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Abstract: Jatropha curcas L. is monoecious with a low female-to-male ratio, which is one of the factors
restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower
development, particularly pistil development, in this study, we elevated the cytokinin levels in J. curcas
flowers through transgenic expression of a cytokinin biosynthetic gene (AtIPT4) from Arabidopsis
under the control of a J. curcas orthologue of TOMATO MADS BOX GENE 6 (JcTM6) promoter that is
predominantly active in flowers. As expected, the levels of six cytokinin species in the inflorescences
were elevated, and flower development was modified without any alterations in vegetative growth.
In the transgenic J. curcas plants, the flower number per inflorescence was significantly increased,
and most flowers were pistil-predominantly bisexual, i.e., the flowers had a huge pistil surrounded
with small stamens. Unfortunately, both the male and the bisexual flowers of transgenic J. curcas were
infertile, which might have resulted from the continuously high expression of the transgene during
flower development. However, the number and position of floral organs in the transgenic flowers
were well defined, which suggested that the determinacy of the floral meristem was not affected.
These results suggest that fine-tuning the endogenous cytokinins can increase the flower number and
the female-to-male ratio in J. curcas.
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1. Introduction

The monoecious Jatropha curcas L., which belongs to the Euphorbiaceae family, is a perennial woody
plant that is considered a promising feedstock for biodiesel production because it contains a high
amount of seed oil [1–3]. However, the low seed yield of this plant, which is most likely caused by
the small number of female flowers, restricts its application in the biodiesel industry [4,5]. Therefore,
the manipulation of flower development to increase the number of female flowers is critical for
J. curcas breeding.

The phytohormone cytokinins play an important role in the regulation of flower development,
and their content and distribution are critical for guaranteeing normal flower development [6–8].
The initial and rate-limiting step in cytokinin biosynthesis is catalyzed by isopentenyltransferases
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(IPTs) [9,10], and LONELY GUY (LOG) directly converts the nucleotide precursors of cytokinins
to the biologically active forms at the last step [11]. The degeneration of cytokinin is catalyzed by
cytokinin oxidases/dehydrogenases (CKXs) [12]. In Arabidopsis, nine IPT genes (AtIPT1 to AtIPT9)
have been identified, and their vital functions in cytokinin biosynthesis have been studied [13–17].
The expression of AtIPT4 in Arabidopsis under the control of the flower-specific APETALA1 (AP1)
promoter increased the flower numbers and altered the morphology of the flowers [18], and the ckx3
ckx5 mutant exhibited a similar phenotype [19]. In rice, the downregulation of OsCKX2 increased the
accumulation of cytokinins and the reproductive meristem, resulting in an enhanced grain yield [20,21].
Accordingly, cytokinin-deficient log3 log4 log7 triple mutant and AtCKX-overexpressing transgenic
Arabidopsis produce only a small number of flowers [12,22]. Thus, the flower number can be controlled
by modulating the cytokinin levels.

At the early flower developmental stage of a meristem-organizing center to be formed, cytokinins
establish the meristematic competence of the floral meristem [23]. During pistil establishment,
the cytokinin signaling B-type regulators ARABIDOPSIS RESPONSE REGULATOR (ARR)1 and
ARR10 bind to the promoter of AGAMOUS (AG) and thereby induce expression of this carpel identity
gene [24]. In addition, the pistils were absent in rice log mutant, in which active cytokinin levels
were reduced [11], and absence of the SHOOT MERISTEMLESS (STM) gene, an activator of cytokinin
biosynthesis, in Arabidopsis also results in the production of flowers without pistils. Ectopic pistils are
produced in plants overexpressing the STM [25–27]. The female fertility of cytokinin receptor triple
mutant ahk2 3 4 Arabidopsis is impaired [28,29], and the gynoecium in the arr1 10 12 triple mutant
shows defects in septum fusion [30]. In J. curcas, the concentration of zeatin in female flowers is higher
than that in male flowers at the early stage of flower development [31]. J. curcas JcARR6, an orthologue
of the cytokinin response gene ARR6 of Arabidopsis, is significantly upregulated in female compared
with male flowers at the initial stage of flower development [32]. Moreover, the expression levels of
the cytokinin biosynthetic genes JcIPT5, JcCYP735A1, and JcLOG5 were higher in gynoecious J. curcas
with degenerated male flowers than in monoecious J. curcas [33].

Because cytokinin is critical for pistil development [6,23], it is considered a major phytohormone
responsible for expression of the female sex [34]. Therefore, the exogenous application of cytokinin is
usually used to promote floral feminization in many plant species, such as Vitis vinifera [35], Spinacia
oleracea [36], Mercurialis annua [37], Plukenetia volubilis [38], and Sapium sebiferum [39]. Notably, in J. curcas,
the application of synthetic cytokinins to inflorescences significantly elevates the female-to-male ratio,
resulting in an increase in seed yield [40,41]. We thus hypothesize that cytokinin has the potential
to be a key driver of modifying flower traits in J. curcas through genetic manipulation. As in canola,
the transgenic expression of ipt under the control of the AtMYB32 promoter produces more flowers
and increases the seed yield [42].

In this study, to investigate the effect of endogenous cytokinins on flower development in J. curcas,
we elevated the levels of cytokinins specifically in flowers through the transgenic expression of
AtIPT4 under the control of a J. curcas orthologue TOMATO MADS BOX GENE 6 (JcTM6) promoter,
which is predominantly active in J. curcas flowers. The increase in endogenous cytokinins in transgenic
J. curcas resulted in the production of a notably higher number of flowers with an increased proportion
of bisexual flowers. This finding suggests that cytokinins can enhance the inflorescence meristem,
resulting in the formation of more flowers and alterations in sex expression in J. curcas.

2. Results

2.1. Characterization of the JcTM6 Promoter in J. curcas

To specifically express the transgene in J. curcas flowers, we isolated a 1.8-kb promoter fragment
(GenBank accession no. MN044579) from JcTM6, which is an orthologue of tomato TM6 that is specifically
expressed in flowers [43]. The JcTM6 promoter activity was examined through a β-glucuronidase
(GUS) assay of transgenic J. curcas harboring the JcTM6:GUS fusion.
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Various plant organs of transgenic J. curcas, including the roots, stems, young and mature leaves,
shoot apices, inflorescence buds, female and male flowers, fruits at 12 days after pollination (DAP),
and seeds at 25 DAP, were evaluated through a histochemical GUS assay. As shown in Figure 1A, GUS
activity was mostly detected in female flowers, which presented strong staining, whereas no activity
was observed in vegetative plant organs. Strong GUS staining was observed during female flower
development (Figure 1B). Furthermore, we compared the activity of the JcTM6 promoter in these plant
organs through a fluorometric GUS assay. Plant organs from five independent transgenic lines were
used in this analysis. The results (Figure 1C) showed that GUS expression was predominantly detected
in female flowers, followed by inflorescence buds, male flowers, fruits at 12 DAP and seeds at 25 DAP,
which is consistent with the GUS staining results. These results indicate that the JcTM6 promoter is
active in reproductive plant organs, particularly in female flowers.
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Figure 1. Analysis of the activity of the J. curcas orthologue of TOMATO MADS BOX GENE 6 (JcTM6)
promoter in transgenic J. curcas. (A) Histochemical β-glucuronidase (GUS) staining in various plant
organs of adult transgenic J. curcas plants (T0). (B) Histochemical GUS staining in female flowers
during development. (C) Fluorometric assay of GUS activity in adult transgenic J. curcas plants (T0).
The values represent the means ± standard deviations (n = 5). The GUS activities were measured
three times. FF, female flowers; Ft, fruits at 12 days after pollination (DAP); IB, inflorescence buds;
MF, male flowers; ML, mature leaves; Ne, nectaries; Oe, ovules; Oy, ovaries; Pe, petals; Pp, pericarps
at 25 DAP; R, roots; SA, shoot apices; Sa, stigmas; Sd, seeds at 25 DAP; Se, sepals; St, stems; and YL,
young leaves. Scale bars = 2 mm.

2.2. Cytokinin Contents in JcTM6:AtIPT4 Transgenic J. curcas

To study the effect of cytokinins on J. curcas flowers and reproductive floral organ development,
we transformed J. curcas with the Arabidopsis cytokinin biosynthetic gene AtIPT4 under the control of
the JcTM6 promoter. We successfully generated 15 independent transgenic J. curcas lines, which were
identified through the detection of AtIPT4 expression in the inflorescence buds, where the JcTM6
promoter was active (Figure 1A). The endogenous levels of six cytokinin species, isopentenyladenine (iP),
isopentenyladenosine (iPR), trans-zeatin (tZ), trans-zeatin riboside (tZR), cis-zeatin (cZ), and cis-zeatin
riboside (cZR), in the inflorescence buds of wild-type (WT) plants and two independent transgenic
lines, L16 and L6, which respectively exhibited intermediate and high expression levels of AtIPT4
and cytokinin signaling genes JcAHK2 and JcARR3 (Figure 2A), were examined. As shown in
Figure 2B, the levels of all six cytokinin species were significantly increased in the transgenic lines.
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Among the examined cytokinin species, the levels of iP-type cytokinins showed the highest increases,
which suggests that IPT is more effective for the production of iP-type cytokinins in J. curcas.
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Figure 2. The cytokinin contents were increased in JcTM6:AtIPT4 transgenic J. curcas. (A) Relative
expression of AtIPT4, JcAHK2, and JcARR3 in the inflorescence buds of the wild-type (WT) and transgenic
J. curcas plants. The levels were normalized using the amplified products of JcAct1. The values are
presented as the means ± standard deviations (n = 3). (B) Six cytokinin species in the inflorescence
buds of transgenic and WT plants were examined. iP, isopentenyladenine; iPR, isopentenyladenosine;
tZ, trans-zeatin; tZR, trans-zeatin riboside; cZ, cis-zeatin; and cZR, cis-zeatin riboside. The values
represent the means ± standard deviations (n = 3). Student’s t-test was used for the statistical analyses:
* p ≤ 0.05, ** p ≤ 0.01.

2.3. The Flower Number was Increased in JcTM6:AtIPT4 Transgenic J. curcas

As expected, the transgenic J. curcas plants showed morphological changes in their flowers without
any alterations in vegetative growth. Compared with the WT plants, all the transgenic plants produced
a notably higher number of flowers (Figure 3A–C). The average numbers of flowers per inflorescence
in the transgenic lines L16 and L6 were 344 and 767, respectively, whereas the corresponding number
in the WT plants was 180 (Figure 3D). These results indicate that the elevated cytokinin contents in
transgenic J. curcas induce inflorescence buds to form a higher number of flowers.
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Figure 3. The flower number per inflorescence was increased in JcTM6:AtIPT4 transgenic J. curcas.
(A–C) Inflorescences of WT plants (A) and the transgenic lines L16 (B) and L6 (C); scale bars = 3 cm.
(D) Number of flowers per inflorescence in WT and transgenic J. curcas. The values represent the
means ± standard deviations (n = 8). Student’s t-test was used for the statistical analyses: ** p ≤ 0.01.



Int. J. Mol. Sci. 2020, 21, 640 5 of 14

2.4. JcTM6:AtIPT4 transgenic J. curcas Produced Bisexual Flowers

J. curcas is monoecious with both male and female flowers born from the same inflorescence [4].
Most of the flowers on the WT inflorescences were male, and female flowers only accounted for 7.63% of
the total flowers (Figure 4A and Table 1). However, the JcTM6:AtIPT4 transgenic plants showed altered
sex expression. L16 produced male and bisexual flowers, which accounted for 42.81% and 57.19%
of the total flowers, respectively (Figure 4B and Table 1). In the L6 line, the inflorescences presented
higher cytokinin contents, and all the flowers were bisexual (Figure 4C and Table 1). The percentage of
pistil-containing flowers was positively correlated with the cytokinin content, which indicated that
a higher endogenous cytokinin content in inflorescences switched the sex expression balance from
maleness to femaleness. Correspondingly, in WT J. curcas, the levels of bioactive cytokinins (iP and
tZ) in female flowers were significantly higher than those in male flowers (Figure 4D). These results
suggest that cytokinin promotes pistil development.
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Table 1. Numbers of male, female, and bisexual flowers per inflorescence in the WT plants and the 
transgenic lines L16 and L6. 

Total Flowers Male Flowers Female Flowers Bisexual Flowers 
WT 180.25 ± 39.20 166.50 ± 35.94 (92.37%) 13.75 ± 4.68 (7.63%) 0.00 
L16 344.00 ± 58.42 147.25 ± 37.69 (42.81%) 0.00 196.75 ± 55.06 (57.19%) 
L6  767.00 ± 163.31 0.00 0.00 767.00 ± 163.31 

Figure 4. JcTM6:AtIPT4 transgenic J. curcas produced bisexual flowers. (A–C) Branch of an inflorescence
from the WT (A), L16 (B), and L6 (C) plants. For clarity, the sepals and petals were removed from the
flowers. Yellow arrows indicate male flowers; white arrow indicates female flower; and red arrows
indicate bisexual flowers; scale bars = 1 cm. (D) Cytokinin levels in male and female flowers of WT
plants. The values represent the means ± standard deviations (n = 3). Student’s t-test was used for the
statistical analyses: * p ≤ 0.05, ** p ≤ 0.01. (E) Female flowers of the WT plants and bisexual flowers of
the L16 and L6 plants after the sepals and petals were removed. The inset shows the stamens marked
by red ellipse; scale bar = 3 mm.

In the bisexual flowers of transgenic J. curcas, the pistil was located in the center, and its base is
surrounded by stamens (Figure 4E). During J. curcas female flower development, both the pistils and
the stamens emerge at the early stages, and the stamens abort during subsequent stages; however,
no emergence of female tissues was detected during male flower development [44]. Together with no
trace of female tissues emerging in the male flowers of the L16 transgenic line, we thus hypothesized
that the bisexual flowers derived from the female flower primordia.
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Table 1. Numbers of male, female, and bisexual flowers per inflorescence in the WT plants and the
transgenic lines L16 and L6.

Total Flowers Male Flowers Female Flowers Bisexual Flowers

WT 180.25 ± 39.20 166.50 ± 35.94 (92.37%) 13.75 ± 4.68 (7.63%) 0.00
L16 344.00 ± 58.42 147.25 ± 37.69 (42.81%) 0.00 196.75 ± 55.06 (57.19%)
L6 767.00 ± 163.31 0.00 0.00 767.00 ± 163.31

The values represent the means ± standard deviations (n = 8). The percentages in the brackets indicate the
corresponding percentages of male, female and bisexual flowers among the total flowers.

2.5. Flowers of JcTM6:AtIPT4 Transgenic J. curcas Developed Abnormally

Because the JcTM6 promoter directed the expression of the transgene in the male and female
flowers in J. curcas, the transgenic and WT plants also exhibited differences in floral organ development.
As shown in Figure 5A–D, the transgenic lines produced larger flowers than the WT plants. In the
L16 line, the male flowers had an increased size (Figure 5A and Figure S1A), and the phenotype of
the stamens was significantly different from that of the WT stamens. In general, the stamens of WT
J. curcas are diadelphous and arranged in two tiers of five each (Figure 5E). In addition, the inner tier is
united, and the outer tier is free [45]. However, the stamens in male flowers of the L16 line displayed
an expanded arrangement without forming two bundles, similarly to distinct stamens (Figure 5E).
Moreover, none of the stamens produced any visible pollen. The analysis of the bisexual flowers of
the L16 and L6 lines revealed that the two outer whorls of sepals and petals were also larger than
those of the WT female flowers with the exception that the L6 petals were smaller in size (Figure S1B).
The stamens in the third whorl exhibited abnormal development, particularly in the L6 line. In addition,
the growth of the pistil in the fourth whorl was markedly enhanced (Figures 4E and 5C,D), which could
result from the high expression of AtIPT4 in pistils driven by the JcTM6 promoter. An analysis of the
cross-section of the ovaries revealed that the locules and ovules of the transgenic lines exhibited normal
development, similarly to those of the WT plants (Figure 5F). However, separation of the ovules from
the locules revealed that the ovules of the L6 line were deformed (Figure 5G), which indicated that
high cytokinin levels impaired ovule development. Thus, both the stamens and pistils in the bisexual
flowers were infertile. In addition, although the flowers in the transgenic lines exhibited abnormal
development, the numbers of floral organs in each whorl were the same as those in the WT flowers.

Based on the severe phenotypic changes in the stamens and pistils, we hypothesized that the
elevated cytokinin levels gave rise to alterations in the expression of development-related genes in
the transgenic lines. We thus examined the expression of the J. curcas APETALA3 (JcAP3) and PLIM2b
(JcPLIM2b) genes, which are involved in stamen development, and the J. curcas AGAMOUS-like 1
(JcAGL1) gene, which is involved in pistil development, in the flowers of the transgenic and WT plants,
respectively. As shown in Figure 5H, the expression levels of JcAP3 in the male and bisexual flowers
of the L16 line were almost the same as those in the male flowers of WT plants. However, in the
bisexual flowers of the L6 line, JcAP3 expression was reduced to the levels found in the female flowers
of the WT plants. This finding is consistent with the severely abnormal phenotype of the L6 stamens.
However, because JcPLIM2b is involved in pollen development [46], its expression was significantly
downregulated in both the L16 and L6 lines, which implies pollen defects in the transgenic lines.
In accordance with the abnormal phenotype of the pistils in the bisexual flowers, the expression levels
of JcAGL1 were also significantly decreased in the transgenic lines compared with the levels found
in the WT female flowers. These results suggested that an overdose of cytokinins could repress the
expression of some floral development genes in J. curcas.
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(L6/B). The values represent the means ± standard deviations (n = 3). Student’s t-test was used for the 
statistical analyses. Different letters (a, b and c) indicate significant differences (p ≤ 0.05). 

Based on the severe phenotypic changes in the stamens and pistils, we hypothesized that the 
elevated cytokinin levels gave rise to alterations in the expression of development-related genes in 
the transgenic lines. We thus examined the expression of the J. curcas APETALA3 (JcAP3) and PLIM2b 
(JcPLIM2b) genes, which are involved in stamen development, and the J. curcas AGAMOUS-like 1 
(JcAGL1) gene, which is involved in pistil development, in the flowers of the transgenic and WT 
plants, respectively. As shown in Figure 5H, the expression levels of JcAP3 in the male and bisexual 
flowers of the L16 line were almost the same as those in the male flowers of WT plants. However, in 
the bisexual flowers of the L6 line, JcAP3 expression was reduced to the levels found in the female 
flowers of the WT plants. This finding is consistent with the severely abnormal phenotype of the L6 
stamens. However, because JcPLIM2b is involved in pollen development [46], its expression was 
significantly downregulated in both the L16 and L6 lines, which implies pollen defects in the 
transgenic lines. In accordance with the abnormal phenotype of the pistils in the bisexual flowers, the 
expression levels of JcAGL1 were also significantly decreased in the transgenic lines compared with 
the levels found in the WT female flowers. These results suggested that an overdose of cytokinins 
could repress the expression of some floral development genes in J. curcas. 

3. Discussion 

Several studies have suggested that exogenous cytokinins treatment affects flower development 
in monoecious J. curcas [40,41,47,48]. To investigate the effect of endogenous cytokinins on J. curcas 
flower development, the native J. curcas JcTM6 promoter, which shows predominant activity in 
flowers, was used to drive the expression of the cytokinin biosynthetic gene AtIPT4 in this study. As 
expected, the number of flowers was significantly increased in the JcTM6:AtIPT4 transgenic plants, 

Figure 5. The flowers of JcTM6:AtIPT4 transgenic J. curcas developed abnormally. (A) Male flowers of
WT and L16 plants. (B) Female flower of WT plants. Bisexual flowers of L16 (C) and L6 plants (D).
(E) Male flowers of WT and L16 plants with the sepals and petals removed. (F) Cross-sections of ovaries
of WT, L16, and L6 plants. (G) Ovules of WT, L16, and L6 plants. All scale bars = 3 mm. (H) Expression
of genes involved in floral development in the WT male flowers (WT/M) and female flowers (WT/F),
L16 male flowers (L16/M), L16 bisexual flowers (L16/B), and L6 bisexual flowers (L6/B). The values
represent the means ± standard deviations (n = 3). Student’s t-test was used for the statistical analyses.
Different letters (a, b and c) indicate significant differences (p ≤ 0.05).

3. Discussion

Several studies have suggested that exogenous cytokinins treatment affects flower development
in monoecious J. curcas [40,41,47,48]. To investigate the effect of endogenous cytokinins on J. curcas
flower development, the native J. curcas JcTM6 promoter, which shows predominant activity in flowers,
was used to drive the expression of the cytokinin biosynthetic gene AtIPT4 in this study. As expected,
the number of flowers was significantly increased in the JcTM6:AtIPT4 transgenic plants, which is
consistent with the findings obtained after the exogenous application of cytokinins. Because cytokinins
promote cell division in the shoot apical meristem, we hypothesize that the elevated cytokinin levels
in the inflorescences increased the size of the inflorescence meristems, resulting in the formation of
more floral primordia. Evidence showing that increased cell division in cytokinin-overproducing
Arabidopsis contributes to a large inflorescence with more floral primordia confirmed that cytokinins
enhance proliferation of the inflorescence meristem [18,19].

Cytokinin also plays an important role during floral organ development, particularly pistil
development. The Shy Girl (SyGI) gene, which encodes a C-type ARR, a negative regulator of
cytokinin signaling [7,49], has been identified as a male sex-determining gene in dioecious Actinidia.
The expression of SyGI in Arabidopsis and Nicotiana suppresses pistil development without affecting
male development [50]. In this study, we assessed cytokinin signaling during floral development in
Arabidopsis using the TCSn:GFP marker [51], and found that strong signals were detected in the central
zones of floral primordia (Figure S2A–C) and during pistil development (Figure S2D–F). Similarly,
as shown in J. curcas, pistil growth requires more bioactive cytokinins (Figure 4D). Consequently,
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the higher cytokinin levels in JcTM6:AtIPT4 transgenic J. curcas induced the production of pistils in
most and even all of the flowers, whereas fewer flowers in the WT plants produced pistils. All the
flowers with pistils in the transgenic plants were bisexual rather than female. This finding differs
from the observed increases in both female and bisexual flowers after the exogenous application
of cytokinins, and bisexual flowers accounts for a low proportion of the flowers [40,41]. However,
the number of bisexual flowers is positively correlated with the development of inflorescence to
be treated by cytokinin [41]. In transgenic J. curcas, the JcTM6 promoter drives the expression of
AtIPT4 from inflorescence emergence to floret anthesis, which showed a phenotype of bisexual flowers
induction instead of more female flowers. The previous study showed that J. curcas female flowers
are unisexual with aborted stamens [44]. Our results implied that the degenerated stamens could be
rescued by excess cytokinins during female flower development.

The bisexual flowers in transgenic J. curcas were more feminine due to the presence of a huge ovary
surrounded with puny stamens (Figure 4E). Because the JcTM6 promoter was capable of driving the
expression of AtIPT4 at a high level during pistil development (Figure 1B), the pistil-localized
overproduction of cytokinins was hypothesized to induce ovary enlargement. In Arabidopsis,
the overproduction of cytokinins or the enhancement of cytokinin signaling in flowers also results
in oversized floral organs with increased cell numbers [18,19,52]. Unexpectedly, all the bisexual
flowers as well as the male flowers in the transgenic plants were infertile. During female reproductive
development in J. curcas, the cytokinins (zeatin) content at the early developmental stage is significantly
increased compared with that in inflorescence primordia, whereas a substantially reduced level is
observed at the later developmental stages [31]. This finding suggests that a higher cytokinin content
is required for early pistil development, whereas a lower cytokinin content is required for late pistil
development. Therefore, the consistently high levels of cytokinins during female development could
give rise to infertility. In accordance with this finding, the pistil development-related gene JcAGL1 was
downregulated in the bisexual flowers (Figure 5H).

Although a visual analysis indicated that the stamens grew from the base of the ovary, the stamens,
particularly those in the L6 line, developed abnormally (Figure 4E). The analysis of the transgenic
line L16 showed that the morphology of the stamens in male and bisexual flowers was similar,
and both of these flowers were sterile due to pollen abortion. In general, cytokinins are important for
male reproductive development. Stamen fertility is impaired by an excessive or a too-low cytokinin
content [53–55]. In J. curcas, the pattern of cytokinin production during male reproductive development
is opposite to that observed during female reproductive development [31], which indicates that low
and high levels of cytokinins are beneficial for early and late stamen development, respectively.

In addition, altered floral organs are caused by increased cytokinin levels in Arabidopsis [18,19],
but the number and position of floral organs in the flowers of the transgenic J. curcas plants were as well
defined as those in the WT plants. This result suggested that the ectopic overproduction of cytokinins
in the transgenic J. curcas flowers did not impair the expression of genes involved in the determinacy of
the floral meristem. AG has been identified as a key regulator of floral meristem determinacy, and the
maintenance of its expression at the center of the meristem mediates the expression of other genes that
promote floral meristem determinacy [56–58]. The Arabidopsis ag-1 mutant exhibits a flower-in-flower
phenotype because the flowers constantly produce new sepals and petals [59]. Thus, the expression of
JcAG in the transgenic lines was also examined. In agreement with our hypothesis, the JcAG expression
level in the transgenic flowers was not markedly different from that in the WT flowers (data not shown),
which implied that the floral meristem determinacy was not affected.

In conclusion, our study indicates that an increase in the endogenous cytokinin levels in J. curcas
flowers is capable of enhancing inflorescence meristem activity and triggering female sex expression,
which indicates that high-yielding J. curcas could be bred by modifying the cytokinin levels in flowers.
This is the first time to modify the flower number and sex expression by regulating the endogenous
cytokinins in J. curcas. Because continuously high cytokinin levels during female flower development
could give rise to infertility, fine-tuning both the cytokinin contents and the spatiotemporal distribution
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of cytokinins is necessary. For example, JcAP1 promoter, which was predominantly active at the early
stages of flower development [60], would be a better choice to induce the expression of cytokinin
biosynthetic genes in transgenic J. curcas in further study.

4. Materials and Methods

4.1. Plant Materials

The J. curcas plants used in this study were cultivated in Xishuangbanna, Yunnan Province,
China, as described previously [40]. TCSn:GFP transgenic Arabidopsis, which was kindly provided by
Bruno Müller (University of Zurich, Zurich, Switzerland), was grown at 22 ◦C with a 16-h light/8-h
dark photoperiod.

4.2. Plasmid Construction

A 1.8-kb 5′ flanking region of JcTM6 was amplified from J. curcas genomic DNA
using the following primers: Forward (5’-tctagaAATAGCTATAAAATCAATT-3’) and reverse
(5′-ggatccTTTTCCTTTCTTCTTGATA-3′). To generate the JcTM6:GUS fusion, pBI101 [61] and the
pGEM-T Easy vector containing the 1.8-kb JcTM6 promoter were digested with XbaI (lowercase letters
in the forward primer) and BamHI (lowercase letters in the reverse primer). The two fragments
were linked using T4 ligase (Shanghai Promega, Shanghai, China). AtIPT4 (GenBank accession
no. AT4G24650) was amplified from the AP1:AtIPT4 construct [18] using the following primers: Forward
(5′-cccgggCTCAATTTACGACATGAAGTG-3′) and reverse (5′-gagctcGTTTTGCGGTGATATTA
GTC-3′). To generate the JcTM6:AtIPT4 construct, the JcTM6:GUS plasmid and the pGEM-T Easy
vector containing AtIPT4 were digested with SmaI (lowercase letters in the forward primer) and
SacI (lowercase letters in the reverse primer), and the two fragments of the JcTM6 promoter and
AtIPT4 were linked using T4 ligase (Shanghai Promega, Shanghai, China). The resulting constructs
of JcTM6:GUS and JcTM6:AtIPT4 were then transferred to Agrobacterium tumefaciens EHA105 for
J. curcas transformation.

4.3. Plant Transformation

The method used for J. curcas transformation was described previously [62].

4.4. Histochemical and Fluorometric GUS Assay

For histochemical GUS staining, various plant organs of transgenic J. curcas were incubated
overnight at 37 ◦C in GUS assay buffer with 50 mM sodium phosphate (pH 7.0), 0.5 mM K3Fe6, 0.5 mM
K4Fe6·3H2O, 0.5% Triton X-100, and 1 mM X-Gluc and then cleared in 70% ethanol [61]. The samples
were examined via stereomicroscopy (Leica M80). To examine the activity of the JcTM6 promoter
in different plant organs, a fluorometric GUS assay according to the protocol described by Jefferson,
Kavanagh, and Bevan [61] with the modification that 2 mM MUG was added to the reaction buffer.
The fluorescence was determined using a Gemini XPS microplate spectrofluorometer (Molecular
Devices Corporation, Sunnyvale, CA, USA). The protein concentrations of the plant extracts were
measured using the Bradford method [63].

4.5. Quantification of CKs

Two-week-old inflorescence buds from wild-type and transgenic J. curcas and male and
female flower buds from WT J. curcas were collected and immediately placed in liquid nitrogen.
The cytokinins were extracted and quantified using the polymer monolith microextraction/hydrophilic
interaction chromatography/electrospray ionization tandem mass spectrometry method as described
previously [64]. Three independent biological replicates and three technical replicates were measured
for each sample.
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4.6. qRT-PCR Analysis

The expression levels of genes in the inflorescences and flowers of the WT and transgenic J. curcas
plants were examined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).
Total RNA was isolated [65] and reverse transcribed using the PrimeScript® RT reagent kit with
gDNA Eraser (Takara , Dalian, China). qRT-PCR was performed using LightCycler® 480 SYBR Green
I Master Mix with the Roche 480 real-time PCR detection system (Roche Diagnostics, Indianapolis,
IN, USA). All gene expression data obtained in the qRT-PCR assay were normalized to the expression
of JcActin1 [66]. The primers used in the qRT-PCR assay are listed in Table S1.

4.7. Tissue Preparation for Confocal Analysis

For tissue preparation, inflorescences were collected, immediately placed in 2.5%
paraformaldehyde (PFA) (BBI) (pH 7.0) on ice, vacuum infiltrated for 30 min, and stored overnight at
4 ◦C. The fixed samples were washed with 10% sucrose and 1% PFA (pH 7.0) for 20 min, with 20%
sucrose and 1% PFA (pH 7.0) for 20 min, and with 30% sucrose and 1% PFA (pH 7.0) for 30 min.
The samples were then embedded in 5% to 7% LM agarose (Shanghai Promega, Shanghai, China)
liquid gel at 30 ◦C and solidified by incubation at 4 ◦C for 15 min. Sections with a thickness of 40 to
70 µm were prepared using a Leica VT1000S vibratome. To obtain high-resolution images, the samples
were stained with 50 µg/mL PI (Sigma-Aldrich, Shanghai, China) [67].

4.8. Confocal Microscopy

Images were obtained using an Olympus FV1000 confocal microscope. The GFP signal was
detected using excitation and emission wavelengths of 488 and 500–530 nm, respectively. For the
detection of PI staining, excitation was performed using a 543 nm laser line, and emission was
determined at 550–618 nm.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/2/640/s1.
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AG AGAMOUS
AGL1 AGAMOUS-like 1
AHK ARABIDOPSIS HISTIDINE KINASE
AP1 APETALA1
AP3 APETALA3
ARR ARABIDOPSIS RESPONSE REGULATOR
6-BA 6-benzylaminopurine
CKX cytokinin oxidases/dehydrogenase
cZ cis-zeatin
cZR cis-zeatin riboside
DAP days after pollination
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GUS β-glucuronidase
iP isopentenyladenine
iPR isopentenyladenosine
IPT isopentenyltransferase
LOG LONELY GUY
STM SHOOT MERISTEMLESS
SyGI Shy Girl
TDZ thidiazuron
TM6 TOMATO MADS BOX GENE 6
tZ trans-zeatin
tZR trans-zeatin riboside
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