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Abstract: Extracellular vesicles (EVs) are small lipid bilayer-delimited nanoparticles released from
all types of cells examined thus far. Several groups of EVs, including exosomes, microvesicles,
and apoptotic bodies, have been identified according to their size and biogenesis. With extensive
investigations on EVs over the last decade, it is now recognized that EVs play a pleiotropic role in
various physiological processes as well as pathological conditions through mediating intercellular
communication. Most notably, EVs have been shown to be involved in cancer initiation and
progression and EV signaling in cancer are viewed as potential therapeutic targets. Furthermore,
as membrane nanoparticles, EVs are natural products with some of them, such as tumor exosomes,
possessing tumor homing propensity, thus leading to strategies utilizing EVs as drug carriers to
effectively deliver cancer therapeutics. In this review, we summarize recent reports on exploring EVs
signaling as potential therapeutic targets in cancer as well as on developing EVs as therapeutic delivery
carriers for cancer therapy. Findings from preclinical studies are primarily discussed, with early
phase clinical trials reviewed. We hope to provide readers updated information on the development
of EVs as cancer therapeutic targets or therapeutic carriers.
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1. Introduction

Extracellular vesicles (EVs) are a generic term referring to several groups of small lipid
bilayer-delimited particles generated through various cellular processes and released from all types
of cells investigated thus far. These membrane vesicles, including microvesicles (also known as
microparticles or ectosomes), exosomes, and apoptotic bodies, all lack a functional nucleus and are
unable to replicate themselves. They are constantly released from cells and are involved in a variety of
physiological as well as pathological processes. The initial discovery of EVs can be tracked back to
1946 when ultracentrifugation pellets were found to be associated with the activation of platelets and
procoagulant properties in human plasma [1]. In the 1980s, EVs released by reticulocytes were captured
by electronic microscopy and were considered “waste disposals” to remove waste materials during red
blood cell maturation [2,3]. However, EV-mediated transfer of genetic and cellular materials between
different cell types was recognized in the late 2000s by several research groups [4–8], thus establishing
EVs as messengers for intercellular communication with biological consequences.

Among all the EVs described, exosomes are defined by their small sizes (40–120 nm) and
endocytic origin and are most extensively characterized over the years. In the context of cancer,
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it has been demonstrated that exosomes play a pivotal role in the tumor microenvironment by
mediating intercellular communication among cancer cells and stromal cells, thereby promoting tumor
proliferation, metastasis, and chemo-resistance [9]. The contribution of exosomal signaling to tumor
progression has led to the development of therapeutic strategies targeting various steps of the exosomal
signaling processes (see Section 2). On the other hand, since exosomes are endogenously produced and
can be transferred among various types of cells, the potential of using these small vesicles as vehicles
for drug delivery has been actively explored (see Section 3). In this review, we will focus on recent
work in the development of cancer therapeutics targeting EV-mediated cellular processes or utilizing
EVs as vehicles for drug delivery. Furthermore, we will discuss the clinical trials that are ongoing or
completed using naturally produced EVs as cancer therapeutic vehicles. A simplified view of general
aspects of EVs is provided at the first section of this review.

2. EV Cargos and Functions

2.1. EV Nomenclature

EVs were initially called platelet dust, as they were vesicles derived from platelets. In the 1970s,
the term “extracellular vesicles” was used to describe calcifying globules in epiphyseal cartilage that
were observed by histochemical staining [10]. Since then, the nomenclature of EVs has significantly
evolved and EVs are now named primarily according to their sizes and biogenesis processes or the
way of release [11]. It is well accepted that there are three main subgroups of EVs that have been
identified thus far: (a) exosomes, (b) microvesicles (MVs, also named microparticles/ectosomes), and
(c) apoptotic bodies [12]. The most researched EVs are exosomes, which were firstly termed in the
1980s as a group of vesicles ranging from 40 to 120 nm in diameter, formed by the invagination
of the multi-vesicular bodies (MVBs) during the late endosome formation [2,3,13]. Differing from
exosomes, MVs are larger membrane vesicles (up to 1000 nm in diameter) which are produced by
direct budding from cellular membranes, whereas apoptotic bodies are even larger vesicles with
800–5000 nm in diameter and formed during programmed cell death [14,15]. Recently, a smaller group
of non-membranous nanoparticles termed “exomeres” (~35 nm) was also reported, which is likely
to be generated through a unique cellular process [16]. The overlap in sizes of different EV groups
and the difficulty in separating individual EV groups by current isolation techniques have hindered
our understanding of their biogenesis, molecular compositions, biodistributions, and functions. For
this reason, the International Society for Extracellular Vesicles (ISEV) provided guidelines on the
terminology and minimum requirements for defining EV populations in experimental research in 2014,
which was updated in 2018 (MISEV2018) [17]. Most notably, instead of using the terms exosomes
or MVs, the guidelines urge authors to name EV subtypes based on their physical characteristics,
such as size or density, with ranges being defined, biochemical compositions, and the experimental
conditions or cell of origin. In accordance with this recommendation, exosomes are considered
small EVs (sEVs), which is the term we used interchangeably with exosomes, wherever appropriate,
throughout this review.

2.2. EV Surface Markers and Cargos

EVs carry various biomolecules including proteins, RNA, DNA, and lipids. Each group of
biomolecules in EVs is often heterogeneous, primarily relating to different EV types, experimental
conditions, and their cellular origins [11]. The most characterized EV components are EV proteins and
RNAs, especially small RNAs [18]. EV surface protein markers have been critically examined in order
to establish specific markers for validating isolated EVs. The MISEV2018 guidelines provide several
groups of protein markers in evaluating isolated EVs as well as minimal requirements in experimental
data presentation when it comes to EV isolation and characterization [17].

It has come to a consensus that sEVs stably express specific transmembrane proteins such as
tetraspanins (most notably CD63, CD9, CD81), Major Histocompatibility Complex (MHC) class I
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proteins (such as HLA-A/B/C), transferrin receptor, LAMP1/2, and others. These membrane proteins,
especially tetraspanins, are frequently applied to validate isolated sEVs. In addition, cytosolic proteins
can also be specific markers for sEVs, including Alix, TSG-101, flotillins-1/2, annexins, and heat shock
proteins, among others. Cell- or tissue-specific EV markers have also been reported, such as TSPAN8
and EPCAM (epithelial cell), CD37 and CD53 (leukocytes), PECAM1 (endothelial cells), and ERBB2
(breast cancer). Given the heterogeneity of EVs, it is recommended that at least one membrane protein
marker, one cytosolic protein marker, and one non-EV protein marker have to be used to validate
the isolated sEVs from large EVs [16,17]. It has been recognized that proteins from the nucleus,
mitochondria, endoplasmic reticulum, and the Golgi complex are mostly absent in sEVs, which can
serve as negative control markers for these vesicles [19]. Enormous efforts have been placed on profiling
proteomes of sEVs and the comprehensive databases of sEV proteins can be found at: Vesiclepedia [15],
EVpedia [20], and ExoCarta [21].

sEVs contain various RNA species. However, most studies demonstrated that small non-coding
RNAs, such as microRNAs, are the major RNA species contained in sEVs, although the presence
of mRNA, rRNA, and tRNA in sEVs was also reported [22,23]. Typically, sEVs may contain
hundreds of microRNA species in various quantities that play important roles in intercellular
communication [7,23–25]. Both coding and non-coding RNAs seem to be functional through transferring
from host cells to the recipient cells [26–28]. Specific RNA profiles of sEVs derived from different
biofluids or tissues are categorized by several databases, including: Exobase [29], exRNA Atlas [30],
and miRandola [31].

DNA in sEVs has also been described, with DNA fragments originating either from the nucleus
or from the mitochondria. It seems that all genome DNA are represented randomly in sEVs,
which eliminates the possibility of selective DNA packaging [32–34]. While cancer cell-derived sEVs
may contain more genomic DNA than that from non-cancer cells [34], whether and how sEV DNA
contributes to intercellular communications in the tumor microenvironment, thereby affecting tumor
progression, remains to be determined.

2.3. EV Functions

It has long been known that cell-to-cell communication is a strategy utilized to facilitate
physiological and pathological processes in various organisms. However, the EV-mediated intercellular
communication was only recognized in recent years [7,23]. The double-layer lipid membrane of EVs
protects inside contents, allowing transfer of EV materials to surrounding cells or to distal organs via the
circulatory system. Most notably, sEVs have been considered potent vehicles to mediate intercellular
communication [11]. By transferring signaling molecules among different cell types, sEVs have been
shown to play pleiotropic roles in regulating cellular and physiological processes. This includes
participating in hemostasis by enhancing coagulation, regulating both innate and acquired immune
responses, involvement in pregnancy and embryonic development, as well as other physiological
events [35–44].

In addition to mediating intercellular communication, EVs may function as waste disposals
to remove unwanted cellular materials. In fact, sEVs were first observed to facilitate reticulocyte
maturation via cargo disposing [2,3]. In supporting this function of sEVs, several recent studies revealed
the cross-regulation of the EV pathway and lysosomal degradation pathway [45]. Two established
lysosome inhibitors, chloroquine and bafilomycin A1, were shown to enhance sEV release [46–48],
suggesting that sEVs may act as an alternate pathway for cell component degradation and clearance.
The involvement of sEVs in cellular homeostasis is further supported by the findings showing that
ubiquitin and ubiquitinated proteins are present in sEVs [49], along with selective lipids and other
soluble cellular components [50,51].

The role of sEVs in pathological processes has been evident, especially in cancer. Cancer progression
is a dysregulated and uncontrolled pathological process [52]. It is well described that cancer-derived
sEVs promote tumor development [53–55] by acting at different stages of cancer progression [56]
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through various mechanisms. Evidence is provided to indicate that cancer sEVs are involved in
enhancing tumorigenesis of epithelial cells [53,57], sustaining tumor angiogenesis [58,59], promoting
tumor growth [60,61], facilitating cancer cell invasion and metastasis [54,55,62,63], and contributing
to chemo-resistance [64,65] and immunosuppression [66,67]. These important findings of the
tumor-promoting effects of cancer sEVs lead to new cancer therapeutic opportunities that aim
at targeting cancer exosomal signaling processes, as discussed below.

3. EVs as Potential Therapeutic Targets in Cancer

Given the growing evidence of sEVs’ involvement in cancer progression, several strategies have
been tested or envisioned to target various steps of the sEVs signaling in order to block their tumor
promoting effect. These include targeting cancer sEV biogenesis and release, blocking sEV uptake by
recipient cells, eliminating circulating cancer sEVs, and removing specific components from sEVs that
contribute to cancer pathogenesis [68–70].

3.1. Suppressing sEV Biogenesis and Release

At the cellular level, sEVs are derived from the endosomal pathway. The invagination of endosomal
membranes generates intraluminal vesicles inside of the endosome, forming MVBs. These vesicles are
released by cells upon fusion of the endosome with the cellular plasma membrane and the released
vesicles are termed exosomes or sEVs [71,72]. The process of forming sEVs and releasing them
from cells requires a coordinated effort by various cytoplasmic proteins. This includes endosomal
sorting complexes required for transport (ESCRT) and tetraspanins necessary for intraluminal vesicle
formation, sphingomyelinase to generate ceramides vital for intraluminal vesicles’ formation and
sorting, and Rab27a and Rab27b critical for cellular endosomal trafficking [55,71,73]. In an early effort to
suppress sEVs’ biogenesis, GW4869, a sphingomyelinase inhibitor, was used, which reduced ceramide
generation and inhibited sEV formation [74]. Furthermore, attenuation of neutral sphingomyelinase 2
(nSMase2) in breast cancer cells by a knockdown approach reduced sEV formation and attenuated
sEV-associated miR-210 transfer, leading to the suppression of cancer cell metastasis in vitro and in
a xenograft mouse model [75]. However, the role of nSMase2 in sEV formation and secretion from
other cultured cancer cell lines remains unclear [76,77], compromising this approach of targeting sEV
biogenesis. Other potential strategies in targeting sEV biogenesis that have been tested or envisioned
include the use of Amiloride, an anti-hypotension drug, which reduced sEV yields by blocking
membrane-associated heat shock protein 72 (HSP72) in a STAT3-dependent manner in myeloid-derived
suppressor cells [78]; inhibiting the syndecan-syntenin-Alix signaling process, since the syndecan
heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin, along with Alix and ESCRT,
control the formation of sEVs [79]; and targeting cellular molecules, such as Rab27a/b [70,73,80], Rab11,
Rab35 [81,82], TSG101, and TSAP6 [70], which are either related to sEV formation or trafficking and
secretion from cancer cells. Using a high-throughput screening approach, a recent study identifies
that manumycin-A (MA), a natural microbial metabolite, inhibits sEV biogenesis and secretion via
the Ras/Raf/ERK1/2 signaling in castration-resistant prostate cancer cells but not in normal prostate
epithelial cells [83], indicating a new compound that may serve as a cancer therapeutic via inhibiting
sEV biogenesis and secretion. In another high-throughput screening study, miR-26a was identified as
being involved in sEV secretion from prostate cancer cells [84], suggesting a new molecular target for
suppressing cancer sEV secretion.

3.2. Preventing EV Uptake

Several sEV uptake mechanisms have been recently proposed (Figure 1), including sEV membrane
direct fusion with plasma membrane, thereby releasing sEV contents to recipient cells [85,86],
and receptor-mediated endocytosis [87], clathrin- and caveolin-mediated endocytosis [88,89],
phagocytosis [90], and macropinocytosis [88,91]. Detailed regulation of each of the pathways and their
proportional contributions to sEV uptake remains to be further elucidated. It seems reasonable to
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assume that the uptake to a large extent depends on sEV surface protein compositions and the type of
cells in which the sEVs are internalized. Furthermore, irrespective of the uptake pathways, internalized
materials will be processed via the endosomal/lysosomal pathway [92]. While limiting cancer sEV
uptake by recipient cells is a potential strategy to block cancer sEV signaling and attenuate cancer
sEVs’ tumor-promoting effect, few studies have been published to support this strategy. Nevertheless,
evidence has been provided to indicate that it is feasible to modulate the sEV uptake process in
order to attenuate the sEV-induced effect in the recipient cells. Some examples include the following.
Autophagy inhibitors such as chloroquine, bafilomycin A, and monensin, were shown to significantly
inhibit sEV internalization into microglia, likely through altering vacuolar acidification [91]. Two
potent PI3K inhibitors, Wortmannin and LY294002, concentration-dependently inhibited sEV uptake
by macrophages, indicating that PI3K is essential for sEV phagocytosis [90]. Disruption of the actin
cytoskeleton using Cytochalasin D or Lantrunculin A inhibited sEV uptake by Human Umbilical
Vein Cells (HUVECs), confirming that an intact cytoskeleton facilitates sEV internalization [93].
Chlorpromazine, which blocks clathrin-mediated endocytosis, inhibited sEV uptake by ovarian cancer
cells [94] and endothelial cells [95], and heparin dose-dependently inhibited sEV uptake by glioblastoma
(GBM) cells [96] and bone marrow stromal cells [97]. These findings reinforce the notion that targeting
the uptake of cancer sEVs is a promising strategy in the development of new cancer therapeutics, and
future efforts should focus on small molecules capable of inhibiting cancer sEV uptake and suppressing
tumor progression.
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3.3. Eliminating Circulating Cancer sEVs

The transfer of cancer sEVs through the circulatory system to distal organs has been reported to
promote tumor metastasis via various mechanisms, most notably by forming pre-metastatic niches
in the distal organs [55,62,98]. Considering that most cancer deaths are due to metastatic disease,
eliminating circulating cancer sEVs is presumably a great strategy to prevent cancer metastasis,
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thereby reducing cancer mortality. The idea of “cleaning” the blood to prevent cancer metastasis has
been tested many years ago. In the late 1980s, using a continuous whole blood UltraPheresis procedure,
plasma fractions with molecular weight less than 150 kDa were removed from patients with metastatic
cancer, which reduced tumor size and improved patient immune response and Karnofsky Performance
Status [99]. While this technique did not consider removing blood sEVs at the time, it inspired others
to develop new devices to remove cancer sEVs from patient plasma [64]. For instance, Hemopurifier®,
an affinity-based purifier developed by Aethlon Medical Inc. (San Diego, CA, USA), has been shown
to selectively capture viral particles (which have similar size as sEVs) in the plasmas of individuals
infected with Hepatitis C and Human Immunodeficiency Virus (HIV) [100,101], and this device is
being modified and tested for removal of Her2-positive breast cancer exosomes from patient plasma
([64], https://grantome.com/grant/NIH/R43-CA232977-01). Moreover, a phase I clinical trial using
Hemopurifier® in conjunction with pembrolizumab (Keytruda) in patients with advanced head and
neck cancer has been recently approved by the Food and Drug Administration (FDA) (NCT04453046).

In line with the strategy of eliminating circulating cancer sEVs, a recent report demonstrated,
in a xenograft nude mouse model, that treatment of the mice with human anti-CD9 and anti-CD63
antibodies (intravenous injection) disrupts cancer sEVs in the circulation and suppresses the pulmonary
metastasis of implanted human breast cancer cells, yet, has no effect on primary tumor growth of
the implants or metastatic ability of the cells in vitro [102]. These findings support the strategy to
suppress cancer metastasis via inhibiting the pro-metastatic functions of cancer-derived sEVs using
antibodies against their surface proteins. In addition, an innovative design of aptamer-functionalized
nanoparticles was shown to eliminate blood oncogenic sEVs into the small intestine, and attenuate
oncogenic sEV-induced lung metastasis in mice [103]. This technology utilized positively charged
mesoporous silica nanoparticles equipped with Epidermal Growth Factor Receptor (EGFR)-targeting
aptamers specifically recognizing and binding the negatively charged oncogenic sEVs and towing
them from blood to bile duct for elimination. This interesting study proves that it is feasible to
remove oncogenic sEVs selectively from the blood stream, thereby reducing tumor metastatic potential.
Further investigations are warranted along this line of research.

3.4. Targeting Specific sEV Cargo Components

Specific sEV components that mediate sEVs’ tumor-promoting activity are obvious potential cancer
therapeutic targets. Some of the targets have been recently explored in order to develop new cancer
therapeutics. As discussed above, antibodies against human CD9 and CD63, two well-established sEV
surface markers [17], were shown to disrupt oncogenic sEVs and inhibit tumor metastasis in a breast
cancer xenograft nude mouse model [102]. However, this experiment strategy of targeting human CD9
and CD63 is only applicable in a xenograft nude mouse model for selectively eliminating human cancer
sEVs from the blood, since CD9 and CD63 are expressed in sEVs released from both noncancerous and
cancerous cells in humans. Targeting of cancer-specific sEV components will be preferred to achieve
a cancer-specific effect. In this context, a recent report demonstrated that cytoskeleton-associated
protein 4 (CKAP4), a novel Dickkopf1 (DKK1) receptor, was selectively contained in sEVs from
pancreatic ductal adenocarcinoma (PDAC) cells, not in sEVs from normal cells. Various anti-CKAP4
antibodies were then utilized to block the interaction of DKK1 with sEV-associated CKAP4, resulting
in an inhibition of the proliferation and migration of PDAC cells and a prolonged survival of PDAC
xenograft nude mice [104], supporting further development of this targeting strategy.

In another report, miR-365 in macrophage-derived sEVs was found to significantly decrease
the sensitivity of PDAC cells to gemcitabine, and a miR-365 antagonist was able to reverse the
gemcitabine resistance of PDAC cells in vitro and in vivo [105], thus suggesting that targeting miR-365
in macrophage-derived sEVs renders PDAC cells more sensitive to gemcitabine. Similarly, miR-155
was found in PDAC cell-derived sEVs that mediates transfer of the gemcitabine resistance traits
from resistant PDAC cells to sensitive PDAC cells, conferring gemcitabine resistance of PDAC cells.
Targeting miR-155 or the exosome secretion of PDAC cells effectively attenuated the gemcitabine
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resistance in PDAC cell lines and in xenograft nude mice [106]. Other cancer sEV-associated microRNAs,
such as miR-21 and miR-1246, have also been found to be selectively enriched in cancer sEVs and
considered as therapeutic targets [107,108]. Since cancer sEVs selectively encapsulate certain microRNA
species [25,109–111], targeting cancer sEV-associated microRNAs will continue to be an attractive
strategy for the development of new cancer therapeutics.

Immune checkpoint protein inhibitors, such as PD1/PD-L1 inhibitors, are novel cancer therapeutic
targets which have revolutionized cancer therapy with great efficacy, even for those cancer patients
whom standard therapy has failed [112]. However, only 10%–30% of patients responded to checkpoint
inhibitor therapy [113]. The immune escape is partially due to the fact that tumor-derived sEVs
contain PD-L1, a PD1 ligand, which binds to PD1 on the surface of T cells and suppresses T cell
activation [66,67]. The sEV PD-L1 level was thus suggested to be a prognostic marker for anti-PD1
therapy response [114], and blocking sEV PD-L1 has been proposed to overcome the resistance to
anti-PD-1/PD-L1 antibody therapy [115]. Indeed, anti-PD-L1 antibodies were shown to block sEV
PD-L1, induce systemic anti-tumor immunity, and suppress tumor growth in a syngeneic colorectal
cancer model [67].

New oncogenic components in cancer sEVs are continuously being identified which may contribute
to tumor progression or chemo-resistance [116,117]. Efforts on targeting these sEV-associated oncogenic
molecules for cancer therapeutic development are expected to expand.

4. EVs as Drug Carriers in Cancer Treatment

Compared to artificial drug vehicles, such as liposomes, EVs are favored drug carriers [118]
because of their autologous nature that would prevent undesired immunogenicity and toxicity [119,120].
sEVs also possess high capacity of homing toward tumor cells when compared to liposomes [62,121],
implying that sEVs are more efficient in delivering drugs for cancer therapy. Furthermore, studies have
shown that sEVs are stable membrane vesicles under different pH values, temperatures, or freeze–thaw
cycles [122], and these properties can be further enhanced by surface modification [123], supporting
their potential compliance with good manufacturing practices (GMPs) in future clinical use. In addition,
as nano-sized particles, sEVs were shown to be able to cross the blood–brain barrier and the tumor
vasculature via enhanced permeability and retention (EPR), thereby potentially increasing accumulation
of nanoparticles in brain tumors [124–126].

Diverse techniques have been practiced to encapsulate cancer therapeutics by sEVs in order to
develop more efficient tumor-targeting vehicles. Here, we review the sEV loading strategies reported
in recent literature.

4.1. EV Sources and Loading Efficiency

Based on the heterogeneity of sEVs derived from various biological sources [18], it is safe to
assume that the source of the sEVs may relate to their drug loading efficiency and their therapeutic
efficacy. Indeed, experimental evidence has been provided to show that drug loading efficiency of
sEVs derived from pancreatic stellate cells (PSCs), pancreatic cancer cells (PCCs), and macrophages
significantly differ when doxorubicin was simply incubated with the sEVs, with those from PCCs
being most efficient. However, the doxorubicin-loaded macrophage sEVs are most effective in killing
cancer cells, indicating that higher loading capacity does not equal to high anticancer activity of
the drug-loaded sEVs [127]. This implies that both the biological source of the sEVs and the drug
loading efficiency need to be evaluated when sEVs are applied as drug carriers for cancer therapy.
In line with this concept, sEVs derived from mesenchymal stem cells (MSCs) are considered good
carriers for drug delivery because they possess low immunogenicity [9,128] and are well tolerated
in mice [129] and humans [130]. Both a miR-9 inhibitor and the chemo drug paclitaxel have been
successfully incorporated into sEVs derived from MSCs which inhibited tumor cell growth [131,132].
However, allogeneic MSCs may also be able to transfer immunogenic proteins, such as MHC
molecules, via secreted EVs, which might cause immunological responses [133]. Furthermore,
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the immunogenicity of MSCs-derived EVs varies, depending on experimental conditions by which the
EVs are produced [134]. Future efforts are required to closely monitor immunologic responses post
administration of MSCs-derived EVs and develop uniform procedures in preparing MSCs-derived
EVs. In addition to MSCs, sEVs from immature dendritic cells or self-derived dendritic cells were
also considered, possessing low immunogenicity and used to encapsulate siRNA or doxorubicin for
therapeutic applications [135,136]. Interestingly, cancer cell-derived sEVs were shown to have unique
targeting abilities homing to tumorous microenvironments [137]. sEVs from HeLa and patient ascites
were shown to deliver heterologous siRNAs to HeLa cells and cause cell death [138]. Autologous
sEVs were found to be safe and effective in delivering gemcitabine for pancreatic cancer therapy in
experimental model systems [139]. These results show that cancer cell-derived sEVs are promising
carriers for effective delivery of chemotherapeutic drugs or nucleotides. Given the tumor-promoting
activity of cancer-derived sEVs [53–55], the safety and long-term effect of these membrane vesicles as
drug-delivery carriers needs to be carefully evaluated.

4.2. Loading Therapeutics into sEVs via Donor Cells

Efficient loading of cancer therapeutics into a given sEV population can be critical when it comes
to drug efficacy. In this context, one loading strategy that has been described in packaging cancer
therapeutics into sEVs is to load cancer therapeutics into sEVs via donor cells, which is in contrast
to directly loading therapeutics into isolated sEVs. In this case, microRNAs have been most often
loaded into sEVs via the donor cells. For example, adipose tissue-derived MSCs were transfected with
a miR-122 expression plasmid to overexpress this microRNA and the sEVs derived from these cells
were highly enriched in miR-122. An intra-tumor injection of miR-122-enriched sEVs significantly
increased the efficacy of Sorafenib on inhibiting hepatocellular carcinoma in a xenograft nude mouse
model [140]. Functional delivery of miR-21 derived from glioma cells to the surrounding microglia
led to downregulation of specific miR-21 mRNA target genes [141]; likewise, sEVs from primary
glioma cells, stably expressing miR-302-367, were shown to enrich in miR-302-367 by internalizing
neighboring glioblastoma cells, and altering tumor development in vivo [142], and overexpression of
miR-146b in marrow stromal cells generated sEVs with high miR-146b content, which significantly
reduced glioma xenograft growth in rats [143]. More studies have been reported in testing the strategy
of loading microRNA inhibitors or mimics into sEVs via the donor cells for therapeutic applications,
as was recently reviewed [144].

An interesting study demonstrated that the chemotherapeutic paclitaxel (PTX) could be added
directly to the culture of MSCs to generate sEVs that are highly associated with PTX and significantly
suppress cancer cell proliferation [132]. However, this strategy of loading chemotherapeutics into sEVs
has been less explored, likely because of the loading efficiency, considering the potential metalizing of
PTX in treated cells. Instead, direct loading of chemotherapeutics and microRNA/siRNAs into the
isolated sEVs has been widely adapted for testing sEVs as drug carriers for therapeutic delivery.

4.3. Loading Therapeutics into Isolated sEVs

The lipid-bilayer membrane structure of sEVs favors encapsulating hydrophobic compounds
and molecules, which may directly integrate into the sEVs without disturbing their membrane barrier.
In contrast, hydrophilic compounds and molecules require permeabilization of the bilayer membrane
in order to be incorporated into the sEVs [145,146]. Various approaches have been proposed to
load hydrophobic and hydrophilic drugs or biological molecules into sEVs. The most common
approaches include opening up the pores in lipid membranes by physic forces, such as electroporation,
sonication, freeze and thaw cycles, and extrusion, and by chemical means, such as using transfection
reagents. The pros and cons of these methods for membrane permeabilization and cargo loading has
been reviewed elsewhere [147]. Therefore, we will only briefly discuss these loading approaches in
the following.
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Direct incubation of therapeutics with sEVs at given temperatures and durations is a simple
strategy for loading drugs into sEVs. The loading efficiency mainly relies on the concentration of
the drugs or molecules and their hydrophobicity. A proper loading can usually be achieved for
hydrophobic compounds without disturbing the integrity of the sEV membrane [132]. Nevertheless,
the loading efficiency is often lower compared to other loading approaches.

Electroporation has been a method widely used to introduce DNA or RNA into mammalian
cells [148,149], and is often applied for drug or nucleotide loading into sEVs [150,151]. The desired
sEVs will be co-incubated with the therapeutics and exposed to certain volts of electric fields to open
up the pores of the sEV membrane to allow the therapeutics to enter into the permeabilized sEVs.
This method has been preferentially applied when incorporating nucleic acids like siRNA, mRNA,
DNA, and microRNA, into sEVs [152]. Its loading efficiency is usually higher than incubation [139].
However, the main drawback of this method is the risk of damaging the EV membranes that may
cause aggregation of sEVs and precipitation of nucleic acids.

Sonication uses ultrasound energy transmitted through a sonicating probe that reduces the
rigidity of sEV membranes, thus allowing more therapeutic molecules to be incorporated into sEVs.
For example, PTX was loaded into sEVs more efficiently by sonication than electroporation and
incubation [139]. However, the sonicating probe produces consistent heat during the sonication and
the operation has to be done on ice, with intervals between strokes [153]. There is no doubt that
sonication may compromise the membrane integrity of sEVs, with the therapeutics occasionally being
attached to the outer membrane of the sEV, which affects the drug distribution in vivo [139].

The freeze and thaw approach takes advantage of the formation of ice crystals that temporarily
disrupt the sEV membrane, allowing therapeutic compounds to enter into the sEVs prior to
membrane reconstitution [154]. This method shows lower cargo loading compared to sonication- and
extrusion-based methods [155]. One to three cycles of freeze and thaw were usually performed during
drug incorporation, which may accelerate the degradation and aggregation of the sEVs [122,156].

Extrusion utilizes a lipid syringe extruder with pore sizes between 100 and 400 nm, which break
the sEV membrane physically and then mix with therapeutics. This method possesses high loading
efficiency when compared to freeze and thaw, sonication, and saponin treatment [155,157]. One can
imagine that the extrusion approach may cause damage of the sEV membranes as it does by sonication
and electroporation.

Saponin treatment and the use of common transfection reagents, such as cationic lipids, have also
been applied to load exogenous materials into sEVs. It was demonstrated to be an effective approach
for sEV encapsulation of therapeutic drugs when compared to electroporation [155]. While we would
expect more studies using the transfection approach for sEV loading, especially for loading of nucleic
acids, the chemical transfection reagent itself will need to be removed prior to delivering the sEVs to
target cells [157].

Through the above-mentioned approaches, multiple therapeutic agents in the forms of
DNA, microRNA, siRNA, porphyrins, proteins (catalase, stress-induced heat shock proteins),
and chemotherapeutics (curcumin, paclitaxel, docetaxel, gemcitabine) have been successfully loaded
into sEVs and tested for their therapeutic value [158–161]. Nonetheless, it remains to be determined
which approaches are most appropriate for loading specific agents into desired sEVs.

5. Clinical Trials Testing sEVs as Cancer Therapeutic Carriers

The potential of sEVs to serve as cancer therapeutic carriers and the promising results from
preclinical studies have led to clinical trials aimed to develop sEV-based cancer therapy. We searched
ClinicalTrials.gov and Pubmed.gov on 7 July 2020 and found 12 clinical trials testing sEVs as potential
cancer therapeutics or therapeutic carriers, with 8 of them being registered in ClinicalTrials.gov
(Table 1). Some of the clinical trials have reported their end results and others are still ongoing [162].
These clinical trials can be categorized according to their biological source of sEVs that are used as

ClinicalTrials.gov
Pubmed.gov
ClinicalTrials.gov
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therapeutic carriers, as discussed below. Note that these clinical trials are mostly in early stages, and
the definitive therapeutic value of sEVs for cancer therapy has yet to be determined.

Table 1. Clinical trials of EV-based cancer therapy.

Disease Drug EV Source Phase, n of
Patients Status Reference

Malignant Pleural
Effusion

Methotrexate
Autologous

Tumor-Derived
Microparticles

Phase 2,
n = 90 Recruiting NCT02657460 1

Guo, M. [163]

Methotrexate Microparticles N/A,
n = 248 Recruiting NCT04131231 1

Chemotherapeutic
Drugs

Tumor Cell- Derived
Microparticles

Phase 2,
n = 30 Unknown NCT01854866 1

Tang, K. [164]

Cisplatin Tumor Cell- Derived
Microparticles

N/A,
n = 6 Completed Ma, J. [165]

Metastatic Pancreatic
Cancer KRAS 2 G12D siRNA MSC 3-Derived

Exosomes
Phase 1,
n = 28 Recruiting NCT03608631 1

Kamerkar, S. [166]

Head and Neck Cancer
Grape Extract Plant Exosomes Phase 1,

n = 60
Active, Not
Recruiting NCT01668849 1

Hemopurifier
Pembro-lizumab

Blood-Derived
Exosomes

N/A,
n = 12

Not Yet
Recruiting NCT04453046 1

Colorectal Cancer
Curcumin Plant Exosomes Phase 1,

n = 7
Active, Not
Recruiting NCT01294072 1

GM-CSF 4 AEX 5 Phase 1,
n = 40 Completed Dai, S. [167]

Non-Small Cell Lung
Cancer

Antigens Tumor Dex2 6 Phase 2,
n = 41 Completed NCT01159288 1

Besse, B. [168]

MAGE7 Tumor Antigens Autologous DEX 6 Phase 1,
n = 13 Completed Morse, M.A. [169]

Metastatic Melanoma MAGE7 3 Peptides Autologous DEX 6 Phase 1,
n = 15 Completed Escudier, B. [170]

1 The NCT# refers to a registered National Clinical Trial (NCT) which can be found at Clinicaltrials.gov,
2 Kirsten Rat Sarcoma (KRAS), 3 Mesenchymal Stem Cells (MSC), 4 Granulocyte- Macrophage Colony-Stimulating
Factor (GM-CSF), 5 Ascites- Derived Exosomes (AEX), 6 Dendritic Cell- Derived Exosomes (DEX), 7 Melanoma
Antigens (MAGE).

5.1. Clinical Trials Using Dendritic Cell-Derived sEVs (DEX)

In 2005, two phase I clinical trials were reported using autologous DEX as immune stimulants,
one for patients with metastatic melanoma, and another for patients with non-small cell lung cancer
(NSCLC) [169,170]. Similar procedures were used in isolating sEVs from patients and loading MAGE-3
antigens to the sEVs for these trials. In the metastatic melanoma trial, 15 patients were included and
received a 4-week outpatient vaccination course with antigen-loaded DEX given intradermally (1/10th)
and subcutaneously (9/10th) per week for 4 weeks. There was no major toxicity being observed and
some patients showed partial response and tumor repression. This is the first study to show the
feasibility and safety of DEX-based vaccination in melanoma patients. In the NSCLC trial, 13 patients
were enrolled, with 9 completing the therapy. The antigen-loaded DEX was given, intradermally
(1/10th) and subcutaneously (9/10th), 4 times at weekly intervals. Similar to the melanoma trial, no
major toxicity was observed during a 24-month follow up, and immune activation and stability of
disease was observed in some patients with advanced NSCLC. The success of this phase I trial led to a
phase II clinical trial for NSCLC in France (NCT01159288). In the phase II trial, DEX was upgraded from
the first-generation interferon gamma-free DEX (IFN-γ-free DEX) to a second generation (IFN-γ-DEX)
in order to enhance DEX-induced T cell responses. Twenty-four patients were recruited, and the results
confirmed that DEX boosts antitumor immunity in patients with advanced NSCLC with outstanding
safety [168]. Together, these clinical trials indicate a potential safe immunotherapy using DEX in
metastatic melanoma and NSCLC, and an enhanced efficacy of DEX when administered in combination
with IFN-γ.

5.2. Clinical Trials Using Ascites-Derived sEVs (AEX)

In 2008, a phase I study using autologous AEX combined with granulocyte-macrophage
colony-stimulating factor (GM-CSF) for colorectal cancer was completed [167]. Forty patients with
advanced colorectal cancer were included in the study and randomly assigned to AEX alone or AEX

Clinicaltrials.gov
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plus GM-CSF groups. Patients received 4 subcutaneous immunizations at weekly intervals. Results
showed that both groups of patients tolerated the treatment well and AEX plus GM-CSF rather than
AEX alone induces beneficial antitumor cytotoxic T lymphocyte (CTL) response. These findings
suggest that the immunotherapy of colorectal cancer with AEX in combination with GM-CSF is feasible
and safe, and may be applied for immunotherapy of colorectal cancer.

5.3. Clinical Trials Using Tumor Cell-Derived EVs

A preclinical study has confirmed the feasibility of using apoptotic tumor cells induced
by chemotherapeutic drugs to produce drug-packaging EVs [164]. Several anti-cancer drugs,
including methotrexate, doxorubicin, and cisplatin, were shown to be packaged into EVs released by
tumor cells, such as the mouse hepatocarcinoma tumor cell line H22 or the human ovarian cancer
A2780. These drug-containing EVs effectively killed tumor cells in murine models without typical
side effects, such as hair and/or weight loss or liver and/or kidney function impairment. Inspired
by these preclinical results, three clinical trials were consecutively registered to test the effects of
chemotherapeutic packed EVs in cancer patients (NCT01854866, NCT02657460, and NCT04131231).
Whereas findings from two of the trials remain to be reported, one of the trials published their results in
2019 [163], showing that autologous tumor EVs packed with methotrexate symptomatically improved
10 of 11 lung cancer patients with malignant pleural effusion. The methotrexate-packed EVs activated
antitumor effector cells including CTLs and TH1 in the pleural microenvironment and only caused
mild (grades 1 to 2) adverse events.

Tumor EVs packed with chemotherapeutics also contributed to reverse drug resistance of
malignant cells. Intrathoracic injection of cisplatin-packed tumor EVs in three end-stage lung cancer
patients eliminated 95% of tumor cells in the malignant fluids and ameliorated patient symptoms.
These therapeutic effects were absent in another three patients with intrathoracic injection of cisplatin
alone [165].

5.4. Clinical Trials Using Plant-Derived sEVs

sEVs derived from plants are unquestionably safer than those from tumor cells. Grapefruits were
found to yield higher sEVs (2.21 g/kg raw material) than grapes, tomatoes, bovine milk, or ginger [171].
Grapefruit-derived nanovectors (GNVs) were demonstrated to transport chemotherapeutic agents,
siRNA, DNA expression vectors, and proteins to different kinds of cells. Co-delivery of folic acid and
PTX by GNVs showed a therapeutic benefit in a mouse model of colon cancer [172]. These preclinical
results led to a phase I clinical study investigating the efficacy of plant sEVs conjugated with curcumin
that was orally delivered to patients with colon cancer (NCT01294072). Another phase I clinical trial
was designed to evaluate the ability of plant sEVs to prevent oral mucositis during chemo-radiation of
head and neck cancer (NCT01668849), which will shed light on the potential of using plant sEVs to
alleviate side effects during cancer therapy.

5.5. Clinical Trials Using Normal Fibroblast-Like Mesenchymal Cell-Derived EVs

A preclinical study has demonstrated that sEVs, derived from fibroblast-like mesenchymal cells
and loaded with siRNA or shRNA targeting KRAS mutation (KrasG12D), are significantly more
effective than other drug carriers in inhibiting pancreatic ductal adenocarcinoma (PDAC) progression
in vitro and in vivo [166]. Following the report, this research group initiated a phase I clinical trial
(NCT03608631) aimed at testing this approach in patients with stage IV PDAC bearing the KrasG12D
mutation. They will also evaluate median progression-free survival (PFS) and median overall survival
(OS) as secondary objectives.

6. Conclusions

Research on EVs in cancer has been intensified over the last decade. The involvement of
EVs, especially sEVs, in promoting cancer progression through intercellular communication is well
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recognized. This leads to efforts focusing on targeting EV signaling or utilizing EVs as drug carriers
to develop novel cancer therapeutics. In this review, we have summarized recent progress in the
development of EVs as cancer therapeutics, both in preclinical studies and clinical trials. Clearly,
most of the studies reported on targeting sEV signaling, such as EV microRNA signaling, are at
preclinical stages, and clinical trials are primarily related to developing EVs as therapeutic carriers
at relatively early phases. This indicates that, on one hand, significant progress has been made in
understanding how to better target EV signaling for the development of cancer therapeutics and the
safety of delivering EVs into humans as therapeutic carriers, and on the other hand, clinical efficacy of
EVs as therapeutic targets or therapeutic carriers remains to be determined. Compared to targeting EV
signaling, utilizing EVs as therapeutic carriers seems to be a more practical strategy in therapeutic
development and has advanced from preclinical studies to clinical trials. This is likely due to the fact
that targeting cancer-specific EV signaling remains a challenge, as clear distinction of cancer EVs from
healthy EVs has not been firmly established, and the heterogeneity of EVs is well recognized, which
renders it difficult in specific targeting of EV signaling. In addition, current technology in EV isolation
and validation needs to be improved, which also limits the effort in exploring EV signaling in cancer.
Ongoing EV research needs to focus on these challenges in order to establish clinically applicable
therapeutics targeting EV signaling in cancer. There are also challenges in the development of EVs as
therapeutic carriers [173], including production and purification of EVs on an industrial scale, potential
EV contamination with virus [100,174], and long-term side effects of tumor-derived EVs when they are
applied as therapeutic carriers. However, these challenges are mostly technological, not conceptual,
and hopefully can be overcome with concentrated effort. It is expected that EVs as therapeutic targets
or delivery carriers may soon open up new avenues in clinical management of malignant diseases.
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Abbreviations

EV Extracellular Vesicle
MV Microvesicle
ISEV International Society for Extracellular Vesicles
sEV Small Extracellular Vesicle
MHC Major Histocompatibility Complex
EPCAM Epithelial Cell Adhesion Molecule
PECAM1 Platelet Endothelial Cell Adhesion Molecule 1
ERBB2 Erb-B2 Receptor Tyrosine Kinase 2
ESCRT Endosomal Sorting Complexes Required for Transport
nSMase2 Neutral sphingomyelinase 2
HSP72 Heat-Shock Protein 72
STAT-3 Signal Transducer and Activator of Transcription 3
MA Manumycin-A
PI3K Phosphatidylinositol 3-Kinase
HUVEC Human Umbilical Vein Endothelial Cell
GBM Glioblastoma
CKAP4 Cytoskeleton-Associated Protein 4
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DKK1 Dickkopf1
PDAC Pancreatic Ductal Adenocarcinoma
PD1 Programmed Cell Death Protein 1
PD-L1 Programmed Death-Ligand 1
GMP Good Manufacturing Practice
EPR Enhanced Permeability and Retention
PSC Pancreatic Stellate Cell
MSC Mesenchymal Stem Cells
HeLa Henrietta Lacks Cells
PTX Paclitaxel
KRAS Kirsten Rat Sarcoma
DEX Dendrite Cell- Derived Exosomes
NSCLC Non-Small Cell Lung Cancer
MAGE-3 Melanoma-Associated Antigen 3
IFN-γ-free DEX Interferon Gamma-free Exosomes
IFN-γ-DEX Interferon Gamma-containing Exosomes
AEX Ascites-Derived Exosomes
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
CTL Cytotoxic T Lymphocyte
TH1 T-cell Helper 1
GNV Grapefruit-Derived Nanovectors
PFS Progression-Free Survival
OS Overall Survival
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