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Abstract: (1) Background: Silene latifolia is a dioecious plant, whose sex is determined by XY-type
sex chromosomes. Microbotryum lychnidis-dioicae is a smut fungus that infects S. latifolia plants
and causes masculinization in female flowers, as if Microbotryum were acting as a sex-determining
gene. Recent large-scale sequencing efforts have promised to provide candidate genes that are
involved in the sex determination machinery in plants. These candidate genes are to be analyzed for
functional characterization. A virus vector can be a tool for functional gene analyses; (2) Methods: To
develop a viral vector system in S. latifolia plants, we selected Apple latent spherical virus (ALSV) as an
appropriate virus vector that has a wide host range; (3) Results: Following the optimization of the
ALSV inoculation method, S. latifolia plants were infected with ALSV at high rates in the upper leaves.
In situ hybridization analysis revealed that ALSV can migrate into the flower meristems in S. latifolia
plants. Successful VIGS (virus-induced gene silencing) in S. latifolia plants was demonstrated with
knockdown of the phytoene desaturase gene. Finally, the developed method was applied to floral
organ genes to evaluate its usability in flowers; (4) Conclusion: The developed system enables
functional gene analyses in S. latifolia plants, which can unveil gene functions and networks of
S. latifolia plants, such as the mechanisms of sex determination and fungal-induced masculinization.
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1. Introduction

Silene latifolia is a dioecious plant model system, where sex is determined by the XY sex
chromosomes. This plant has been applied for various studies, including those on plant sex
chromosome evolution, sex determination, dosage compensation, and DNA methylation [1–6]. A key
factor in each of these aspects may be the sex-determining genes. Previous studies suggested that
there are two sex-determining genes located on the Y chromosome, designated as stamen-promoting
function (SPF) and gynoecium-suppressing function (GSF) [7]. Since the sex of S. latifolia is insensitive
to exogenous plant hormones, it is thought that the presence of SPF and GSF are indispensable for the
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expression of the male phenotype, albeit with the one exception of fungal-induced masculinization.
S. latifolia female flowers develop stamens when an anther smut fungus, Microbotryum lychnidis-dioicae,
infects female plants, as if Microbotryum acts as an SPF (shown in the cover figure). Although the
detailed molecular mechanisms of this phenomenon have largely remained a mystery, the stamens
produced by Microbotryum infection are true stamens that have originated from the ordinary suppressed
stamen primordia in female flowers [8].

Since the discovery of sex chromosomes in S. latifolia plants in 1923 [9], the sex-determining
loci have been narrowed down by the construction of the deletion-based maps to identify SPF and
GSF [10,11]. Recently, these studies have moved forward with large-scale sequencing, leading to
the specification of candidate genes for SPF and GSF, as well as Microbotryum SPF-like factor [12].
A further question relates to how they play roles in the sexual development of a dioecious plant.
An answer to this question has been awaiting further development of functional analyses that could
be used in S. latifolia plants. One of the difficulties in performing functional analyses is the resistance
to Agrobacterium, because only limited ecotypes of S. latifolia plants are susceptible to a limited number
of Agrobacterium strains. In fact, a recently developed Agrobacterium-mediated transformation method
is now available for a specific S. latifolia ecotype, with an efficiency of up to 4.7% [13]. An alternative
method that does not rely on Agrobacterium infection may solve the problem.

In this study, we developed a virus vector as a functional analysis system in S. latifolia plants. Plant
virus vectors are used as versatile reverse-genetic tools for efficient functional analysis [14–17]. Since
they can heterologously express a gene in plants, or can repress expression of a gene by virus-induced
gene silencing (VIGS), the method can be applied for plants that are not susceptible to Agrobacterium.
However, there are drawbacks that are associated with this system; virus vectors often retain pathogenic
characters, such as symptoms induced by the virus itself, and they have a limited host range and
tissue specificity. A virus used in this study, Apple latent spherical virus (ALSV), has advantages for
analyzing flower morphology because it systemically infects plants, including floral tissues, without
any symptoms [18]. Therefore, we developed the VIGS system using ALSV in S. latifolia plants. Our
results demonstrated that ALSV infected S. latifolia plants at a rate of up to 100%, the infected plants
had no symptoms, and virus vectors were detected throughout the flower meristems. VIGS was
confirmed by knockdown of the phytoene desaturase gene of S. latifolia plants, and this was further
applied to the floral organ genes, SlUFO and SlSUP, to observe the resulting phenotype in flowers.

2. Results and Discussion

2.1. Optimization of an Inoculation Method for Delivering Apple Latent Spherical Virus (ALSV) to
S. latifolia Plants

Apple latent spherical virus (ALSV) has favorable characteristics as a virus vector, since it infects a
variety of plant species, including legume, cucurbits, and Rosaceae fruit trees, and that its infection is
asymptomatically and systemically dispersed throughout the plant, including the floral organs [18].
Based on these characteristics, it is likely that ALSV infects S. latifolia plants. To test this, we first
inoculated ALSV in S. latifolia plants using a simple Agrobacterium-mediated inoculation method.
However, we could not find any infection in S. latifolia plants, probably due to their resistance to
Agrobacterium. We therefore took additional steps prior to the inoculation of S. latifolia plants, using
Nicotiana benthamiana plants to avoid direct Agrobacterium inoculation onto S. latifolia plants. ALSV was
propagated in N. benthamiana plants, and the middle leaves—which contained the highly infectious
ALSV [19]—were collected to extract virus particles. Extracted RNA from the virus particles was
applied to S. latifolia seedlings using a gene gun. This resulted in an infection rate that reached almost
100% (Figure 1).
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virus (ALSV) from the upper leaves of Silene latifolia plants at 21 days post-inoculation (dpi). Lane 1–

4, one-shot inoculation was applied to the plants; lane 5–8, two-shot inoculation to the plants. Two 

healthy plants were used as uninfected healthy controls. 
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including Turnip mosaic virus, Barley stripe mosaic virus, and ALSV, can infect the SAM [20–22]. To 

evaluate whether ALSV migrates to the SAM and, subsequently, to the flowers, we performed in situ 

hybridization of S. latifolia floral buds infected with ALSV (Figure 2). The result suggested that ALSV 

migrates to the shoot apex, and that it persisted throughout the floral organs from the initial (Figure 

2E,F) to subsequent stages (Figure 2B,C) of flower development. Importantly, no symptoms 

developed in the infected plants, while ALSV was dispersed throughout the floral meristems. These 

characteristics of ALSV are particularly useful for functional analyses in flowers, such as for studying 

sex determination.  

 

Figure 2. ALSV localization in floral buds of S. latifolia plants. (A–F) Flower buds infected with ALSV 

and (G–L) uninfected healthy flower buds. (A,D,G,J) Nuclei stained with 4′,6-diamidino-2-

phenylindole (DAPI), (B,E,H,K) ALSV, detected by Fluorescein-5-isothiocyanate (FITC), and (C,F,I,L) 

their merged images. (A–C) Infected flower buds at a late stage and (D–F) enlarged images of the 

infected flower buds at an early stage. (G–I) Healthy flower buds at an early stage and (J–L) enlarged 

images of the healthy flower buds at an early stage. Representative images of at least three individual 

plants are shown. Bars = 100 µm. 

Figure 1. Reverse transcription polymerase chain reaction (RT-PCR) detection of Apple latent spherical
virus (ALSV) from the upper leaves of Silene latifolia plants at 21 days post-inoculation (dpi). Lane
1–4, one-shot inoculation was applied to the plants; lane 5–8, two-shot inoculation to the plants. Two
healthy plants were used as uninfected healthy controls.

2.2. ALSV Migrates to Flowers in S. latifolia Plants

The shoot apical meristem (SAM) is generally a virus-free region; however, several viruses,
including Turnip mosaic virus, Barley stripe mosaic virus, and ALSV, can infect the SAM [20–22]. To
evaluate whether ALSV migrates to the SAM and, subsequently, to the flowers, we performed in
situ hybridization of S. latifolia floral buds infected with ALSV (Figure 2). The result suggested that
ALSV migrates to the shoot apex, and that it persisted throughout the floral organs from the initial
(Figure 2E,F) to subsequent stages (Figure 2B,C) of flower development. Importantly, no symptoms
developed in the infected plants, while ALSV was dispersed throughout the floral meristems. These
characteristics of ALSV are particularly useful for functional analyses in flowers, such as for studying
sex determination.
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Figure 2. ALSV localization in floral buds of S. latifolia plants. (A–F) Flower buds infected with ALSV
and (G–L) uninfected healthy flower buds. (A,D,G,J) Nuclei stained with 4′,6-diamidino-2-phenylindole
(DAPI), (B,E,H,K) ALSV, detected by Fluorescein-5-isothiocyanate (FITC), and (C,F,I,L) their merged
images. (A–C) Infected flower buds at a late stage and (D–F) enlarged images of the infected flower
buds at an early stage. (G–I) Healthy flower buds at an early stage and (J–L) enlarged images of the
healthy flower buds at an early stage. Representative images of at least three individual plants are
shown. Bars = 100 µm.
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2.3. Evaluation of Virus-Induced Gene Silencing (VIGS)-Mediated Gene Knockdown in S. latifolia Plants

To validate whether the ALSV vector can reduce the expression of an endogene of S. latifolia,
we used the phytoene desaturase (SlPDS) gene as an indicator of gene knockdown. PDS has
been widely used for gene knockdown studies because its knockdown phenotype can be simply
observed as photobleaching [23]. To construct ALSV-SlPDS, we used a partial complementary DNA
(cDNA) fragment of the SlPDS gene, obtained from total RNA of S. latifolia leaves, and cloned four
sub-fragments of SlPDS into the ALSV vector, the length of which were 108, 117, 150, and 153 bp
(Figure 3A, see also Section 3). The SlPDS inserts were stably retained during the infection of these
ALSV-SlPDS vectors in S. latifolia plants, which was confirmed by reverse transcription polymerase
chain reaction (RT-PCR). The plants inoculated with ALSV-SlPDS vectors exhibited photobleaching
phenotypes that were typical for PDS knockdown within 20 days after inoculation, indicating that the
VIGS system worked efficiently in S. latifolia plants (Figure 3B).
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Figure 3. Virus-induced gene silencing (VIGS) of SlPDS gene in S. latifolia plants. (A) Schematic
representation of ALSV-SlPDS vectors used for VIGS. Four partial SlPDS fragments shown below,
which differ in positions and length, were inserted into the artificial processing site of ALSV vector;
(B) photographs of S. latifolia plants infected with ALSV-SlPDS vectors at 20 dpi. Healthy represents a
S. latifolia plant without any virus infection, and wtALSV represents a S. latifolia plant infected with
wild-type ALSV vector without an SlPDS insert; (C) relative chlorophyll contents measured by the Soil
Plant Analysis Development (SPAD) values in leaves infected with wtALSV and ALSV-SlPDS vectors.
SPAD values represent mean ± SE from three leaves of each plant (n = 3 to 7). Asterisks indicate a
significant difference between plants infected with wtALSV and those infected with each ALSV-SlPDS
vector at p < 0.001 (Student’s t-test); (D) quantitative reverse transcription PCR (RT-qPCR) analysis of
SlPDS gene expression levels in plants infected with wtALSV, and those infected with ALSV-SlPDS.
The error bars represent the standard deviations of at least three plants normalized to the S. latifolia
18S ribosomal RNA gene. The asterisk indicates a significant difference between plants infected with
wtALSV, and those infected with ALSV-SlPDS at p < 0.001 (Student’s t-test).

The extent of the photobleaching was slightly different between the four ALSV-SlPDS constructs,
suggesting that the sequence length and content of the insert affect VIGS efficiency. The insert length
was especially important, because inserts with more than 200 bp were all deleted on the inoculated
or upper leaves; hence, VIGS was unsuccessful. This result was consistent with a previous study
that showed that a shorter insert tends to be more stable than a longer one [18]. The photobleaching
phenotype is especially prominent along the vasculature of each leaf, which is likely to reflect the
higher level of virus accumulation in that tissue. To quantify the bleaching phenotypes, we analyzed
SPAD values in each bleached leaf, which are known to be proportional to the amount of chlorophyll
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content in the leaves [18]. An analysis of SPAD values indicated that they were decreased when
leaves exhibited a photobleaching phenotype upon ALSV-SlPDS infection (Figure 3C). While the SPAD
values of plants infected with ALSV-SlPDS_117N were almost similar to those of the wild-type ALSV
(wtALSV) and of uninfected plants, the SPAD values of plants infected with ALSV-SlPDS_153N, _150C,
and _108C were significantly lower than those of uninfected plants (p < 0.05, Student’s t-test). The
knockdown of the SlPDS gene was confirmed by RT-qPCR analysis (Figure 2D). Taken together, the
results demonstrated that VIGS-mediated gene knockdown by ALSV vectors can decrease S. latifolia
gene expression.

To examine the persistence of the ALSV vector in S. latifolia plants, we continued to observe the
phenotypes of the ALSV-SlPDS infected plants for about two months. As a result, the photobleaching
phenotype remained and was distributed systemically, but in a patchy fashion in the lower and middle
leaves; homogeneous bleaching was observed in the upper leaves (Figure 4). The result indicates that
ALSV accumulates in the upper parts of the plant, as previously reported in other plants [18]. This
accumulation in the upper parts is typical in ALSV-infected plants, which is particularly advantageous
for the functional analysis of floral organ genes.
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Figure 4. (A) Systemic phenotype of the plant infected with ALSV-SlPDS_150C and (B) enlarged image
of the shoot apex in (A). (C) The plant infected with ALSV-SlPDS_108C and (D) wild-type ALSV. Bars
= 10 cm (single line), 2 cm (double line).

2.4. VIGS-Mediated Gene Knockdown in the Flowers of S. latifolia Plants

We then applied the developed ALSV system to study gene function in the flowers of S. latifolia
plants. Two genes, SlUFO and SlSUP, a homolog of Arabidopsis UNUSUAL FLORAL ORGANS (UFO)
and SUPERMAN (SUP), respectively, were used for the assay. UFO is an F-box protein, which acts
as a cofactor for LEAFY (LFY) transcription factor in the flower primordia [24]. LFY, together with
APETALA1 (AP1) plays a role in the specification of flower meristem identity [25–28]. In S. latifolia,
SlUFO is expressed at the base of the petal primordia during the last stages of flower development
(Figures S2 and S3). Recent studies have shown that the activity of the Class I KNOTTED-like homeobox
(KNOXI) transcription factor SHOOT MERISTEMLESS (STM) affects UFO expression [29], therefore, it
could be expected that VIGS-mediated SlUFO knockdown caused drastic changes in floral architecture.
SlSUP is exclusively expressed in female flower buds; overexpression of SlSUP in hermaphrodite
A. thaliana plants resulted in suppression of stamens [30]. It has been shown that the expression level of
SlSUP was significantly decreased in the female flowers, exhibiting a hermaphroditic phenotype due
to Microbotryum infection [30] (the Microbotryum-infected phenotype is shown in the cover figure). The
known data, therefore, suggested that SlSUP gene knockdown in a S. latifolia female flowers would
produce a hermaphroditic phenotype.
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To induce SlUFO/SlSUP knockdown in S. latifolia flowers, we generated ALSV-SlUFO and
ALSV-SlSUP, and introduced them to S. latifolia plants, as described above. The inserts finally used
for ALSV-SlUFO and ALSV-SlSUP were 162 and 132 bp in length, respectively. These constructs
were selected from three SlUFO (132, 162, and 174 bp in length) and five SlSUP (102, 105, 111, 132,
and 177 bp in length) constructs, based on the infection rate to S. latifolia (see Table S1 primer list for
details of each fragment position), and they were used for further analysis. We checked the infection
of ALSV vector carrying the SlUFO or SlSUP insert in each plant by RT-PCR, using primers flanking
the insert (Figure 5A), both from the upper leaves and the floral organs. The results showed that
ALSV-SlUFO and ALSV-SlSUP infected S. latifolia plants at high rates in the upper leaves: up to 100%
and 60% for ALSV-SlUFO and ALSV-SlSUP, respectively. In addition, the retention of the SlUFO or
SlSUP insert was verified in all plants that were infected by ALSV in the upper leaves, demonstrating
that ALSV-SlUFO and -SlSUP were successfully delivered to S. latifolia plants. In the floral organs,
however, we found a high rate of deletion of the SlUFO or SlSUP insert: 50%–100% and 33%–67%
deletion for ALSV-SlUFO and ALSV-SlSUP, respectively, depending on the inoculation conditions (gas
pressure). Figure 5 shows the representative results of RT-PCR from ALSV-infected plants. RT-PCR
from flower buds of ALSV-SlUFO-inoculated plants showed two patterns, multi-bands, or a single
band. The multi-bands indicated that the flower buds were co-infected with the vector retaining the
insert, as well as with that from which the insert was deleted (Lane 3, Figure 5B), whereas the single
band indicated that these buds were only infected with the vector from which the insert was deleted
(Lane 4, Figure 5B). By contrast, the vector retaining the SlSUP insert was often detected as a single
band (Lanes 5 and 6, Figure 5B), indicating that the vector stability in the flower buds was relatively
high in the ALSV-SlSUP-inoculated plants.
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Figure 5. Verification of ALSV infection and the retention of the insert in ALSV-SlUFO and -SlSUP
plants. (A) Schematic representation of wtALSV and ALSV-SlUFO/SlSUP. The insert size is 162 and
132 bp for ALSV-SlUFO and SlSUP, respectively. Arrows indicate a primer set flanking the insert used
for RT-PCR; (B) representative result of the RT-PCR in the flower buds inoculated with wtALSV (Lane
1 and 2), ALSV-SlUFO (Lane 3 and 4), and ALSV-SlSUP (Lane 5 and 6). The size of the amplification
products from wtALSV, which has no insert, is approximately 300 bp. The retention of the insert was
determined by the fragment length. H, uninfected healthy plant; control ALSV plasmid, the ALSV
plasmid without the insert; M, 100 bp ladder marker.
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Next, we analyzed whether the expression of SlUFO was downregulated in ALSV-SlUFO-infected
flower buds. SlUFO expression was decreased in the buds infected with the ALSV-SlUFO vector
that partially retained the insert (Lane 3 in Figure 5B), although they were not statistically significant
(Figure 6A, ALSV-SlUFO_1), suggesting that ALSV-SlUFO caused VIGS in the floral organs. By
contrast, the bud infected with ALSV, from which the SlUFO insert was completely deleted (like
lane 4 in Figure 5B), showed an even higher level of SlUFO expression (Figure 6A, ALSV-SlUFO_2).
From these observations, we concluded that the decrease in SlUFO expression was only prominent
in buds infected with ALSV-SlUFO that retained the insert. The phenotype observed in those buds
was mild; they were reduced in size and failed to open up (Figure 6B). Similar phenotypes have been
reported in a ufo mutant of Torenia plants, in which the second whorl was transformed to sepal-like
organs [31]. However, when we removed its sepals, we observed a normal structure of floral organs in
ALSV-SlUFO plants (Figure 6C), unlike the sepaloid phenotype in Torenia plants [31]. Since UFO is
known to play roles in flower development in concert with crucial transcription factors for flowering
initiation [24–29], our result suggested that knockdown of the SlUFO gene caused the inhibition of
flower development at the initial stages.
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Figure 6. Relative expression level of the SlUFO gene and the exhibited phenotype in ALSV-SlUFO
plants. (A) RT-qPCR analysis of SlUFO gene expression levels in plants infected with wtALSV and
ALSV-SlUFO. A bud smaller than 2 mm was collected from different individual plants. Values represent
means ± standard deviations of two technical replicates normalized to S. latifolia ubiquitin 11 gene;
(B) a representative phenotype observed in a bud infected with wtALSV (left) and ALSV-SlUFO (right).
The buds shown here are derived from the same plants used for the RT-qPCR in (A). The bud size of
the ALSV-SlUFO-infected plant is relatively small, compared with that of the wtALSV-infected plant;
(C) pictures taken after removal of the sepals from (B). Despite their small size, all floral organs appear
normal. Bars = 1 cm.

In ALSV-SlSUP plants, we observed stamen induction in the female flowers, which was weak
compared to the hermaphroditic phenotype induced by Microbotryum infection (Figure 7A). To assess
the contribution of SlSUP expression level to the phenotype, we compared the SlSUP gene expression
level between ALSV-SlSUP- and Microbotryum-infected plants. The expression level of SlSUP was
significantly decreased in the flower primordial, compared with that in the plants infected with
wtALSV (Figure 7B; p < 0.05, Student’s t-test), which was of a similar level (p > 0.05, Student’s t-test) to
that observed in the Microbotryum-infected plants. The results showed that the expression of the SlSUP
gene was successfully downregulated by ALSV-mediated VIGS, but that this was not enough to cause
complete stamen induction, similarly to the Microbotryum-mediated hermaphroditic formation.
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Figure 7. Downregulation of the SlSUP gene by VIGS in S. latifolia plants. (A) Different levels of stamen
induction in female S. latifolia infected with wtALSV, ALSV-SlSUP, and Microbotryum. Stamens are not
developed in female flowers in the wtALSV plants, while marginally and fully developed stamens
are observed in female flowers in ALSV-SlSUP- and Microbotryum-infected plants, respectively. Red
arrows indicate the stamens in ALSV-SlSUP plants. Bars = 1 mm; (B) RT-qPCR analysis of SlSUP gene
expression levels in the female flower meristems infected with wtALSV, ALSV-SlSUP, and Microbotryum.
Five flower meristems corresponding to stage 7–10 were collected, and the stamen induction was
checked under a microscope in ALSV-SlSUP- and Microbotryum-infected plants. Two out of five buds
had confirmed stamen induction in ALSV-SlSUP plants. All buds had confirmed stamen induction
in Microbotryum-infected plants. The error bars represent the standard deviations at those two buds,
normalized to the S. latifolia ubiquitin 11 gene. Asterisks indicate a significant difference; there was
no significant difference between plants infected with ALSV-SlSUP and Microbotryum at p < 0.05
(Student’s t-test).

3. Materials and Methods

3.1. Plant and Viral Materials, and Agroinfiltration

Silene latifolia seeds used in this study were originally collected from a field population in Berlin,
Germany, or a generous gift from Professor Michael E. Hood (Amherst College, Amherst, MA, USA).
S. latifolia and N. benthamiana plants were grown in a growth chamber under conditions of 25 ◦C
with a daylength of 16 h. The methods used for Agrobacterium tumefaciens infiltration were previously
described [32]. Agrobacterium cultures carrying an appropriate plasmid were resuspended in infiltration
buffer to a final optical density of 1.0 at 600 nm.

3.2. Inoculation of ALSV onto S. latifolia Plants

Methods for the inoculation of ALSV vector into S. latifolia plants were performed according to a
recently updated protocol [19]. Briefly, Agrobacterium cultures containing pCAMBIA1301-ALSV-RNA1,
pCAMBIA1301-ALSV-RNA2 without/with a target fragment, and RNA silencing suppressor p19 of
tomato bushy stunt virus, were mixed at a 1:1:1 ratio and infiltrated into three leaves of 3- to 4-week-old
N. benthamiana plants. p19 was added to increase the virus infectivity, which was only applied upon
inoculation, to N. benthamiana plants. After confirming ALSV infection and the retention of the insert
in the upper uninoculated leaves two weeks after inoculation, the infected N. benthamiana leaves were
processed to concentrate virus particles, using bentonite solution (the detailed procedure is described
in [19]). Virus RNA was extracted from the concentrated virus solution, using phenol extraction and
ethanol precipitation, and 250 µg of each RNA was mixed with gold particles (Microcarrier, Bio-Rad
Laboratories, Hercules, CA, USA). This RNA-coated gold was inoculated into 2-week-old S. latifolia
plants using the PDS-1000/He Particle Delivery System (Bio-Rad) or GDS-80 (Nepa Gene Co., Ltd.,
Chiba, Japan).
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3.3. RNA Extraction and Reverse Transcription Polymerase Chain Reaction (RT-PCR) for Checking
ALSV Infection

Total RNA was extracted from S. latifolia leaves by using the ISOGEN reagent (FUJIFILM Wako
Chemicals, Osaka, Japan) or TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA). One-step
RT-PCR was performed by using the SuperScript III One-Step RT-PCR System with Platinum Taq
(Thermo Fisher Scientific). The primer set R2ALS1363(+) and R2ALS1551(−) was used for detecting
ALSV (Figure 1). The primer set ALSR2-1213(+) and ALSR2-1484(−), which was designed to flank
the multiple cloning site of the ALSV vector, was used for detecting ALSV in inoculated plants, and
for checking whether the infected vector retained the insert. The reaction volume was 10 µL, and the
thermal cycling conditions were 50 ◦C for 30 min for reverse transcription, 94 ◦C for 2 min to activate
the DNA polymerase; followed by 40 cycles of denaturation at 94 ◦C for 15 s, annealing at 55 ◦C for
30 s, and extension at 68 ◦C for 1 min; with a final extension at 68 ◦C for 7 min.

3.4. In Situ Hybridization Analysis to Detect Virus Invasion into the Floral Meristems

Shoot apices of ALSV-infected plants were sampled and fixed in 4% paraformaldehyde. Tissue
sections were prepared by Kawamoto’s film method [33]. RNA in situ hybridization was performed
by using the methods described in [34]. A digoxigenin (DIG)-labeled antisense RNA probe, that
was complementary to positions 1418 to 2111 of ALSV-RNA2, was used for the detection of ALSV.
Anti-DIG-FITC (Sigma-Aldrich, St. Louis, MO, USA) was used for signal detection.

3.5. Construction of ALSV Vectors

ALSV vectors used in this study were based on pCAMBIA1301-ALSV-RNA1 and pCAMBIA1301-
ALSV-RNA2, a T-DNA-based plasmid containing the full-length cDNA clone of pEALSR1 and
pEALSR2L5R5, respectively [17]. pEALSR2L5R5 was modified to have a multiple cloning site
containing SalI, BlnI, Aor51HI, and BamHI, to make unique restriction enzyme sites in the
pCAMBIA1301-based vector. Primers used in this study are listed in Table S1. For the construction of
ALSV-SlPDS, a partial cDNA of SlPDS was amplified from DNase-treated total RNA of S. latifolia by
reverse-transcription with PrimeScript RTase (Takara Bio, Otsu, Shiga, Japan), and subsequent PCR
with KOD-FX Neo (Toyobo, Osaka, Japan) using primer set atPDS_1070F and atPDS_1809R, which
were designed based on the AtPDS gene sequence of A. thaliana. Subsequently, four fragments of SlPDS
were amplified from this cDNA using four primer sets: SlPDS-100F and SlPDS-200R for SlPDS_100N
(the length of the amplified product was 117 bp), SlPDS-100F and SlPDS-250R for SlPDS_150N (153 bp),
SlPDS-150F and SlPDS-300R for SlPDS_150C (150 bp), and SlPDS-200F and SlPDS-300R for SlPDS_100C
(108 bp). For the construction of ALSV-SlUFO and ALSV-SlSUP, the partial cDNAs of SlUFO (Figure S1;
GenBank accession No. MK563991) and SlSUP [30] were used as a template for amplification with
primer sets ALSV-sal-SlUFO_1029F and ALSV-bam-SlUFO_1190R, and ALSV-sal-SlSUP_310F and
ALSV-bam-SlSUP_441R, respectively. All PCR-amplified fragments were excised from 3% agarose
gels, purified, and cloned into SalI- and BamHI-treated pCAMBIA1301-ALSV-RNA2 using the Gibson
Assembly Cloning Kit (New England Biolabs, Ipswich, MA, USA). SlPDS-, SlUFO- or SlSUP- cloned
ALSV vectors were verified by sequencing with ALSV-2600F and ALSV-3000R, and transformed into
an Agrobacterium strain, EHA105, using the freeze-thaw method [35].

3.6. RT-PCR and Quantitative RT-PCR (RT-qPCR)

Quantitative RT-PCR (RT-qPCR) was carried out as previously described [32]. Primers for
detecting the SlPDS gene were SlPDSF1 and SlPDSF2; for the SlUFO gene, SlUFO_F2 and SlUFO_R2;
for the SlSUP gene, SlSUPF4 and SlSUPR3 [19]. These qPCR primers were designed in the regions
which are different from the VIGS insert region. The primers for 18S ribosomal RNA (rRNA) gene,
Sl18SF1 and Sl18SR1 [30], and ubiquitin 11 gene, SL_UBQ F and SL_UBQ R [36], were used as references.
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3.7. Inoculation of Microbotryum onto S. latifolia Plants

Microbotryum strains (ATCC-22000 and -22004, [8]) were inoculated onto S. latifolia plants as
previously described [37], with an infection rate of approximately 80%–90%.

4. Conclusions

This is the first report of a virus vector system applied to S. latifolia plants. Our results
demonstrated that the broad host range of ALSV could be extended to S. latifolia plants. The developed
method has advantages for functional analysis in S. latifolia plants, because the ALSV vector can be
delivered to plants at high rates of up to 100%, and it asymptomatically and systemically infects plant
tissues, including the floral organs. Taking advantage of this high gene delivery rate and the ability
of ALSV to invade the meristematic tissue, it may be applicable to develop novel and more stable
functional analysis methods, such as transformation or genome editing, like the recently reported
genome editing using a virus vector [38]. Collectively, this study showed that the ALSV vector can
cause target gene knockdown of S. latifolia plants by VIGS, and this technique will allow for unveiling
of gene functions and networks of S. latifolia plants, such as the mechanisms of sex determination and
fungal-induced masculinization.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/5/
1031/s1.
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