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Abstract: Lanthanide-doped upconversion nanoparticles (UCNPs) are inorganic nanomaterials in
which the lanthanide cations embedded in the host matrix can convert incident near-infrared light to
visible or ultraviolet light. These particles are often used for long-term and real-time imaging because
they are extremely stable even when subjected to continuous irradiation for a long time. It is now
possible to image their movement at the single particle level with a scale of a few nanometers and
track their trajectories as a function of time with a scale of a few microseconds. Such UCNP-based
single-particle tracking (SPT) technology provides information about the intracellular structures
and dynamics in living cells. Thus far, most imaging techniques have been built on fluorescence
microscopic techniques (epifluorescence, total internal reflection, etc.). However, two-dimensional
(2D) images obtained using these techniques are limited in only being able to visualize those on the
focal planes of the objective lens. On the contrary, if three-dimensional (3D) structures and dynamics
are known, deeper insights into the biology of the thick cells and tissues can be obtained. In this
review, we introduce the status of the fluorescence imaging techniques, discuss the mathematical
description of SPT, and outline the past few studies using UCNPs as imaging probes or biologically
functionalized carriers.

Keywords: upconversion nanoparticles; single-particle tracking; three-dimensional imaging;
intracellular transport

1. Introduction

The synthesis and characterization of lanthanide-doped upconversion nanoparticles (UCNPs) are
well established [1–6]. In particular, UCNPs, which are doubly doped by the sensitizer cations (usually
Yb3+) and the activator cations (e.g., Yb3+, Er3+, Tm3+, Nd3+, Ho3+) in the host material (e.g., NaYF4,
NaGdF4), have attracted the greatest interest [4,5]. By selecting a proper cation pair and adjusting
their relative composition, their optical properties can be optimized, such as wavelengths, band-width,
quantum yield, and photo stability [1,4]. UCNPs are excited by near-infrared (NIR) lasers, whose
wavelength is well matched to the absorption wavelength of Yb3+ (980 nm) and Nd3+ (808 nm) [1–5].
In this NIR range, biomolecules show minimum absorption in vitro and in vivo [7–12]. As a result,
they do not damage the biological samples (cells and tissues) optically and chemically. Thus, UCNPs
can be monitored for a long time [13,14]. In addition, for the same reason, the autofluorescence is
nearly absent, while this side effect is problematic even in confocal microscopy [15,16]. Finally, NIR can
penetrate into the tissues and skins as deep as a few cm due to the lower scattering and absorption
compared to visible or UV light, which would be beneficial when UCNPs are employed in medical

Int. J. Mol. Sci. 2019, 20, 1424; doi:10.3390/ijms20061424 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/20/6/1424?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20061424
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 1424 2 of 16

applications [17–20]. Other than the benefits due to the NIR excitation, the upconversion process
itself confers huge advantages. Their emission upon continuous irradiation of NIR was found to
be free of blinking and bleaching [21–23]. Thus, UCNPs combined with NIR excitation will help
researchers to receive successful long-term and real-time images or movies [13,14,16,24]. Being free
from autofluorescence, these movies provide the accurate coordinates of UCNPs as a function of time.
The duration of such “tracking” of particles and the length of trajectories are obviously connected
to the photostability of the probes (organic dyes, fluorescence proteins, and nanoparticles) [25–28].
In that respect, UCNPs are considered ideal for optical imaging due to their photostability, as described
above [3,4]. However, the data analysis for determining the coordinates is not trivial because one has
to obtain the images of individual particle signals that are well separated spatially without significant
overlap. In order to deal with such a situation, several versions of super-resolution fluorescence
microscopy using UCNPs have been recently developed and are widely used [23,29–32]. In this review,
we introduce the status of the fluorescence imaging techniques with an emphasis on the benefits of
three-dimensional (3D) imaging over the conventional two-dimensional (2D) version (and b). After
this, we discuss the mathematical description of SPT (Figure 1c) and the past few studies, using UCNPs
as imaging probes or biologically functionalized carriers.
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Figure 1. (a) Wide-field epi-fluorescence microscopy setup for 3D imaging and tracking. (b) Five
representative single-cell images containing UCNPs at different heights. (c) 3D trajectories of six single
UCNP vesicles.

2. Single-Particle Tracking

2.1. Principle

In biological science studies, SPT may be significantly more informative than any other
methods [25–27,33]. Literally, SPT analysis tracks the position of single particles (e.g., a single
nanoparticle, vesicle, or endosome). To construct the trajectories of single particles, the center position
of particle is connected by a tracking algorithm [25–27]. It is possible to obtain various quantitative
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analyses about the motion by using the obtained trajectories. As the imaging probe, UCNPs might
be compared to semiconductor quantum dots (QDs) in many ways. For example, the absorption
wavelength of QDs is spectrally broad while the emission is narrow, and its wavelength depends
strongly on the size (the smaller the bluer) due to the quantum confinement effect [34–36]. On the
contrary, UCNPs are usually excited at a single wavelength (980 or 808 nm) and their emission is
blue-shifted (i.e., towards higher frequencies) [1,2]. It is important to note that the spectra of UCNPs
do not depend on their size, which indicates that any variations in the particle dimensions (usually
from sub-10 nm to several hundred nm) do not affect their photophysical properties [37,38].

2.2. Localization of Single Particles

To track a single fluorophore, its coordinates need to be accurately determined. If we assume
that the fluorophore is a point source of the photon emission, the real image is a large spot due to the
diffraction limit of light. This spot signals display the shape of a function. This function, which is
known as the “point-spread function (PSF),” is defined as the optical instrument response function of
the microscope. In a typical experimental setup, such PSFs are isotropic and contain the information
about the coordinates [27,39,40]. On the focal plane, a PSF is fit to a 2D Gaussian functions, by which
the x- and y-coordinates are determined (Figure 2b) [39]. Although the Airy function may be the best
choice as a model PSF, most localization studies adopt the Gaussian function (Equation (1)) instead
of the Airy function (Equation (2)) because the Gaussian function is much easier to handle and the
localized centroids are accurate enough [27].

Gaussian for x-y plane ≡ A · exp(− (x−x0)
2+(y−y0)

2

2σ2 )

A : amplitude of Gaussian, σ : standard deviation of Gaussian
(1)

Airy function ≡
(

2J1(
2π
λ NA

√
(x−x0)

2+(y−y0)
2)

2π
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√
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2+(y−y0)
2

)2

J1(X) : the first order Bessel function, λ : wavelength of emission, NA : numerical aperture

(2)

The center, which is the point where the Gaussian function is maximum, is defined as two-
dimensional x- and y- coordinates [27,40]. The accuracy of localization can be estimated by the
following equation [39]:

∆x =

√
σ2 + a2/12

N
+

8πσ4b2

a2N2 ≈
√

σ2 + a2/12
N

, (3)

where σ is the standard deviation of the fitting Gaussian function, a is the pixel size, b is the background
noise, and N is the photon number. In practice, the second term is negligibly small [39]. In this equation,
it is noteworthy that the accuracy is closely related to the number of photons detected. The s and
a values depend on the optical setup and the camera technology, so these cannot be controlled [39].
However, the number of photons (N) is the number related to the intrinsic stability of the fluorophore
against irradiation or excitation [27,39,40]. A high N value can be achieved by raising the power of
the light source (laser). However, the fluorophores would become photobleached and disappear from
the images more frequently. This is why people are concerned about the photostability or quantum
yield of their probes (organic dyes) [23,27,28]. What about UCNPs? The quantum yield of UCNPs is
generally very low (<1%) compared to organic dyes or QDs [1,2]. However, the laser power can be
raised until any saturation occurs [31]. The signal will increase accordingly, with only small damage to
the cells and tissues [10,13,14].
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Figure 2. (a) The UCNP intensity profile over the z-axis and the Gaussian fit. UCNP images were
acquired by 980 nm excitation (731 W cm−2) with an exposure time of 70 millisecond. Scale bar:
500 nm. (b) A typical 3D centroid determination. The UCNP on the section image that is closest to
the z-coordinate determined in (a) is chosen for the localization. The numbers in the intensity plots
represent standard deviations of the Gaussian function [16]. Reproduced by permission of the PCCP
Owner Societies. Copyright 2018 Royal Society of Chemistry.

2.3. Two-Dimensional Single-Particle Tracking

Most SPT algorithms are built on 2D localization, whereby the center positions of the particles
are determined in every frame of the movie. Various SPT algorithms have been developed,
from “nearest neighbor algorithms” to more sophisticated custom algorithms, which have been
reviewed previously [27,41,42]. In so doing, the research points are focused on how to identify
the same particles in the subsequent frames. Chenouard et al. compared the performance of
14 different SPT algorithms for different particle dynamics (random diffusive motion, directed motion,
and their combination) and concluded that no single SPT algorithm is optimal for all situations [42].
Recently, the theoretical research groups studying nonlinear statistical mechanics suggested that these
mechanics may be helpful for the analysis of the trajectory in terms of velocity distribution, cumulative
displacement, mean square displacement (MSD), non-Gaussian parameter (NGP) and ergodicity
breaking parameter analyses [26,27,43–45].

Because UCNPs do not exhibit photoblinking, their continuous movements can be monitored
without interruption as long as the particles are close to the focal plane (2D space) [13,14]. Thus,
for cells with a finite thickness, the movements along the z-axis are lost and only the particles moving
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on the x- and y-axis can be investigated further [13,14,33]. To be frank, the particles that people have
been looking at are moving by accident along the focal plane. Even the absence of photoblinking of
UCNPs cannot overcome this problem [14]. However, it can be distinguished whether the UCNPs
that “fade away” or “show up” in the movies are moving out of focus or in focus, respectively. In this
respect, there is no way to tell which is which due to the extensive blinking of QDs. This is one of the
disadvantages of 2D trajectories.

However, even with 2D trajectories, one may obtain substantial insights into the cellular
dynamics [14,26,33,43,46–50]. One of the representative types of dynamics is transport by the motor
proteins. Motor proteins running on the microtubule (dyneins and kinesins) or actin filament (myosin)
play important roles for intracellular transport and as part of the cytoskeleton [51,52]. The consensus
is that the internalization of nanomaterials occurs through a process called “endocytosis” [13,53–57].
The nanoparticles are captured by the motor proteins and transported through directional motion
(anterograde, retrograde and/or bidirectional) along the microtubule and some fraction of the
nanoparticles are released by exocytosis [13,56,57]. Such endocytic pathways form the basic concept
of the drug and gene delivery [58–64]. These steps are oversimplified and the uptake rate may be
stochastic or highly controlled [56,57,65–67]. The presence of multimode intracellular transport in
living cells was demonstrated using long-term SPT with UCNPs [14]. Through a real-time imaging
study of UCNPs in living cells, Nam et al. tracked the movement of vesicles containing UCNPs in
living HeLa cells and obtained a real-time image of endocytosed UCNPs at the single vesicle level for
6 h [14]. The 2D SPT analysis demonstrated that the dynamics of particle transport was composed
of multiple phases within a single trajectory, including active transport by motor proteins, such as
dyneins and kinesins [52].

2.4. Three-Dimensional Localization and Single Particle Tracking

As most biological samples are 3D objects, 2D SPT has limitations, especially when one studies
thick cells or tissues. The 3D localization is much more challenging than 2D localization because the
3D PSF is axially symmetric with respect to the focal plane and the shape changes slowly as the axial
position varies [40]. Thus far, a number of 3D optical imaging techniques have been developed [68–80].
In all techniques, the researchers scan their illumination over the sample to complete 3D images [68–70].
All types of this scanning method have a vertical directional component, z, with respect to the 2D
images being obtained. For example, in epifluorescence microscopy, the scanning direction of the
objective lens and/or the sample stage is perpendicular to the 2D images. On the contrary, if the angle
between the exciting light (e.g., lasers) and aqueous environment reaches the critical angle (~60◦),
total internal reflection (TIR) starts to occur and a thin evanescent field that is less than ~200 nm deep
is generated on the interface [81,82]. Total internal reflection fluorescence (TIRF) microscopy can only
be used to excite fluorophores within the field. Therefore, TIRF is not generally appropriate for the
study of the cells and tissues thicker than ~200 nm.

There are various types of 3D microscopy, which use scattering or fluorescence signals for
detection [69–80]. It is noteworthy that scattering microscopies were used for the 3D particle tracking.
Among the various techniques, digital holographic microscopy (DHM) or interferometric scattering
microscopy (iSCAT) are non-destructive “label-free” methods [71–74]. They have been developed
using nonlinear scattering of light instead of using imaging probes. These are really smart and powerful
methods but the focus here will be placed on the 3D SPT of UCNPs, which is applicable for observing
subcellular dynamics in living cells. Previous studies have demonstrated 3D localization methods
using engineered 3D PSF (e.g., double-helix PSF with fluorescence of single dyes), bifocal imaging
scheme or multiplexed illumination (e.g., TSUNAMI), which is an optical aberration to understand
dynamics in living cells at the single molecule level [75–80].

In astigmatism, 3D localization is a fully wide-field scheme, which is useful when the sample
thickness along the z-axis is relatively small [78,79]. Zhuang and co-workers used the elliptical
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Gaussian (Equation (4)) and Airy-beam-based self-bending PSF instead of using Gaussian to fit the
PSF shapes on the x–y plane [78,80,83].

Elliptical Gaussian ≡ D · exp

(
−2
(

x− x0

wx

)2
− 2
(

y− y0

wy

)2
)
+ bg, (4)

where D is the amplitude of peak, (x0, y0) is the center of the emitter and bg is the background.

Image width, wx,z(z) = w0

√
1 +

(
z− z0

d

)2
+ B

(
z− z0

d

)3
+ C

(
z− z0

d

)4
, (5)

where w0 is the width of the PSF at the focal plane, z0 is the offset of the x or y focal plane from
the average focal plane, d is the depth of focus and B and C are correction coefficients. In this case,
the lateral (x- and y-) and axial (z-) resolutions of 3D localization are ~30 and ~60 nm, respectively [78].

Due to UCNPs’ superior photostability and NIR excitation, combining 3D localization with UCNP
will guarantee robust 3D tracking methodology [16,24]. However, the application of 3D localization
methods using astigmatism and bifocal imaging is limited because the range of the z-position is
relatively small (~500 nm) [76,78]. The 3D localization using multiplexed illumination microscopy
requires a very sophisticated microscope [77]. On the other hand, the engineered PSF-based 3D
localization, such as the double-helix PSF scheme, is regarded as a promising tool that is suitable for
observing cellular dynamics by using UCNPs [75].

As noted above, the out-of-focus background due to autofluorescence is minimized, so 3D
movement of all the particles can be monitored at the same time and, consequently, the location of
UCNPs at the specific binding can be visualized [16,24]. The experimental approach to 3D localization
of UCNPs can be categorized into two types of techniques: “z-scanning” and the “wide-field”
scheme [16]. For 3D localization of UCNPs, the first step involves finding the focal plane and
z-coordinate. To this end, z-scanning is performed using actuators, such as a stepping motor scanner or
a piezoelectric scanner. Using a software code, the position of the objective or the sample holder on the
microscope can be adjusted. While monitoring the emission intensity of a spot (Figure 2a), the distance
between the objective lens and the sample are scanned. In order to find the focal plane, the UCNP
intensity vs. frame number is plotted and fitted to Gaussian distribution. The use of Gaussian
distribution as a function of z was inspired by the 2D SPT point-spread function (Equation (6)) but for
the purpose of centroid determination, Gaussian is a good approximation [16].

Gaussian for z-axis ≡ A′ · exp(− (z−z0)
2

2σ′2
)

A′ : amplitude of Gaussian, σ′ : standard deviation of Gaussian
(6)

We emphasize here that there are pros and cons to each of the methods, so it is important to
understand all those schemes and select appropriate methods for the specific purpose. The technical
aspects of the two schemes can be found in the literature and, therefore, the pros and cons of scanning
microscopy (confocal) and wide-filed microscopy (epifluorescence microscopy and total internal
reflection microscopy or TIRF) are summarized in Table 1.

Table 1. Pros and cons of confocal, epifluorescence, and TIRF microscopy.

Confocal Epifluorescence TIRF

Pros No out-of-focus background
Sectioning along z-axis

Rapid detection
Low signal loss

Deep penetration

Rapid detection
Low background

Cons Slow detection
Signal loss High background Small excitation depth
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It is easy to determine from Table 1 that these methods are complementary to each other and,
as for the UCNP imaging, the epifluorescence microscopic technique was found to be the best [3].
For example, the high background stemming mainly from the solvent (medium) is simply removed
by the rinsing solvent while preparing the immobilized cell samples. The 3D coordinates were
determined upon reconstruction (Figure 3d,e) and the outline of nuclei whose surface is covered with
red fluorescent protein (RFP) is shown. Since RFP is photobleached quickly, the snapshot pictures of
nuclei are taken and the laser turned off (532 nm). Moreover, in 3D images, the interesting point is
whether the particles are inside and outside the organelles, such as nuclei and the mitochondria cell
membrane, addressing the mechanism of internalization and release. It is worth noting that this 3D
experiment was a combination of wide-field and z-scanning. The imaging speed was one 3D image
per second, thus useful for fast dynamics [16,45].

The method of confocal microscopy is based on a scanning scheme in all three (x-, y- and z-)
directions that has been already reviewed in many studies [68–70]. Although this method is appropriate
for watching fixed structures or slow dynamics, it is usually difficult to track fast moving particles.
One of the breakthroughs to this was the spinning-disk confocal scheme, whereby the imaging speed
can be substantially increased while preserving the advantages of confocal microscopy [84–88]. That
is, the fast 2D sectioning and z-scanning capability of spinning-disk confocal microscopy are good
alternative ways of tracking UCNPs in 3D.

3. Applications

The SPT of nanoparticles at the cellular level can be engineered for efficient drug or gene delivery
and sensing [3–6,60,64,89]. For example, the information from SPT analysis provides the endocytosis,
delivery pathway, and arrival at the target [14,57].

3.1. Delivery System

In drug delivery systems where nanoparticles are used as carriers, the most important factor is
the number of nanoparticles that are efficiently taken up by the cell. Zhang et al. reported that UCNPs
with a higher surface charge can be more efficiently taken up by the cell [90]. The uptake efficiency
of UCNP-PEI (positively charged, PEI = polyethyleneimine) was higher than that of UCNP-PAA
(negatively charged, PAA = polyacrylamide) or UCNP-PVP (weak positively charged, PVP = polyvinyl
pyrrolidone) over the initial 4 h. This was attributed simply to the electrostatic interaction between
nanoparticles and the negatively charged cell membrane, which was suggested to be the main
driving force behind the controlled cellular uptake of nanoparticles (Figure 3a–c). In addition, as the
particle size increases, the role of the surface charge weakens and the particle shape becomes a major
determining factor in the cellular uptake process. Thus, particles with a large surface-to-volume ratio
were more efficiently taken up in the energy-dependent endocytosis process.

In addition to cellular uptake in the delivery system, another important factor is precise targeting.
Previous studies have shown that it is challenging to quantify the targeting efficiency at the cellular
level as many nanoparticles are taken up by the cells and the whole image is analyzed. However,
as shown in several previous studies, SPT of UCNPs in combination with target staining can allow
sufficient analysis of the targeting accuracy [45,91–95].

Gho et al. evaluated the uptake efficiency and targeting effect of UCNPs with cell-penetrated
peptides using the TAT peptide (cell penetration and nuclear-targeted sequences) conjugated with
UCNP and UCNP-PAA [45]. The uptake efficiency of TAT-peptide-conjugated UCNP and UCNP-PAA
did not differ significantly during the first 4 h. However, after 24 h, UCNP-TAT (which had a strong
positive charge and was targeted to the cell nucleus) remains in the cells, whereas UCNP-PAA is
mostly excreted outside the cells, indicating that its targeting effect was better than that of UCNP-PAA
(Figure 3d). In particular, the real-time 3D tracking of UCNP using these methods can provide useful
information regarding the intracellular pathways of UCNP in live cells. Simultaneously tracking
several single UCNPs can allow the analysis of relative movement (Figure 3e). This technique is
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highly advantageous for studying the effect of various intracellular structures on carrier transport in
delivery systems.

Wang et al. [94] studied the delivery of doxorubicin, an anticancer drug, using UCNP. They used
folic-acid-conjugated UCNP to target folate receptors that are present on various types of cancer
cell surfaces. They elucidated the exact targeting effect by tracking the location of doxorubicin and
single UCNPs. Liu et al. [95] studied a photodynamic system that induced the apoptosis of cancer
cells by targeting mitochondria and generating mitochondrial reactive oxygen species (mitoROS)
through a photosensitizer-conjugated UCNP. In particular, they demonstrated that the heme-containing
cytochrome c produced in this process could be used as an indicator for apoptosis studies by altering
the upconversion luminescence signal. They stained the mitochondria with a fluorescent dye and
tracked the location of a single UCNP to ensure that the correct target was reached.
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photostability and use of NIR excitation, UCNP-based pH-sensitive probes can function as a sensor 
inside living cells for an extended period of time. Arppe et al. [96] developed a pH sensor that 
covalently linked a fluorogenic pH-dependent dye (pHrodo™ Red) to the surface of UCNP. However, 
the fluorescence emission of pHrodo™ Red significantly decreases with decreasing pH and cannot 
be used for long-term live cell imaging due to the phototoxicity of the 532 nm laser wavelength used 
to excite this dye, which shows photobleaching and photoblinking. However, pHrodo™ Red 
conjugated to UCNP was used as a stable sensor via the energy transfer effect. Hence, this group was 
able to develop a pH sensor with a dynamic pH range of 2.5–7.2 and demonstrated its function as a 
nanoscale pH sensor in living HeLa cells. 
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regulation of intracellular vesicle acidity. Cells were treated with UCNP-PEI-pHrodo for 16 h. After 
this, the intracellular localized UCNP in the cells were monitored and the intracellular environment 

Figure 3. 2D and 3D SPT images. (a–c) The fluorescence microscopy characterization of
HeLa cells co-cultured with polymer-modified UCNPs. (a) bright-field, (b) fluorescence and
(c) merged microscopy images [90]. (d) The images from various angles (at 0◦, 60◦ and 120◦) for
UCNP–phospholipid–PEG-TAT. (e) The 3D trajectories from various angles (at 0◦, 60◦ and 120◦) for
UCNP–phospholipid–PEG-NH3+ [45]. Reproduced from [90] with permission from Royal Society
of Chemistry and [45] by permission of the PCCP Owner Societies. Copyright 2018 Royal Society
of Chemistry.

3.2. Biosensing

In addition to drug delivery, SPT technology is actively used in biosensing. An acidic pH
inside cells is an important indicator of intracellular dysfunction, such as cancer [96]. Therefore,
the development of an effective pH sensor that is capable of instantly measuring and imaging rapid
pH changes within cells would be an important breakthrough [96–98]. In particular, due to their
photostability and use of NIR excitation, UCNP-based pH-sensitive probes can function as a sensor
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inside living cells for an extended period of time. Arppe et al. [96] developed a pH sensor that
covalently linked a fluorogenic pH-dependent dye (pHrodo™ Red) to the surface of UCNP. However,
the fluorescence emission of pHrodo™ Red significantly decreases with decreasing pH and cannot be
used for long-term live cell imaging due to the phototoxicity of the 532 nm laser wavelength used to
excite this dye, which shows photobleaching and photoblinking. However, pHrodo™ Red conjugated
to UCNP was used as a stable sensor via the energy transfer effect. Hence, this group was able to
develop a pH sensor with a dynamic pH range of 2.5–7.2 and demonstrated its function as a nanoscale
pH sensor in living HeLa cells.

Similarly, Näreoja et al. [98] used pHrodo conjugated to PEI-coated UCNP in a study of the
regulation of intracellular vesicle acidity. Cells were treated with UCNP-PEI-pHrodo for 16 h. After
this, the intracellular localized UCNP in the cells were monitored and the intracellular environment
was classified into three categories, e.g., cytoplasmic (pH 7.2–7.5), endosomal (6.0–7.2) and lysosomal
(<6.0). Most of the UCNPs (95%) were discharged from endosomes into the neutral environment
that was located in lysosomes and endosomes. Thus, they could be used as sensors for measuring
pH change inside the endoplasmic reticulum (Figure 4). These results would be used as a very
useful tool for detecting the change in pH in a cellular level environment by imaging the position
of the endoplasmic reticulum in real time. This would involve recording the change of the emission
wavelength as a function of pH change at the single particle level.
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at the cellular level. Xu et al. [101] developed a multifunctional nanocomposite composed of light-
emitting UCNPs capped with mesoporous silica and loaded with an oxygen-sensitive luminescent 
ruthenium complex. The red downconversion luminescence (at excitation/emission peaks of 455/606 
nm) was rapidly reduced by oxygen and was able to rapidly indicate the oxygen concentration in 
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Such UCNP-based biosensors should be able to quickly and accurately measure changes in the 
specific parts of the cell. Therefore, SPT is indispensable in this field and accurate information that is 
collected at the cellular level by SPT analysis can be used in various important and specific 
applications, such as disease diagnosis. 

Figure 4. Ratiometric imaging of pH probes reveals their localization in three types of
microenvironment. (a) Localization of UCNPs detected using 980 nm excitation, (b) sensitized
upconversion resonance energy transfer emission from pHrodo Red, (c) bright-field, (d) an overlaid
ratiometric image of pH nanoprobes with different ratios depending on the localization. Scale bar 10 µm.
The enlarged insets (e) show different ratios in extracellular (ctrl), small endosome, large endosome,
and lysosome. Brightness of insets is increased by 10 gray level units from the overlaid image (d) for
better visibility [98]. Reprinted from [98] with permission from American Chemical Society. Copyright
2017 American Chemical Society.
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Another important function of biosensors is heat sensing via thermosensor systems [99]. Thermal
mapping requires fluorescent nanoprobes with good biocompatibility and high thermal sensitivity to
obtain submicron spatial resolution and subdegree thermal resolution. Shi et al. [100] treated NIH-3T3
cells with NaYF4: Yb3+, Er3+@NaYF4: Yb3+, Nd3+ core–shell nanoparticles to measure the intracellular
temperature (Figure 5).
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Figure 5. Thermal images of NIH-3T3 cells treated with external heating [100]. Adapted from [100] 
with permission from IOPScience. Copyright 2018 IOPScience. 

4. Perspectives 

We have briefly reviewed the principle of upconversion, usage of UCNPs in live cell imaging 
and SPT. SPT and imaging technology have been developed such that one can obtain nanometer 
(spatial) resolutions for imaging cells and tissues [27,29,32,40,102–105]. The bottleneck is more likely 
to be probes due to their photostability and targeting capability. Throughout this review, the 
advantages of using UCNPs as the probe were emphasized, but determining the specific targeting 
chemistry is still in its early stages. Medicinal chemists trying to find appropriate chemical drugs 
should be aware of the importance of imaging technology, such as SPT, and willing to incorporate it 
with this other technique. For example, photodynamic therapy requires sensitizing molecules 
attached to the nanoparticles and a laser system that triggers the reactive oxygen species (ROS) is 
produced [17,19,106]. A better understanding of the mechanism for the delivery of nanoparticles at 
the single particle level and chemical stability and reactivity is a prerequisite for early and accurate 
diagnosis and therapy [107–109].  
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Oxygen sensors have also been developed as the oxygen activity can be used for tumor
diagnosis at the cellular level. Xu et al. [101] developed a multifunctional nanocomposite composed
of light-emitting UCNPs capped with mesoporous silica and loaded with an oxygen-sensitive
luminescent ruthenium complex. The red downconversion luminescence (at excitation/emission
peaks of 455/606 nm) was rapidly reduced by oxygen and was able to rapidly indicate the oxygen
concentration in hepatocellular carcinoma cells (HepG-2).

Such UCNP-based biosensors should be able to quickly and accurately measure changes in the
specific parts of the cell. Therefore, SPT is indispensable in this field and accurate information that is
collected at the cellular level by SPT analysis can be used in various important and specific applications,
such as disease diagnosis.

4. Perspectives

We have briefly reviewed the principle of upconversion, usage of UCNPs in live cell imaging and
SPT. SPT and imaging technology have been developed such that one can obtain nanometer (spatial)
resolutions for imaging cells and tissues [27,29,32,40,102–105]. The bottleneck is more likely to be
probes due to their photostability and targeting capability. Throughout this review, the advantages
of using UCNPs as the probe were emphasized, but determining the specific targeting chemistry
is still in its early stages. Medicinal chemists trying to find appropriate chemical drugs should be
aware of the importance of imaging technology, such as SPT, and willing to incorporate it with this
other technique. For example, photodynamic therapy requires sensitizing molecules attached to the
nanoparticles and a laser system that triggers the reactive oxygen species (ROS) is produced [17,19,106].
A better understanding of the mechanism for the delivery of nanoparticles at the single particle
level and chemical stability and reactivity is a prerequisite for early and accurate diagnosis and
therapy [107–109].
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