Supplementary Information for the manuscript

The paralogue of the intrinsically disordered nuclear protein 1 has a nuclear

localization sequence that binds to human importin $\alpha 3$

José L. Neira, Bruno Rizzuti, Ana Jiménez-Alesanco, Olga Abián, Adrián Velázquez-Campoy and Juan L.

Iovanna

SUPPLEMENTARY FIGURE LEGENDS

FIGURE S1: Binding of intact NUPR1L to Imp α 3 monitored by spectroscopic techniques: (A) Fluorescence spectrum obtained by excitation at 295 nm of the complex between Imp α 3 and intact NUPR1L, and addition spectrum obtained by the sum of the spectra of both isolated macromolecules. (B) Far-UV CD spectrum of the complex between Imp α 3 and NUPR1L and the addition spectrum obtained by the sum of the spectra of both isolated macromolecules. (C) Thermal denaturations of Imp α 3 in the presence and absence of NUPR1L followed by the changes in ellipticity at 222 nm. The data on the y-axis has been scaled up. All experiments were carried out in phosphate buffer (50 mM, pH 7.0).

FIGURE S2: **Structural features of isolated NLS-NUPR1L as monitored by fluorescence**: The spectrum of NLS-NUPR1L after excitation at 280 nm. Spectrum was acquired in phosphate buffer (50 mM, pH 7.0) at 298 K.

FIGURE S3: Binding of NLS-NUPRL1 to Δ Imp α 3 as monitored by changes in the fluorescence and CD spectra: (A) Changes occurring upon binding of NLS-NUPR1L to Δ Imp α 3 as monitored by far-UV CD. (B) Changes in fluorescence spectra upon addition of NLS-NUPR1L to Δ Imp α 3, after excitation at 280 nm. (C) Thermal denaturations followed by

ellipticity at 222 nm (far-UV CD) of isolated Δ Imp α 3 and its complex with NLS-NUPR1L. Experiments were acquired in in phosphate buffer (50 mM, pH 7.0) at 298 K.

FIGURE S4: Binding of NLS-NUPRL1 to Imp α 3 as monitored by changes in the fluorescence and CD spectra: (A) Changes occurring upon binding of NLS-NUPR1L to Imp α 3 as monitored by far-UV CD. (B) Changes in fluorescence spectra upon addition of NLS-NUPR1L to Imp α 3, after excitation at 280 nm. (C) Thermal denaturations followed by ellipticity at 222 nm (far-UV CD) of isolated Imp α 3 and its complex with NLS-NUPR1L. The data on the y-axis has been scaled up. Experiments were acquired in phosphate buffer (50 mM, pH 7.0) at 298 K.

Fig. S2 (Neira et al.)

Table ST1: Chemical shifts (δ, ppm from TSP) of NLSp8L wild-type in aqueous solution (pH 7.2, 283 K) ^a											
	NH	Ηα	H _{β2}	H _{β3}	$H_{\gamma 2}$	$H_{\gamma 3}$	H _{δ2}	H _{δ3}	H_{ϵ}	Ηζ	
Ac-Arg51		4.32 (-0.09)	1.80	0							
Thr52	8.19	4.24 (-0.10)	4.07		1.05 (Me)						
Arg53	8.55	4.30 (-0.07)	1.80		1.57						
Arg54	8.54	4.29 (-0.03)	1.80								
Glu55	8.43	4.26 (0.00)	2.07		2.42						
Gln56	8.48	4.32 (0.03)	2.07		2.	.37					
Ala57	8.31	4.28 (-0.01)	1.37 (Me)								
Leu58	8.17	4.32 (-0.02)	1.6.	3	1.	.60	0	.90 (Me)			
Arg59	8.55	4.35 (-0.09)	1.80	0							
Thr60	8.31	4.37 (0.08)	4.22	3	1.21	(Me)					
Asn61 (c)	8.32	4.67 (0.02)	2.65	5	6.94	; 7.59					
Asn61 (t)	8.60	4.70 (0.05)	2.80	0							
Trp62 (c)	8.23	4.71 (-0.26)	3.06; 3.34		10.12 (NH); 7.22 (2H);			52 (7H); 7.15 (5H) 7.20 (6H); 7.69 (4H)		
Trp62 (t)	8.28	4.60 (-0.37)	3.12; 3	3.41		10.27 (NH);	7.25 (2H); 7.	54 (7H); 7.15 (5H) 7.20 (6H), 7.61 (4H)		
Pro63 (c)		4.65 (0.36)	1.93	5	2.2	24	3	.52; 3.78			
Pro63 (t)		4.50 (0.21)	2.02	3	2.3	30	3	.70; 3.88			

SUPPLEMENTARY TABLE

7

Ala64 (c)	8.28	4.50 (0.08)	1.37 (Me)			
Ala64 (t)		4.59 (0.17)	1.35 (Me)			
Pro65		4.43 (-0.04)	1.95	2.25	3.64; 3.77	
Gly66	8.66	3.98 (0.03)				
Gly67	8.42	3.93 (-0.04)				
His68	8.06	4.63 (-0.02)	3.14	7.17 (C4H); 8.29 (C2H)		
Glu69	8.60	4.23 (-0.04)	1.96	2.25		
Arg70	8.53	4.24 (-0.07)	1.95			
Lys71	8.51	4.25 (-0.09)	1.90			
Val72	8.33	4.08 (0.01)	2.03	0.96 (Me)		
Ala73	8.51	4.28 (-0.03)	1.37 (Me)			
Gln74-am	8.42	4.24 (-0.05)	2.03	2.32		

^a The (c) and (t) indicate the cis and trans confromations. For the H_{α} proton column, the value within parenthesis is the conformational shift (δ_{res} - δ_{rc}), where δ_{res} is the chemical shift of such proton for the corresponding residue. The random-coil values for the sequence, δ_{rc} , were obtained from: <u>https://spin.niddk.nih.gov/bax/nmrserver/Poulsen_rc_CS/</u>).