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Abstract: G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich
sequences. A considerable number of studies have revealed that these noncanonical structural
motifs are widespread throughout the genome and transcriptome of numerous organisms, including
humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding
and noncoding RNA molecules, being involved in many essential cellular and organismal functions.
In this review, we first outline the fundamental structural features of G-quadruplexes and then focus
on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information
that is critical for the complex regulation, either positive or negative, of biological activities in different
contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the
functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to
the interplay between G-quadruplex formation/disruption and other epigenetic marks, including
biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional
organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional
regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take
on particular importance in the field of comparative epigenetics, as well as in translational research.

Keywords: G-quadruplex; G-quartet; epigenetics; DNA bases modifications; histone
post-translational modifications; histone-modifying activities; nucleosome remodeling; chromatin
architecture; post-transcriptional regulation; noncoding RNA

1. Introduction

More than one century ago, seminal observations from Phoebus Levene’s laboratory revealed
that guanosine forms polycrystalline gels at high concentrations, providing the first indirect evidence
that guanine-rich sequences in nucleic acids may form higher-order structures [1]. Curiously, many
authors have attributed the achievement of this discovery to the Scandinavian biochemist Ivar Bang,
who described a similar gelling process one year after Levene’s paper, using aqueous solutions of
guanylic acid isolated from ox pancreas [2].

More than five decades later, crystallographic analysis of guanosine-5’-monophosphate gels has
provided the structural explanation of the jellification phenomenon, revealing the association of guanine
bases in tetrameric arrays (referred to as G-tetrads) via non-Watson—Crick base pairing [3]. Further
X-ray fiber diffraction and biophysical studies on guanine-rich polynucleotides have confirmed and
extended these findings, paving the way for the concept of G-quadruplex, a four-stranded continuous
helix whose geometric formalism is fully consistent with the G-tetrad structural motif [4-6].
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Since then, a very large collection of evidence has identified these structures in nucleic acid
sequences of a wide spectrum of organisms, highlighting their involvement in the regulation of various
key cellular and organismal processes, including embryogenesis, genome maintenance, replication
and expression [7-16]. In this review, we will focus on the epigenetic roles played by both DNA and
RNA G-quadruplexes in the modulation of chromatin states and gene expression.

2. Structural Features of G-Quadruplexes and Their Occurrence in Biological Contexts

G-quadruplexes, henceforth referred to as G4s, are four-stranded knot-like structures dynamically
folded in guanine-rich regions of nucleic acids. As mentioned, the building block of these noncanonical
structures is the G-tetrad or G-quartet, a coplanar cyclic array of four adjacent guanylic nucleotides
held together by a network of hydrogen bonds at the edges of the resulting square platform (Figure 1A).
In particular, the guanine purine rings simultaneously accomplish hydrogen bond donor and
acceptor functionalities, yielding eight Hoogsteen-type interactions per G-quartet [3,17]. In this
tetrameric arrangement, distinct combinations of anti and syn conformations, defined by torsion angles
around the N-glycosidic bond that connects the guanine base to the sugar, directly determine the
parallel/antiparallel directionality of the phosphodiester backbone of each of the four participating
polynucleotide strands [18,19].
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Figure 1. Chemical structures of G-quartet and G-quadruplex. (A) Structural arrangement of the
G-quartet, highlighting the hydrogen bonding network between the Hoogsteen and Watson—Crick faces
of the coplanar guanine bases. The attached deoxyribose sugars are shown together with a centrally
placed metal ion. (B) The conventional consensus sequence for a G-quadruplex. (C) Side view of the
schematic diagram showing an intramolecular antiparallel G-quadruplex formed by the stacking of
three G-quartets. Strand polarity and anticlockwise rotation are indicated.

Since the prototypical G4-forming consensus sequence 5 -Gy3-N1_7-G»3-N1_7-G»3-N1_7-G53-3
includes four runs of at least three consecutive guanines (Figure 1B), a given G4 generally, but not
always, contains a minimum of three G-quartet layers stacked upon one another by virtue of electron
interactions between 7 orbitals from their aromatic surfaces (Figure 1C) [20,21]. Lone pair electrons
at the oxygen atom of each guanine carbonyl group lie in the central core of adjoining G-quartets,
creating an electronegative axial tunnel running through the G4 stack (Figure 1C) [22,23]. In this
context, the symmetric bipyramidal antiprismatic arrangement for eight oxygen atoms juxtaposed at
each level of the stack allows coordination of monovalent alkali metal cations that, in turn, impart
further stability to the G4 structure (Figure 1C) [24]. In the cellular environment, potassium ions are
preferentially coordinated because they exist in the highest concentration and give the best size match
for the accommodation inside the G4 central channel [24,25].
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Worth mentioning, although G4s are commonly depicted as having a straight three-dimensional
morphology, they are instead helical structures displaying rotational symmetry and four grooves
varying in width in the spaces between the four guanine-rich strands (Figure 1) [26]. In the overall
G4 structure, G-quartets are stacked perpendicularly to the helix axis, and continuous stretches of
guanines establishing the stacked G-quartets are connected by loops of spacer tracts varying in length
and nucleotide composition (Figure 1C) [18]. The structural uniformity of the G4 stack is tolerant
of bulging out single unpaired bases or embedding them into the core structure, which broadens
the definition of G4-forming sequences, as well as the specific nomenclature of G4 themselves [27].
Moreover, G4s can arise from a single polynucleotide chain of DNA or RNA containing an adequate
number of guanine-run stretches or can alternatively embrace distinct guanine-rich regions belonging
to multiple (either two, three or four) nucleic acid chains [28-30]. Adding further complexity, stacking
of intra-/intermolecular G-quartets may produce G-wires, high-order thread-like superstructures
exhibiting peculiar periodicity and physical properties that are not found in basic G4s [31,32].

In sum, it can be argued that the repertoire of G4 molecular architectures displays extensive
geometry and conformational polymorphism, comprehensively according to the variability of
the aforementioned intrinsic structural parameters [33-37]. Additional sources for the high
topological divergence are given by extrinsic factors, including chemical modification and pH-driven
protonation/de-protonation of bases [38—41], molecular crowding [42], and the presence of chaperone
molecules [43,44].

Genomewide computational screenings for sequence motifs that have the propensity to form
G4, as well as G4-specific chromatin immunoprecipitation coupled with high-throughput sequencing
analysis, have revealed widespread G4 occurrence in a large number of species belonging to all the
kingdom:s of life, and in diverse ribo- and deoxyribo-viruses [45-55]. These studies have coherently
indicated that the global amount of genomic G4s displays considerable variation across species, roughly
according to size and guanine-richness of their genome, but not to evolutionary distances [56—60].
Furthermore, they unveiled that G4s are not randomly scattered across the genome, being rather biased
toward telomeric sequences, satellite DNA, noncoding transcription units, and gene cis-regulatory
regions [61-64]. Intriguingly, comparative inspections have also highlighted similarities across diverse
organisms and species-specific trends of G4 distribution in conserved genomic portions [57-59,65].
For example, strong G4 enrichment in gene promoters has been reported in higher vertebrates,
including humans, while preferential enrichment in noncoding transcription units has been detected
in other metazoans such as the nematode worm Caenorhabditis elegans and zebrafish (Danio rerio) [57].
Unfortunately, it remains poorly understood whether all of the G4s emerging from these stimulating
studies actually form in vivo, especially in light of the fact that only a very modest fraction of them
have been experimentally validated by immune-fluorescent visualization in different types of living
cells [66-69]. Beyond this direct line of evidence provided by employing G4-specific antibodies
generated by independent groups, G4 formation in vivo has been indirectly justified by alternative
approaches, such as “in-cell” NMR spectroscopy [70,71], and by the recent identification and functional
characterization of G4-specific DNA and RNA helicases from various organisms [72-78].

In fact, although G4s are generally conceived as energetically favorable and highly stable structures
under physiological conditions, their assembly in vivo often requires preliminary local chromatin
dismantling and DNA double-helix denaturation. This occurs especially during biological processes,
such as replication and transcription, that transiently expose single-strand DNA segments. Once
formed, G4s on both DNA and RNA molecules can contribute to the regulation of fundamental cell
functions, as described in the following sections.

3. Involvement of G4 Structures in Epigenetic Processes

Based on our actual understanding of epigenetics, an epigenetic trait is broadly intended as a
reversible molecular modification associated with changes in gene expression in the absence of variation
in genomic DNA sequence, occurring in the course of adaptive responses of a given cell/organism to
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environmental influence [79,80]. There is growing experimental evidence indicating that G4s entirely
fulfill this definition, being, in principle, interconverting DNA structural conformations dynamically
adopted by peculiar genome segments. The occurrence of G4 structures in regulatory regions such
as promoters and enhancers may influence gene expression either positively or negatively, thereby
provoking transcriptome changes [81,82]. Folding of G4 structures is differentially affected, either
directly or indirectly, by disparate environmental cues, including dietary molecules and epigenetic
drugs [83-88]. In addition, G4 structures and other established epigenetic modifications frequently go
side by side, and they harmoniously affect each other in many fascinating ways, reshaping genome
transcriptional outputs.

3.1. Interplay between G4 Structures and Epigenetic Modifications of DNA Bases

Stability of a conventional G4 structure may be affected by epigenetic biochemical modifications
of sequences either forming or flanking the G4 motif in the same DNA strand, such as methylation at
carbon 5 on the cytosine pyrimidine ring (5meC, Figure 2). In fact, G4s exhibit much higher thermal
stability when sandwiched by stacking forces provided by nearby 5meC-5meC+ base pairs formed by
N3-protonation of cytosine under physiological-like conditions [§9-91]. In certain exceptional cases,
however, methylated G4s appear to be less thermally stable than their unmethylated equivalents,
suggesting that the influence of methylation on G4 thermodynamic properties is strictly dependent
on the DNA sequence being investigated [92]. It can be argued that the connection between G4
stability and cytosine methylation could have relevant consequences in vivo, especially because DNA
methylation generally results in a reduction of chromatin accessibility and transcriptional activity.
In this respect, recent genomewide approaches have shown that the occurrence of intrinsically stable
G4s and 5meC is inversely related at CpG island promoters of different human cell lines and tissues,
as well as in peripheral blood samples from distinct individuals, strongly suggesting that G4s are
epigenetic marks of active hypomethylated chromatin [93-95]. This finding is further supported and
extended by separate mechanistic evidence indicating that (i) G4 structures, once formed, avidly interact
with DNA methyltransferase (DNMT) enzymes both in vitro and in vivo, and that (ii) G4-dependent
recruitment of DNMTT1 at lowly methylated CpG islands locally results in significant inhibition of
DNMT1 enzymatic activity [95,96]. Taken together, these findings point to the coordinated contribution
of two distinct classes of epigenetic players, G4 structures and the enzymes that establish and maintain
deoxycytidine methylation, in shaping the methylome.
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Figure 2. Chemical structure of canonical and biochemically modified nitrogenous bases discussed in
this review.
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It is commonly accepted that G4 structures formed on sequences juxtaposed to the gene core
promoters may inhibit transcriptional activity by acting as a steric block to RNA polymerase recruitment,
an effect that is exacerbated when the G4-forming regions undergo cytosine methylation [97]. Along
with this negative impact on transcription, the co-occurrence of G4 formation and cytosine methylation
can instead give a stimulatory contribution to gene expression. To cite an example, cytosine
hypomethylation in the core promoter region, coupled with methylation in a specific CpG in the first
exon, favors h'TERT gene expression in tumor cells [98,99]. In fact, exonic 5meC triggers the formation
of a stable G4 structure that, in turn, prevents the binding of the CTCF factor, otherwise involved in
hTERT transcription repression [99,100].

A major route to CpG demethylation in metazoans involves the sequential enzymatic
conversion of 5SmeC into the progressively higher oxidation states of 5-hydroxymethyl-, 5-formyl-,
and 5-carboxyl-cytosine until the base is excised and replaced by an unmodified cytosine [101,102].
Intriguingly, emerging evidence suggests that the oxidation products of 5meC could reflect distinctive
epigenetic modifications associated with differential genomic density and specific biological functions.
For example, transcriptional activity is negatively correlated with 5meC but positively correlated
with 5-hydroxymethyl-cytosine (shmeC, Figure 2) [103,104]. This is probably due to the poor binding
affinity of DNMT1 toward 5hmC, suggesting that 5ShmC, as opposite to 5meC, could promote DNA
demethylation by excluding DNMT1 from CpG islands [105]. In human stem cells, a very small fraction
of G4s harbors 5hmeC in loop regions, and the presence of this modification does not markedly affect
G4 formation or stability [106,107]. On the other hand, it has been shown that the oxidized derivatives
of cytosine dynamically recruit distinct sets of regulatory proteins in differentiating mouse embryonic
stem cells, suggesting that G4-associated cytosine modifications epigenetically influence the propensity
of G4 structures to be recognized by DNA-binding effector proteins [108]. Recent studies focused on
the G4 from the vegf promoter have revealed that this is indeed the case, where the presence of 5meC
significantly decreases the binding ability of the VEGF165 protein, while 5hmeC specifically abrogates
nucleolin recruitment [107,109,110].

Epigenetic variations reverberating on G4 structure stability can also be inflicted by environmental
stress endured by individual cells or organisms. A pertaining example is provided by the establishment
of guanine oxidation, which is induced by reactive oxygen species from both exogenous and endogenous
origins [111]. At the DNA level, the redox potential of the guanine heterocycle is particularly low,
and it further decreases proportionally when a rising number of adjacent guanine bases stack upon
one another [112,113]. It follows that guanine runs embedded in G4-forming sequences are the most
prone to oxidation within eukaryotic genomes, where 8-oxo0-7,8-dihydro-guanine (8oxoG, Figure 2) is
the oxidation product found in the highest yield. To give an idea of scale, 80x0G is present at a very
low frequency in murine embryonic stem cells and adult cortex tissue, being more than three orders of
magnitude smaller in concentration than 5meC in the genome [114].

From a structural perspective, the presence of 8oxoG impacts either positively or negatively on
G4 integrity, depending on the exact position occupied within the quadruplex [115,116]. For instance,
the substitution of a guanine with 8oxoG at the middle tetrad of a conventional G4 disrupts both the
Hoogsteen and stacking interactions, thereby hindering G4 folding. Nonetheless, divergent G4-forming
sequences, containing excess guanines in their G runs, and/or more than four G runs, more broadly
tolerate oxidative modifications, being able to rearrange into alternative topologies in which 8oxoG is
looped out and the overall structural integrity is maintained [117,118]. In the case of G4s occurring in
promoter sequences, such as an 8oxoG-driven topology switch, this leads to an upregulation of gene
expression during oxidative stress. Based on published evidence, this purely epigenetic mechanism is
most probably achieved by the recruitment of OGG1, a DNA glycosylase involved in the reversal of
guanine oxidation [119,120]. Following specific recognition of 8oxoG, OGG1 would indeed facilitate
the assembly of an effector complex that could contain transcription activators, heterogeneous nuclear
ribonucleoprotein particles, and RNA polymerase II for the induction of gene transcription [121-126].
According to recent models, the abasic site yielded by OGG1-dependent release of 8oxoG would
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concomitantly favor the structural switch from duplex DNA to G4 and recruitment of a complex,
including the apurinic-apyrimidinic endonuclease 1 (APE1) and other partners such as HIF1-« or the
RNA polymerase II. The G4 structural context, however, would severely attenuate the endonuclease
activity of APE], thus allowing transcription activation driven by HIF1-« or direct positioning of RNA
polymerase II [126]. A differing model suggests that the base excision repair of 8oxoG embedded into
G4 would stimulate gene transcription after returning the sequence back to the wild-type state by
means of enhanced recruitment of MYC-associated zinc-finger transcription factor and heterogeneous
nuclear ribonucleoprotein A1 [126]. Further studies are needed to address the exact choreography of
events regarding the reversal of guanine oxidation located in G4-forming sequences on gene promoters
and the upregulation of gene expression.

Much less is known about the relationship between the formation or function of G4s and other
biochemical modifications of DNA bases. In this regard, the O6-methyl-deoxyguanine (6meG, Figure 2)
adduct is formed in response to alkylating environmental pollutants and enzymatically reversed by
O6-alkylguanine DNA alkyltransferase [127]. The presence of this atypical modification significantly
weakens the overall G4 structure because 6meG is flipped out from the stacked G-quartets and,
therefore, prevented from participating in metal cation coordination [128]. Similarly, it has been
recently shown that the presence of N6-methyl-deoxyadenosine (6meA, Figure 2) in an unconventional
G4-forming sequence from the human c-kit gene is detrimental to G4 folding in vitro, probably due
to disruption of Watson—Crick base pairing resulting from the preference for the syn conformation
adopted by 6meA [129-132]. Functional findings in vivo need to be addressed since 6meA is widely
distributed, although with low abundance, across the eukaryotic genome and predominantly within
genomic deserts [133].

3.2. G4 Structures and the Histone Epigenetic Machinery

A fundamental source of epigenetic information is stored on nucleosomes, in each of four core
histones H2A, H2B, H3, and H4 [134-138]. Accurate propagation of the epigenetic information residing
into nucleosomes is strictly dependent upon local recycling of modified parental histones to daughter
chromatin by histone chaperones during active DNA replication [139,140]. In this respect, structured
G4s represent physical obstacles to the replisome progression, and their unfolding is ensured by a
number of helicases and/or specialized DNA polymerases involved in translesion synthesis [141-144].
However, when the unwinding of G4 structures is temporarily delayed, the corresponding genomic
regions are bypassed and gaps are completed by postreplicative mechanisms, leading to preferential
incorporation of newly synthesized histones that are devoid of parental modifications [145]. Therefore,
the G4-dependent decoupling of parental histone recycling from DNA replication ultimately disrupts
the local inheritance of epigenetic transmission. This effect has been formerly documented in avian DT40
cells lacking either the Y-family DNA polymerase REV1 or the RecQ-family helicase FANC] [13,146-148].
In both cases, altered transcription of specific loci was well correlated with anomalous histone mark
patterns in the vicinity of potential G4-forming sequences (Figure 3A). Strikingly, artificial insertion of a
G4-forming sequence into the first intron of the silent lysozyme C (lysC) gene resulted in derepression
of lysC in REV1 deficient cells, further highlighting the need for G4-structure processing in the
maintenance of histone epigenetic memory and regulation of gene expression [13].

Formation of G4 structures may also provide the docking site for effector protein complexes
horboring histone-modifying activities (Figure 3B). For instance, the TLS/FUS/KMTS5C ternary
complex is able to bind both RNA and DNA G4 structures at telomeric chromatin, where KMT5C
specifically trimethylates the lysine 20 residue of nucleosomal histone H4, thus favoring chromatin
condensation [149]. Contrarily, the H4K20-specific histone demethylase PHF8 has been associated with
G4-containing promoters of genes located in open chromatin and expressed at a significant level [150].
Another well-established example is the REST/coREST repressor complex, which conveys the histone
H3K4-specific demethylase LSD1 at peculiar chromatin locations containing G4 structures, including
the p21 and hTERT gene promoters [151-154]. More recently, outcomes from a high-throughput
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screening assay in vitro added further insights on the interaction between topologically different
intramolecular G4 DNA structures and human epigenetic proteins immobilized on microarrays [155].
Top significant hits resulting from this analysis indeed included the peptidylarginine deiminase PADi4,
which converts both arginine and monomethyl-arginine histone residues to citrulline [156], and the
scaffolding protein ASXL1, which binds to chromatin and recruits polycomb repressive complex
2 (PRC2), thus favoring the locus-specific accumulation of H3K27me3 [157,158]. It is noteworthy
that G4 structures in nascent chromatin-associated RNAs are involved in the temporal regulation
of PRC2 occupancy at its target genes, as they evict PRC2 from nucleosome particles and inhibit its
methyltransferase activity [159,160].
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Figure 3. Interplay between G4 structures and the epigenetic machinery. (A) Schematic drawing
indicating loss of histone epigenetic memory following DNA replication at sites with G4 structures in
cells lacking either REV1 or FANC]. (B) Mechanistic model showing that G4 structures can act as docking
sites for several classes of epigenetic players. (C) Schematic model of enhancer—promoter interaction
mediated by an intermolecular G4 structure formed by two distinct half G4s (indicated by asterisks).

Structured G4s, both in DNA and chromatin-associated RNA, may locally control chromatin
compactness and/or composition by directly attracting classic chromatin remodeler and histone
chaperones such as SWI/SNF, NuRD, FACT, and BRD3, which are renowned players in nucleosome
disassembly/reassembly processes [155]. For example, G4-dependent recruitment of the complex
containing the SWI/SNF-like chromatin remodeler ATRX and DAXX histone chaperone permits
deposition/exchange of the H3.3 histone variant, which is subsequently targeted for K9 trimethylation
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to establish a heterochromatic state at telomeric and pericentromeric regions [161,162]. In other
chromatin contexts, the FACT-like histone chaperone nucleolin both binds and stabilizes G4 structures,
promoting the remodeling of nucleosomes containing macroH2A, and the removal of H2A-H2B dimers
from assembled nucleosomes [163-165].

As a further possibility, G4s can impact on chromatin dynamics by engaging architectural
nonhistone proteins, including some members of the HMG-B and -N families, which alter the pattern of
histone modifications and modulate the binding of linker histones to chromatin [166-168]. For example,
the biological outcome of the HMGB1-mediated G4 stabilization in the promoter of the human kras
gene is transcriptional silencing, and the importance of HMGBI in this mechanism is further supported
by the increase in kras gene expression induced following HMGB1 knockdown [169]. A complementary
role to HMGBI could be played by the poly ADP-ribose polymerase 1 (PARP1) protein, which has
been positively associated with G4 formation and kras gene expression. In fact, in its activated form,
PARP1 specifically binds G4s at the murine kras gene promoter, where it locally behaves as a histone
chaperone for chromatin relaxation, triggering nucleosome eviction by histone PARylation [170,171].

On a whole-genome scale, the coalescence of G4 structures and architectural proteins has further
relevant epigenetic implications in terms of nucleosome positioning, as well as three-dimensional
chromatin organization and functions. Captivating findings have indeed confirmed that G4-forming
sequences are located within non-nucleosomal DNA regions in organisms as diverse as yeasts,
nematodes, mice, and humans [62,172-175]. The hypothesis that G4 structures may function as
nucleosome exclusion signals is further supported by the observation of inverse phasing patterns
between G4 motifs and nucleosomes around a subset of human DNA replication origins [176]. More
specifically, the nucleosome-depleted regions containing G4-forming sequences quite frequently
coincide with the boundaries of topologically associated domains [150]. These consist of nucleoprotein
complexes highly enriched in architectural proteins, such as CTCF and cohesin, involved in
three-dimensional partitioning of the eukaryotic genome and correlated with gene regulation [177-181].
Otherwise stated, there is consistent evidence suggesting that G4s may mediate the preferential
establishment of long-distance contacts between different regions of interphase chromosomes
(Figure 3C). While doing so, G4s could also affect gene expression by facilitating interaction between
promoters and their cis-regulatory sequences via looping [150,182]. In this regard, it is worth noting that
the so-called “half G4s” are significantly enriched exactly at the abovementioned genomic regions [182].
Individual half G4 sequences are unable to fold into autonomous G4 structures, being composed by
only two shortly interspaced runs of at least three consecutive guanines. Nonetheless, two distinct
half G4 may join into an intermolecular G4 structure, thereby bringing together two distant genomic
regions [182].

3.3. Epigenetic Roles of G4 Structures Formed in Coding and Noncoding RNA Transcripts

Although, to date, structural and functional studies have been mainly focused on DNA G4s, in the
last decade, there has been growing attention on RNA G4s in light of the wide variety of functions
attained by these structures in multiple physiopathological processes. A fundamental concept that
has emerged from several studies is that RNA and DNA G4 structures, despite numerous similarities,
are not merely counterparts of each other. In fact, due to the presence of a C2’-hydroxyl group in
the ribose sugar and uracil in the spacer loops, RNA G4s are often more compact, less hydrated,
and more thermodynamically stable structures than their DNA analogs [183-186]. On the other hand,
RNA G4s almost exclusively adopt a monomorphic parallel topology due to the steric constraints
imposed by sugar puckering and C2’-hydroxyl groups, which lock the riboguanosines in an anti
conformation [187]. Within eukaryotic cells, RNA G4s are widely distributed in both nuclear and
cytoplasmic compartments, implying that they have a greater assortment of protein-binding partners
compared to DNA G4s and that they can potentially fold into hybrid intermolecular RNA:DNA
structures in the nucleoplasm [30,188].
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In general, switchable RNA G4s potentially provide an important contribution to epigenetic
regulation of gene expression, and their involvement in a given biological function is strictly
context-dependent and antagonized by specialized helicase activities (Figure 4). For example, negative
cotranscriptional regulation of reporter gene expression by an impediment to RNA polymerase passage
has been reported following the formation of hybrid RNA:DNA G4s between the nascent RNA and the
template, but not the coding, DNA strand [189]. As already mentioned, this mechanism could be further
refined by dynamic G4 unfolding and refolding governed by helicases. However, in silico predictions
have revealed that this cotranscriptional mechanism could be underrepresented in warm-blooded
animals, whose genes exhibit a strong bias toward G4 motifs on the coding DNA strand, and therefore,
on the corresponding mRNA [190].

RNA pol II
passage

miRNA biogenesis
and function

Figure 4. Molecular processes modulated by G4 structures formed in coding and noncoding RNA
transcripts. A schematic drawing indicating the parallel topology adopted by RNA G4s is shown.

In this case, the differential location of G4s in exons, introns, 5’- and 3’-UTRs may exert totally
distinct outcomes on gene expression. More specifically, G4s located in 5’-UTR of coding transcripts
normally inhibit translation initiation, probably through sterically hindering the recruitment and/or
scanning of the 40S ribosome subunit on the mRNA [191-195]. Based on these findings, and considering
that G4s have been identified in the 5’-UTR of numerous proto-oncogene transcripts, it has been
proposed that such RNA motifs could be suitable targets for small molecules, with the view to interfering
with gene expression at the translation level [196]. Indeed, small molecules could, in principle, affect
G4 stability and/or compete with G4-binding proteins normally involved in translation stimulation.
However, there are no approved anticancer drugs targeting RNA or DNA G-quadruplexes, probably
due to nonspecific binding events of small molecules to nucleic acid structures other than G4s.

In a few alternative cases, G4 structures present in 5'-UTR were proposed to be necessary for
atypical forms of translation, although the molecular mechanisms underlying these events are not
completely understood [197-203]. Formation of G4 structures at the exon-intron boundaries or near
to polyadenylation signals of pre-mRNAs may affect either positively or negatively the binding of
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regulatory proteins, ultimately leading to the expression of alternative protein isoforms [204-207].
Similarly, G4 structures within mRNAs may act as translational recoding signals, forcing the ribosome
to shift one ribonucleotide backward with respect to the former open reading frame, thereby decoding
a distinct protein [208,209].

Another exquisitely epigenetic function accomplished by RNA G4s pertains the transport
of mRNAs to subcellular compartments, which allows localized protein synthesis. In particular,
G4 structures located at the 3’-UTR represent a very common and effective dendritic localization
signal of several neuronal mRNAs that travel in a centrifugal direction along axons. G4 structure
stability being differentially influenced by monovalent cations, it has been proposed that sudden
variation of intracellular K* and Na* concentrations occurring during neuronal activity could govern
G4 folding/unfolding, thereby controlling protein-dependent transport of these dendritic nRNAs and
translation at their subcellular destination [210-214].

G4 structures have also been mapped in short and long noncoding RNAs, although their biological
implication is still unclear in most circumstances [215,216]. Bioinformatics analysis revealed that
about 16% of human microRNA precursors present G4s either in the passenger or guide strand [217].
Overall, these G4s could exist in equilibrium with stem-loop secondary structures typically formed by
pre-miRNAs, thereby playing a role in microRNA biogenesis by modulation of Dicer cleavage [217-219].
In the case of pre-miR-26a-1, G4 unwinding achieved by the RNA helicase DHX36 favors the
physiological accumulation of mature miR-26a, and impairing DHX36 activity leads to low miR-26a
abundance and obesity [220]. It has also been reported that G4 structures are retained in a number
of biologically relevant human microRNAs in their mature form, suggesting that G4 formation
could impact microRNA-directed post-transcriptional regulation of gene expression by affecting
microRNA-target mRNA interactions [221].

Recent works have also shown that RNA G4s are involved in the regulation of transposable genetic
elements mobility. Indeed, human retrotransposon remnants belonging to the LINE-1 family harbor
distinct types of G4-forming sequences in their 3’UTR and there is a positive correlation between
G4 structure stability and LINE-1 mobilization activity [222]. On the other hand, separate findings
have shown that piR-48164, belonging to the PIWI-interacting family of human small noncoding
RNAs, similarly bears a stable G4 structure [223]. Once formed, such an RNA G4 is detrimental
to PIWI binding and prevents the piR-48164-directed transposon control at the transcriptional and
post-transcriptional level [223].

In addition to these mechanisms occurring on RNA, multiple studies have suggested that G4
formation in long noncoding RNAs affect epigenetic processes on DNA, as demonstrated for G4s at
telomeric repeat-containing RNAs (TERRAs) [224,225]. Indeed, it was noted that G4 structures formed
by TERRAs specifically recruit the histone H3K4-specific demethylase LSD1, which is associated with
telomeric heterochromatinization [151].

4. Conclusions and Perspectives

G4 structures have been extensively studied both in silico and in vitro, and in recent years have
witnessed a considerable increase in experimental data, substantiating the versatile epigenetic roles
of these unconventional structural motifs within cells. In a nutshell, G4s are widespread throughout
the genome and transcriptome of various organisms, where they overall influence DNA and histone
modifications, nucleosome positioning, and three-dimensional organization of chromatin, as well as
post-transcriptional modulation of gene expression. Therefore, it could be argued that context-specific
formation of G4s in the genome might direct when and where epigenetic modifications are imposed.
On the other hand, the concerted balance between G4 formation/disruption controlled by helicases
during DNA replication aids in preserving epigenetic memory. Unfortunately, whether and how
G4-mediated epigenetic marks imposed during post-replication are linked to the next round of DNA
duplication remains to be confirmed. Similarly, another challenging issue so far unexplored pertains to
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the potential relationship between G4 and transgenerational inheritance of epigenetic information via
the germline of organisms with sexual reproduction.

As discussed, G4 structures are recognized by a plethora of trans-acting factors, which can
modulate their stability or serve as a scaffold for the recruitment of further epigenetic effectors. These
findings, coupled with the insights linking G4 deregulation to numerous human diseases, suggest
promising therapeutic interventions. In this respect, several classes of small molecule ligands have
been described to induce G4 conformations and modulate G4—protein interactions. However, further
investigations are required to overcome nonspecific binding events of G4 ligands to nucleic acid
structures other than G4s. A better understanding of the exact targets of these ligands will potentially
improve bona fide patient-specific clinical applications. In parallel, the multitude of G4-interacting
proteins could be used to design novel drug molecules. Most probably, the combined use of ligands
directed against G4 structures and G4-interacting proteins could be even more effective and specific
for therapeutic purposes. However, the epigenetic effects of all these known and potential molecules
remain to be confirmed in physiologically relevant settings. From this standpoint, an advancement
of in vivo studies implementing suitable animal models is absolutely required for a comprehensive
understanding of biological roles played by G4s in both normal and pathological contexts.
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PRC2 Polycomb Repressive Complex 2

REST RE1-Silencing Transcription Factor

SWI/SNF SWitch/Sucrose Non-Fermentable

TERRA Telomeric Repeat-containing RNA
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VEGF Vascular Endothelial Growth Factor
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