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Abstract: The spread of COVID-19 is showing huge, unexplained, differences between northern and
southern Italy. We hypothesized that the regional prevalence of specific class I human leukocyte
antigen (HLA) alleles, which shape the anti-viral immune response, might partly underlie these
differences. Through an ecological approach, we analyzed whether a set of HLA alleles (A, B, C),
known to be involved in the immune response against infections, correlates with COVID-19 incidence.
COVID-19 data were provided by the National Civil Protection Department, whereas HLA allele
prevalence was retrieved through the Italian Bone-Marrow Donors Registry. Among all the alleles,
HLA-A*25, B*08, B*44, B*15:01, B*51, C*01, and C*03 showed a positive log-linear correlation with
COVID-19 incidence rate fixed on 9 April 2020 in proximity of the national outbreak peak (Pearson’s
coefficients between 0.50 and 0.70, p-value < 0.0001), whereas HLA-B*14, B*18, and B*49 showed
an inverse log-linear correlation (Pearson’s coefficients between −0.47 and −0.59, p-value < 0.0001).
When alleles were examined simultaneously using a multiple regression model to control for
confounding factors, HLA-B*44 and C*01 were still positively and independently associated with
COVID-19: a growth rate of 16% (95%CI: 0.1–35%) per 1% point increase in B*44 prevalence; and of
19% (95%CI: 1–41%) per 1% point increase in C*01 prevalence. Our epidemiologic analysis, despite
the limits of the ecological approach, is strongly suggestive of a permissive role of HLA-C*01 and
B*44 towards SARS-CoV-2 infection, which warrants further investigation in case-control studies.
This study opens a new potential avenue for the identification of sub-populations at risk, which could
provide Health Services with a tool to define more targeted clinical management strategies and
priorities in vaccination campaigns.

Keywords: SARS-Cov2; coronavirus; COVID-19; HLA class I; viral infection susceptibility

1. Introduction

COVID-19 has been declared a pandemic by the WHO [1]. Italy showed an explosive and
apparently unrestrainable evolution throughout the country rapidly achieving one of the highest
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infection and mortality rates worldwide since the first case diagnosed in the province of Lodi in
Lombardy, on 21 February 2020 [2]. Italian authorities are strictly monitoring the outbreak and report a
large gradient of frequency that decreases from the northern to the southern and the islands, across
the twenty regions of the country [3]. To date, this gradient has not been significantly modified even
though the epidemic had the possibility to spread all along the peninsula due to massive migratory
fluxes of individuals escaping from the high-risk regions to return in their native landscapes [4] and
a delayed restrictive response by the different regional authorities until March 2020. The incidence
of COVID-19 cases reported by the national authorities also indicates relevant differences in the
infection spreading within single provincial areas composing some of the most affected Italian regions
(Figure 1a,b). Many socio-political as well as environmental hypotheses have been proposed to explain
inter- and intra-regional differences and the reasons for such an aggressive spreading throughout
northern Italy but, to date, no clear demonstration has been provided.

Italian Regions

C*01 prevalence in Italian Provinces
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Figure 1. COVID-19 incidence, human leukocyte antigen (HLA)-B*44 and C*01 prevalence in Italian
Provinces. (A): The graphical map shows the twenty Italian regions each constituted by various
provinces. (B): The graphical map shows quintiles of COVID-19 incidence across Italian provinces.
Incidence data were calculated as the number of laboratory-confirmed COVID-19 cases up to 04/09/2020
divided by the number of residents, according to the official national data (supplementary data).
(C,D). The graphical maps show B*44 and C*01 prevalence (%) in Italian Provinces. (E,F) The graphical
maps show COVID-19 incidence and B*44 prevalence (%) in the provinces of Emilia Romagna and
Marche. Geographical maps were built through Microsoft Excel. All COVID-19 incidence and HLA
prevalence values are reported as Supplementary Data.
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Emerging data show that both T cell and humoral response to COVID-19 infection may equally
contribute to virus clearance and protective memory [2,5], however in a minority of infected patients,
an inappropriate immune-response may lead to virus spread from the oropharyngeal district to the
lung and other tissues, including kidney and the central nervous system (CNS) [2,6,7]. Moreover,
an exaggerated cell mediated response to the virus in the alveolar tissue may be responsible for the
dreaded cytokines storm and interstitial pneumonitis, leading to a fatal acute respiratory distress
syndrome (ARDS) [2,8–10].

Considering the crucial role played by Class I/II human leukocyte antigen (HLA) molecules in
triggering the anti-viral immune-response, it has been hypothesized that different HLA alleles may
define an individual susceptibility to COVID-19 infection and spreading, as reported for other viruses
as well as the two different corona-viruses responsible for Severe Acute Respiratory Syndrome (SARS)
and Middle East Respiratory Syndrome (MERS) [5]. In this context, several studies are searching
for selected HLAs with a very efficient ability to present viral-antigen-derived epitope peptides to
cytotoxic T cells. The identification of highly immunogenic peptide epitopes recognized by specific T
Cell Receptors (TCRs) might, in fact, provide potential candidates for vaccine development [11–13].
By triggering and sustaining the human host immune-defences to the virus, specific Class I HLA alleles
may also be involved in the occurrence of other symptoms, morbidity or lethality. Indeed, a study
in a small cohort of COVID-19 Chinese patients suggested that specific HLA alleles might correlate
with disease occurrence [14]. Therefore, we set out to perform an exploratory epidemiological analysis,
through an ecological approach aiming to investigate whether known differences existing in HLA-A, B,
and C allele distribution among the Italian population could be correlated to COVID-19 incidence and
spread throughout the peninsula.

2. Results

Correlation between HLA-A, B, and C Allele Frequency and COVID-19 Incidence in Italian Provinces

We extrapolated HLA-A, B, and C allele frequency within the different Italian regions and relative
intraregional provinces from the Italian Bone Marrow Donors Registry (IBMDR) report published on
February, 2010 [15]. This is the largest published national database of bone marrow healthy donors
and includes a cohort of 370,000 individuals. The regional distribution of the HLA, A, B, C alleles
was also evaluated in a more recent IBMDR high-definition-analysis database including a further
120,926-individual sample size typed with a high resolution method, which did not show significant
changes compared to the previous report [16]. These data extrapolated from healthy donors represent
a reliable surrogate of the real HLA-allele frequency scenario existing within the Italian population
inhabiting different geographic areas of the country.

We examined allele prevalence across the Italian regions and detected a higher frequency of
HLA-A*25, B*08, B*44, B*15:01, B*51, and C*01, and C*03 alleles in the northern regions compared with
that recorded in the southern regions. A reverse situation was instead observed for HLA-B*14, B*18,
and B*49 alleles, for which frequency is higher in the southern regions (Figure 1c,d and Supplementary
Table S1). All of the other HLA A, B, and C alleles in the database did not show substantial inter- and
intraregional differences (data from IBMDR database) [15].

We subsequently analyzed all the selected alleles (HLA-A*25, B*08, B*44, B*15:01, B*51, B*14,
B*18, B*49, C*01, and C*03) and compared them with COVID-19 incidence, as reported by the Italian
Department of Civil Protection. Our results showed the existing correlation between HLA allele
frequency and COVID-19 incidence rate fixed on 9 April 2020 in proximity of the national outbreak peak,
suggesting that the shape of the relationship is non-linear: as HLA prevalence increases, COVID-19
incidence varies according to an exponential trend (Figure 2). In particular, HLA-A*25, B*08, B*44,
B*15:01, B*51, C*01, and C*03 alleles showed a positive log-linear correlation with COVID-19 incidence
rate. On the other hand, HLA-B*14, B*18, and B*49 alleles, whose frequency is higher in the southern
regions, showed an inverse log-linear correlation (Figure 2).
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Figure 2 – Correlation between Covid-19 incidence rate and HLA prevalence 
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Figure 2. Correlation between COVID-19 incidence rate and HLA prevalence. The graphs show the correlation between COVID-19 incidence and the prevalence
of HLA-A*25, B*08, B*44, B*15:01, B*51, B*14, B*18, B*49, C*01, and C*03, expressed as percentages, for all the available Italian provinces. For each correlation,
the R-squared value is provided at the top of the graph along with the estimated regression equations. The r and p values are reported in Table 1.
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Table 1. – Matrix of correlation (Pearson’s coefficient and p-value) between COVID-19 incidence rate and HLA.

COVID-19 A*25 B*08 B*14 B*18 B*44 B*49 B*51 B*15:01 C*01 C*03
COVID-19 † 1.0000

A*25 0.6446 1.0000
p < 0.0001

B*08 0.6969 0.7196 1.0000
p < 0.0001 p < 0.0001

B*14 −0.5133 −0.4193 −0.5617 1.0000
p < 0.0001 p < 0.0001 p < 0.0001

B*18 −0.4704 −0.4573 −0.6161 0.6053 1.0000
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

B*44 0.6438 0.5555 0.6865 −0.5512 −0.7056 1.0000
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

B*49 −0.5920 −0.6280 −0.7144 0.5331 0.3019 −0.5715 1.0000
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p = 0.0033 p < 0.0001

B*51 0.5036 0.5478 0.6196 −0.4405 −0.4851 0.4296 −0.5702 1.0000
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

B*15:01 0.6060 0.5780 0.6826 −0.6238 −0.5760 0.6092 −0.6247 0.5695 1.0000
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

C*01 0.6316 0.6367 0.6196 −0.3433 −0.2754 0.3501 −0.6037 0.6752 0.4997 1.0000
p < 0.0001 p < 0.0001 p < 0.0001 p = 0.0008 p = 0.0075 p = 0.0006 p < 0.0001 p < 0.0001 p < 0.0001

C*03 0.5011 0.4817 0.5527 −0.5509 −0.5378 0.4638 −0.5607 0.4817 0.7834 0.4396 1.0000
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

(†) incidence rate (at logarithm base).
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Pearson’s coefficient (r) was calculated as a measure of the correlation between the logarithm of the
COVID-19 incidence and the prevalence of different HLA alleles, in accordance with the exponential
model. The complete correlation matrix with Pearson’s coefficients and corresponding p-value for
each couple of variables are shown in Table 1. HLA alleles that were positively correlated to COVID-19
infection revealed Pearson’s coefficient values between 0.50 and 0.70 (p < 0.0001), and those inversely
correlated between −0.47 and −0.59 (p < 0.0001).

In order to control for mutual confounding (also including the regions in the model as confounders),
the above-mentioned HLA-alleles were examined simultaneously by performing a multivariable
regression analysis whose results showed that only HLA-B*44 and C*01 alleles maintained a positive
and independent association with COVID-19 incidence (Table 2).

Table 2. – Multiple regression model: COVID-19 incidence rate and HLA.

COVID-19 Regression Coefficient Adjusted Growth Rate † (95% CI) p-Value
A*25 0.2908 1.34 (0.86–2.08) n.s
B*08 0.0804 1.08 (0.90–1.30) n.s
B*14 0.0805 1.08 (0.88–1.33) n.s
B*18 0.0492 1.05 (0.94–1.17) n.s
B*44 0.1484 1.16 (1.00–1.35) 0.050
B*49 0.1431 1.15 (0.93–1.43) n.s
B*51 −0.0174 0.98 (0.89–1.08) n.s

B*15:01 −0.0305 0.97 (0.73–1.29) n.s
C*01 0.1747 1.19 (1.01–1.41) 0.042
C*03 −0.0530 0.95 (0.78–1.15) n.s

† also adjusted for region (using a multiple regression model).

The exponential of the regression coefficient (growth rate) allowed us to quantify an increase in
16% (95%CI: 0.1–35%) in COVID-19 incidence per one percentage point increase in B*44 prevalence
(Table 2). Considering that the range of B*44 prevalence varies in Italy from 4% to 12%, the risk of
developing COVID-19 for the highest level of prevalence can be estimated as three times greater than
that for the lowest one (Table 2).

Similarly, for C*01 the growth rate was 19% (95%CI: 1–41%): considering a range of prevalence
among provinces from 1% to 9%, the risk of developing COVID-19 for the highest level of prevalence
is four times higher.

In order to provide further proof of evidence concerning the correlation of permissive HLA allele
prevalence and COVID-19 incidence, we focused on two regions (Emilia Romagna and Marche) where
the prevalence of B*44 and C*01 alleles is unevenly distributed among the different provinces (Figure 3).
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Figure 3. Correlation between COVID-19 incidence rate and HLA-B*44 prevalence in Emilia Romagna
and Marche provinces. The graphs show the correlation between COVID-19 incidence and the
prevalence of HLA-B*44 prevalence, both expressed as percentages, for all the provinces of Emilia
Romagna (top panel) and all the available provinces of Marche (bottom panel). For each correlation,
the R-squared value is provided at the top of the graph along with the estimated regression equations.
For Emilia Romagna: r = 0.681 and p value = 0.0628; for Marche r = 0.958 and p value = 0.0423.

Remarkably, in these regions, the identified correlation seems to account for the intra-regional
differences that are currently unexplained, such as the low incidence of COVID-19 in the province of
Ferrara, compared with the other Emilian provinces, which are highly affected by the virus. Similarly,
Pesaro-Urbino, which is the most affected province in the Marche Region, is also one with the highest
prevalence of HLA-B*44 (Figure 1e,f). In the latter case, the exponential regression curve explains
almost all the variance in the data (r2 = 0.9172) and the prevalence of B*44 can almost exactly predict
the incidence of COVID-19 (Figure 3).

3. Discussion

Our epidemiologic analysis, through a geographical ecological approach, identified putative
permissive class I alleles that are potentially unable to trigger an efficient immune-response unable to
counteract SARS-Cov-2 infection.

In particular, we selected, from the widest national genetic study that reports HLA data (in
terms of allele prevalence) from almost 500,000 bone marrow donors representing the population
from the whole national territory, those that presented stable inter- and intra-regional differences in
prevalence, to examine whether they could underlie the geographic differences in COVID-19 incidence.
By univariate analysis we found that HLA-A*25, B*08, B*44, B*15:01, B*51, and C*01, and C*03 alleles
showed a positive correlation with COVID-19 incidence rate, whereas HLA-B*14, B*18, and B*49
showed an opposite trend.

Then, we tested the association between COVID-19 incidence and HLA alleles independently
of each other using a multivariable regression analysis. Importantly, as an alternative approach to
stratified analysis, the Italian regions were included as covariates in the model to control for the
confounding effect of the geographical context, and, at the same time to verify, the association of
interest regardless of the North–South gradient.

Interestingly, none of the selected alleles could be independently associated with COVID-19
incidence if not associated with the permissive HLA B*44 and C*01.

Our results are not surprising considering that class I HLA molecules have the specific task of
binding and presenting antigen-derived epitope peptides to the TCR of epitope-peptide-specific T
cells. With this mechanisms class I HLA molecules are critically involved in both CTL replication
and ability to recognize and destroy virus-infected target cells. These 9–10 mere epitope peptides
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derive from the intracellular processing of protein antigens operated by the proteasome system prior
being complexed with HLA molecules and translated on the membrane in order to be exposed to
the TCR of the immune-effectors [17–20]. A peptide’s ability to bind HLA molecules is allele-specific
and is restricted by specific amino-acidic consensus motifs that allow their anchorage to different
HLA molecules [21,22]. In this context, two individuals carrying the same antigen but different HLA
profile may give rise to a completely different T-cell-mediated immune-response, since they may have
completely different amounts of HLA-specific antigen-derived epitopes. This hypothesis has been
confirmed in several studies concerning a number of different viruses as well as tumour antigens and
autoimmune models [11,23–29].

Our model suggests that healthy individuals carrying HLA-B*44 and/or C*01, and to a lesser extent,
HLA-A*25, HLA-B*08 alleles may be more susceptible to SARS-CoV-2 infection; indeed, they could
be unable to present a sufficient amount of immune-dominant virus derived epitope peptides and
consequently, they would be unable to mount a fast and efficient anti-viral immune response. It can be
hypothesized that, in these patients, the virus may freely spread from the oropharyngeal mucosae,
starting a more efficient replication. Consistently, both HLA-B*44 and C*01 alleles, that we identified as
possibly permissive to SARS-CoV-2 infection in Italy, have also been associated to known inflammatory
autoimmune diseases [30–34], a fact that highlights their ability to trigger non-proficient and often
inappropriate immunological reactions. The latter finding deserves to be explored in direct experimental
approaches aimed to investigate whether the expression of these HLA alleles also correlates with more
aggressive disease outcomes and the development of interstitial pneumonitis. Interestingly, inheritance
of HLA-B*44 was shown to underlie susceptibility to recurrent sinopulmonary infection [35] A further
consideration stems from the knowledge that the HLA-C*01 allele, which was the most permissive to
SARS-CoV-2 infection in our study, also represents the specific ligand of killer cell immunoglobulin
like receptors (KIRs), KIR2DL2 and KIR2DL3 [36–38]. These receptors are able to inhibit the activity of
Natural killer cells, which represent the first line of host defence to the infection before the occurrence of
a more specific T cell response [39]. This hypothesis deserves further and more accurate investigation.

In the present study, we could not assess whether a correlation existed among HLA alleles
and COVID-19-associated morbidity (hospitalization) and lethality rates owing to the absence of
reliable data and the presence of significant confounding factors, including a delay in hospital records
transmission, the saturation of emergency rooms and the presence of co-morbidities. However, our data
concerning the number of COVID-19 cases might be biased towards more severe outcomes because the
initial national screening was mostly limited to symptomatic or hospitalized individuals, therefore
implying in our correlation analyses an association with severity of the disease.

Although this type of ecological approach has intrinsic limits, it also has the advantage of
considering a large number of cases which are readily available through public-access datasets. Indeed,
geographical ecological studies are often the first to identify risk factors for a variety of diseases,
which are then verified through subsequent studies [40].

Our observational study identifies HLA-C*01 and B*44 alleles as potential genetic determinants
for the identification of individuals at risk, which warrants further investigation in case-control
studies. To this purpose, we are currently investigating the expression of different HLA alleles in
pauci-symptomatic patients affected by COVID-19 and those with severe interstitial pneumonitis.
We suppose that Class I and II HLA genotyping in COVID-19 patients could be easily achieved
and cost-effective and could provide the basis for the identification of individuals with a high risk
of interstitial pneumonitis and cytokines’ storm who should be immunised first when a vaccine
becomes available.

Overall our results, by identifying the potential relevance of HLA-C*01 and B*44 alleles in
developing COVID-19, open new avenues of investigation, not only to understand the diffusion and
the physio-pathogenesis of the disease, but also to inform future vaccination campaign priorities and
clinical management strategies while promoting the research of other potential permissive alleles and
high-risk population worldwide.
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4. Materials and Methods

4.1. Data source and Population Sample

HLA is a highly polymorphic genetic system. The frequency of specific HLA alleles varies
significantly among the different populations inhabiting the twenty geographic regions that compose
the Italian Republic. We retrieved the HLA allele frequency data, which were recorded within the
different regions and relative intra-regional provinces, from the database of the IBMDR. We referred to
an IBMDR database analysis, published on 1 February 2010 [15], containing data that were collected
in a twenty year interval from a cohort of 370,000 volunteer donors with known provincial and
regional birthplace origin. These allele frequencies, expressed in % as calculated through the Arlequin
Software, were also compared to those reported in an updated version of the IBMDR database,
including data collected on a further 120,926 volunteer donor cohort [16]. Samples from the more
recent cohort were typed with a high-resolution method [16]; frequency data were grouped in
regions and the same allele nomenclature version was used (according to the Immuno Polymorphism
Database(IPD)-International ImMunoGeneTics project (IMGT/HLA) Database Release 3.32, April 2018;
http://www.ebi.ac.uk/ipd/imgt/hla/stats.html; (access on 14 July 2020). The same allele frequency
distribution across Italy was confirmed.

Data concerning the total number of individuals infected by SARS-CoV-2 per province (updated
to 9 April 2020) were provided by the Italian Department of Civil Protection, the institution under
the Presidency of the Council of Ministers that manages the emergency at national level. Data were
provided as aggregate numbers, in an anonymized manner.

4.2. Statistical Analysis

The relationship between SARS-CoV-2 infection and the frequency of HLA alleles was explored
as part of an ecological approach aimed at assessing the degree of correlation between the incidence of
COVID-19 and the prevalence of HLA alleles, both measured on a geographical basis (taking each
Italian province as the unit of observation).

For each allele, values were preliminarily plotted in a scatter diagram and the curve with the best
fit (corresponding to exponential curve) was selected using the least squares method, which is the most
widely used procedure for developing estimates of the model parameters. The estimated regression
equations are indicated at the top of each graph (Figures 2 and 3).

Consistent with the exponential model, Pearson’s coefficient (r) was calculated as a measure of
the correlation between the logarithm of the COVID-19 incidence and the prevalence of different HLA
alleles. For each value of r, the corresponding p-value was also considered, in order to assess the
statistical significance of the correlation (with respect to the null hypothesis of no log-linear correlation).

Finally, the association between the logarithm of the COVID-19 incidence (considered as dependent
variable) and HLA alleles independently of each other was tested using a multivariable regression
analysis. Furthermore, the Italian regions were included as covariates in the model (which is an
alternative approach to stratified analysis), in order to control for the confounding of geographical
context and, at the same time, to verify the association of interest regardless of the North–South gradient.

All statistical analyses were conducted using STATA software 11.0 version (StataCorp LLC, College
Station, Texas, TX 77845-4512, USA). Microsoft Excel was used to draw maps.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/15/
5205/s1. Table S1. HLA AND COVID-19 data Italy.
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