.08 108 ENK −0.57 137 SDI −0.89 166 NKV -
22 KYL 1.08 51 VLV 0.53 80 SAP −0.08 109 TPE −0.59 138 VEE −0.89 167 DTD -
23 CGA 1.08 52 MAA 0.44 81 LLQ −0.12 110 RTP −0.59 139 DDE −0.89 168 EPE -
24 KKY 1.08 53 PTQ 0.44 82 NPT −0.17 111 VLD −0.62 140 KVL −0.92 169 EAL -
25 NEN 1.08 54 VAG 0.41 83 FNP −0.20 112 IRL −0.62 141 KFD −0.92 170 DKA -
26 ECA 1.07 55 ALP 0.37 84 LNE −0.24 113 AAS −0.64 142 IVT −0.96 171 KAL -
27 DYK 1.06 56 AVF 0.36 85 SAE −0.26 114 LQK −0.64 143 VTQ −0.96 172 LKA -
28 KCL 1.05 57 KVA 0.31 86 KPT −0.28 115 FKI −0.64 144 AEK −0.96
29 YVE 1.05 58 TQT 0.26 87 DIQ −0.30 116 ISL −0.66 145 TKI −1.10 � � �

a The data containing 172 antioxidant tripeptides was collected from the literature of Tian et al. [21]. Antioxidant activities of tripeptides were measured by the FRAP assay and were
logarithmic transformed. Fourteen inactive peptides were removed before model building.
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4.2. Data Processing

The tripeptide sequences were transformed into X-matrices using 16 amino acid descriptors,
respectively, while the dependent variable Y-vectors represents the relative activities of peptides.
These descriptors include Z-scale, 5Z-scale, DPPS, MS-WHIM, ISA-ECI, VHSE, FASGAI, VSW, T-scale,
ST-scale, E-scale, V-scale, G-scale, HESH, and HSEHPCSV, as is shown in Table 5. They are the
most frequently used amino acid descriptors in the QSAR study of bioactive peptides. The peptide
structure is characterized by describing amino acids within the sequence. For example, Z-scale
descriptor, containing three parameters (Z1, Z2, and Z3), would generate nine variables (3 parameters
× 3 amino acids) for tripeptides. To clearly label each variable, we used a unified rule to name
them. The amino acid at the N-terminus was designated as N, the C-terminus amino acid was
designated as C, and the middle amino acid was designated as M. Thus, the nine variables that
were generated by Z-scale descriptor were labeled as N-Z-1, N-Z-2, N-Z-3, M-Z-1, M-Z-2, M-Z-3,
C-Z-1, C-Z-2, and C-Z-3, respectively. The 16 descriptors were integrated to build an X-matrix, which
contained 306 variables (V1-V306), with the correspondence, as follows: Z-scale (V1-V9), 5Z-scale
(V10-V24), DPPS (V25-V54), MS-WHIM1 (V55-V63), MS-WHIM2 (V64-V72), ISA-ECI (V73-V78),
VHSE (V79-V102), FASGAI (V103-V120), VSW (V121-V147), E-scale (V148-V162), T-scale (V163-V177),
ST-scale (V178-V201), V-scale (V202-V210), G-scale (V211-V234), HESH (V235-V270), and HSEHPCSV
(V271-V306), respectively.

Table 5. Parameters of 16 amino acid descriptors.

Descriptor No. of Physicochemical
Property

No. of Extracted
Variable Scope of Variable

Z-scale [25] 29 3 Electronic property, steric property and
hydrophobic property

5Z-scale [26] 26 5 Electronic property, steric property and
hydrophobic property

DPPS [27] 119 10 Electronic property, steric property,
hydrophobic property and hydrogen bond

MS-WHIM [28] 36 3 Surface charge distribution, size and charge
over shape dependence

ISA-ECI [29] / 2 Isotropic surface area and electronic
charge index

VHSE [30] 50 8 Electronic property, steric property and
hydrophobic property

FASGAI [31] 335 6

Hydrophobic property, alpha and turn
property, bulky property, electronic

property, compositional characteristics,
local flexibility

VSW [32] 99 9 Molecular size, shape, symmetry and atom
distribution

T-scale [33] 67 5 Topological property

ST-scale [34] 827 8
Molecular constitutional, topological,

geometrical, hydrophobic, electronic and
steric property

E-scale [35] 237 5

Hydrophobic property, size, preferences for
amino acids to occur in α-helices, number

of degenerate triplet codons and the
frequency of occurrence of amino acid

residues in β-strands

V-scale [36] / 3 Van Der Wall’s volume, net charge index
and hydrophobic parameter of side chains

G-scale [37] 457 8 Electronic property, steric property and
hydrophobic property

HESH [38] 171 12 Electronic property, steric property,
hydrophobic property and hydrogen bond

HSEHPCSV [39] 95 12 Hydrophobic, steric, electronic properties
and hydrogen bond
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4.3. QSAR Model Building

Partial least squares (PLS) regression [40] was used to build the connection between the peptide
structure descriptions (variables, X-matrices) and the relative activities (responses, Y-vectors). It was
implemented using MATLAB software (Version R2015a, the MathWorks, Inc., Natick, MA, USA). All
of the variables were auto-scaled to unit variance and all of the responses were mean-centered prior to
model building. The models were validated using cross-validation and the optimal number of PLS
components were chosen based on a statistic, called Q2, which is the cross-validated R2, referring to
the predictive ability of the model. R2 is the coefficient of determination, providing an estimate of the
model fit.

MPA was applied to optimize the model through outlier elimination and variable selection. It is
a framework for model building that utilizes multiple models instead of a single model to construct
results [16,17]. Generally, it worked, as follows: (1) firstly, a random resampling procedure was applied
to obtain sub-datasets; (2) then, sub-models were built based on the sub-datasets; and, (3) finally,
a statistical analysis was used to extract useful information from the outcome of sub-models. In the
present study, MPA was utilized for outlier detection and variable selection.

The MPA-based outlier detection method [19] was applied to remove the outlying samples from
measured data. To begin with, 1000 sub-datasets were generated through random reselecting of
80% samples in sample space. Subsequently, for each sub-dataset, a PLS regression model was built
and the prediction error for each sample was recorded. The mean of prediction errors was used as
the basis for outlier detection and a three-sigma rule was applied to define the boundary, as it is
reported previously [6]. The bootstrapping soft shrinkage (BOSS) method [18] was applied to select
informative variables from the pool of descriptors. It is also based on the idea of MPA. Firstly, 1000
sub-datasets were obtained using bootstrap resampling in the variable space. Afterwards, 1000 PLS
models were built based on the sub-datasets and the regression coefficients were extracted. In the next
step, weighted bootstrap resampling was used to regenerate sub-datasets and to rebuild sub-model.
The resampling procedure was repeated until all of the uninformative variables were eliminated.

5. Conclusions

In this study, we have constructed QSAR models on two datasets of antioxidant tripeptides, i.e.,
FTC dataset and FRAP dataset. After the integration of 16 amino acid descriptors and utilization
of the MPA strategy for model building, the Q2 values were enlarged from 0.6170 to 0.7471 and
from 0.4878 to 0.6088, respectively. The results show that the MPA framework is powerful in QSAR
model building on antioxidant tripeptides data. The framework can also be applied to investigate the
structure and activity relationships of other types of bioactive peptides and to integrate more different
molecular descriptors.
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Abbreviations

BOSS the bootstrapping soft shrinkage method
DPPH 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity
FRAP ferric-reducing antioxidant power
FTC ferric thiocyanate
MPA model population analysis
ORAC oxygen radical absorbance capacity
PLS partial least squares
QSAR quantitative structure-activity relationships
TEAC Trolox equivalent antioxidant capacity
TRAP total radical trapping antioxidant parameter
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