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Abstract: α-Lipoic acid, glutathione, cysteine, and cysteinylglycine can be applied as therapeutic
agents in civilization diseases such as diabetes mellitus, cardiovascular diseases, and cancers. On the
other hand, a higher concentration of homocysteine can result in health problems and has been
indicated as an independent risk factor for cardiovascular disease and accelerated atherosclerosis.
Here, the first simplified HPLC-UV assay that enables simultaneous determination ofα-lipoic acid and
low-molecular-mass thiols in plasma, reduces the number of steps, shortens the total time of sample
preparation, and limits the amount of single-use polypropylene laboratory materials is described.
The assay is based on reversed-phase high performance liquid chromatography with UV detection
and simultaneous reduction of disulfide bound with tris(2-carboxyethyl)phosphine and the selective
pre-column derivatization of the thiol group with 1-benzyl-2-chloropyridinium bromide. Linearity in
the detector responses for plasma samples were observed in ranges: 0.12–5.0 nmol mL−1 for α-lipoic
acid; 2.0–20.0 nmol mL−1 for glutathione, cysteinylglycine, and homocysteine; and 40.0–400.0 for
cysteine. The LODs for α-lipoic acid and low-molecular-mass thiols were 0.08 and 0.12 nmol mL−1,
respectively, while LOQs were 0.12 and 0.16 nmol mL−1, respectively. The usefulness of the proposed
method has been proven by its application to real samples.

Keywords: α-lipoic acid; low-molecular-mass thiols; simultaneous reduction and derivatization;
high performance liquid chromatography; ultraviolet detection

1. Introduction

Thioctic acid, chemical name 1,2-dithiolane-3-pentanoic acid, is commonly known as α-lipoic
acid (LA) (Figure 1a). In the human body, it is naturally synthesized in the liver and other tissues.
It is also provided in the diet [1]. In humans, LA plays a key role as an essential co-factor for
several mitochondrial multi-enzyme complexes involved in energy metabolism, such as the pyruvate
dehydrogenase and α-ketoglutarate dehydrogenase complexes. LA possesses the ability to scavenge
oxygen species and to regenerate other antioxidants [2]. Although, in mitochondria, LA is reduced
to its thiol form, dihydrolipoic acid (DHLA), the powerful antioxidant properties are retained in
both forms [3]. Some randomized clinical trials have proven that LA can be applied as a therapeutic
agent in civilization diseases such as diabetes mellitus [4], cardiovascular diseases [5], and cancers [6].
The mechanism of work of LA is based on improving glucose-insulin homeostasis and decreasing
chronic inflammation [1]. It has been proven that LA exhibits anti-tumor activities in several cancer
models by impacting several hallmarks on most of the signaling pathways implicated in proliferation,
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invasion, migration, epithelial–mesenchymal transition, stemness and apoptosis [2]. Very recent
pre-clinical and limited clinical trial evidence have suggested LA as a leading candidate in multiple
sclerosis therapy [7]. This compound is able to regulate the immune system in either direct or indirect
ways. Studies reviewed in 2019 suggest that LA can be used to treat autoimmune diseases, including
systemic lupus erythematosus, rheumatoid arthritis, and primary vasculitis [8]. On top of this, LA
reduces the progression of cellular degeneration and improves retinal function [9].

Similarly to LA, glutathione (GSH) is a non-enzymatic, endogenous, direct antioxidant. Both of
them are typical, small molecule scavengers that bind reactive oxygen species. GSH (Figure 1b) is the
most prevalent antioxidant in the brain, found in millimolar concentrations in most cells. Reduced GSH
reacts with free radicals to form oxidized glutathione (GSSG); this form can occur independently or it
can be catalyzed by the enzyme, glutathione peroxidase. In the next step, GSSG is recycled back to two
GSH molecules by GSH reductase using the reducing equivalents of nicotinamide adenine dinucleotide
phosphate [10]. GSH levels are decreased in diseases based on oxidative stress, including Alzheimer’s
disease and aging [11]. It has been found that with an increasing progression of Alzheimer’s disease,
GSSG and GSSG/GSH levels also increase. Additionally, a linear correlation between increased GSSG
levels and the decreased cognitive status of patients suffering from Alzheimer’s disease was observed [8].
Another finding suggests that there may be GSH deficits and abnormalities in the GSH redox cycle
in patients with schizophrenia [12]. GSH is also involved in several metabolic processes, such as
synthesis of proteins and DNA, enzyme activity, metabolism, gene expression, signal transduction,
and the intensification of cytoplasmic and transmembrane transport [13]. GSH is involved in several
pathological pathways and plays an important role in cancer and regulation of the progression through
the cell cycle, cell survival, growth, and death [14]. It must be highlighted that decreasing GSH levels
and related enzymes in cancer cells may be a therapeutic target for cancer treatment [15].

GSH is comprised of three amino acids, glutamate, cysteine (Cys), and glycine. Glutamate and
glycine are found in millimolar concentrations, whereas free Cys (Figure 1c) is limited, with most
non-protein Cys being stored within GSH. Because the physiological amount of brain-resident Cys and
cysteinylglycine (Cys–Gly) (Figure 1d) limits the formation of GSH, most current research have focused
on increasing Cys levels in the brain as an indirect way to increase GSH levels [10]. The concentration
of Cys in the human body is determined by the level of N-acetyl-cysteine and also by the process called
transsulfuration, in which homocysteine (Hcy) formed from the dietary methionine is transferred to
Cys. The first step of transsulfuration is catalyzed by cystathionine β-synthase [16,17]. Hcy (Figure 1e),
a type of amino acid that is naturally found in blood, is not harmful at normal levels. Elevated levels of
this amino acid called hyperhomocysteinemia can result in health problems and have been indicated
as an independent risk factor for cardiovascular disease and accelerated atherosclerosis [18,19]. Recent
results suggest that the increased Hcy level is positively correlated with low-density lipoprotein
cholesterol (LDL-C) levels in hypothyroidism patients. A potential harmful correlation may exist
between Hcy and LDL-C under the condition of hypothyroidism [20]. To clarify functions of LA, GSH,
Cys, Hcy and Cys–Gly in biochemical and clinical practice, the control all of these in the human body
is required.
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Figure 1. Chemical formulas of reduced and oxidative forms of some endogenous thiols: (a) 
dihydrolipoic acid and α-lipoic acid; (b) reduced glutathione and oxidized glutathione; (c) cysteine 
and cystine; (d) reduced cysteinylglycine and oxidized cysteinylglycine; (e) homocysteine and 
homocystine. 

The high separation capacity of high performance liquid chromatography (HPLC) makes it the 
preferred technique for biological samples analysis. For quantification of LA in biological fluids, 
mainly in human plasma, several HPLC methods which exploit spectrophotometric [21], 
spectrofluorometric [22–24], electrochemical [25,26], and mass spectrometry [27] detection have been 
developed and described in the literature. Although these assays allow quantification of LA in human 
plasma, they do not give the possibility to control levels of metabolically important endogenous 
amino thiols such as GSH, Cys, Hcy, and Cys-Gly. Assays based on UV detection and HPLC or 
capillary electrophoresis analysis dedicated to low-molecular-mass thiols detection and 
determination have been summarized by Bald and co-authors [28]. 

The biological fluid most commonly analyzed is plasma [28,29]. Human serum albumin (HSA) 
is the most abundant plasma protein and accounts for 50% of the total plasma proteins. From the 
analytical point of view, HSA and other proteins present in plasma can modify the chromatographic 
column and preclude separation. To avoid these troubles, usually deproteinization with the use of 
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acid andα-lipoic acid; (b) reduced glutathione and oxidized glutathione; (c) cysteine and cystine; (d) reduced
cysteinylglycine and oxidized cysteinylglycine; (e) homocysteine and homocystine.

The high separation capacity of high performance liquid chromatography (HPLC) makes it
the preferred technique for biological samples analysis. For quantification of LA in biological
fluids, mainly in human plasma, several HPLC methods which exploit spectrophotometric [21],
spectrofluorometric [22–24], electrochemical [25,26], and mass spectrometry [27] detection have been
developed and described in the literature. Although these assays allow quantification of LA in human
plasma, they do not give the possibility to control levels of metabolically important endogenous amino
thiols such as GSH, Cys, Hcy, and Cys-Gly. Assays based on UV detection and HPLC or capillary
electrophoresis analysis dedicated to low-molecular-mass thiols detection and determination have
been summarized by Bald and co-authors [28].

The biological fluid most commonly analyzed is plasma [28,29]. Human serum albumin (HSA) is
the most abundant plasma protein and accounts for 50% of the total plasma proteins. From the analytical
point of view, HSA and other proteins present in plasma can modify the chromatographic column and
preclude separation. To avoid these troubles, usually deproteinization with the use of trichloroacetic
acid (TCA) or organic solvents such as methanol, acetonitrile, acetone, and centrifugation, followed
by removal of the protein pellet are required [28,29]. The other possibility to dodge the problem of
chromatographic column modification is an application of chromatographic columns dedicated to
protein analysis [30].



Int. J. Mol. Sci. 2020, 21, 1049 4 of 15

Here we describe the first simplified HPLC-UV assay that offers a simultaneous determination of
LA and low-molecular-mass thiols in human plasma, reduces the number of steps, shortens the total
time of sample preparation and limits the amount of single-use polypropylene laboratory materials,
such as tips and tubes.

2. Results and Discussion

LA and sulfur-containing amino acids and peptides, such as Cys, Hcy, GSH, and Cys–Gly, play
important roles in human health. It indicates the need to control the concentration of each of these
compounds. Although many analytical protocols dedicated to the determination of LA or metabolically
related amino thiols in human plasma have been presented in the literature, all of them require the
determination of LA and GSH, Cys, Hcy in two different assays [21–30].

Taking under consideration protocols described in previously published papers, the simultaneous
determination of antioxidants such as LA and GSH, and its metabolic relatives in human plasma
samples seems to be challenging. The assays require four steps of sample preparation protocols, such as
reduction of disulfide bonds, derivatization of the thiol group, deproteinization and centrifugation for
protein removal [21–30]. All of these compounds occur in the human body mainly in the oxidative
form not accessible for the derivatization reagent. For this reason, the reduction of the disulfide
bond is obligatory. On the other hand, thiols are highly polar and water-soluble, which makes their
extraction from biological matrices almost impossible without chemical derivatization. Moreover,
thiols lack the structural properties necessary for commonly used chromatographic detectors such as
UV–Vis absorbance and fluorescence [28–30]. Therefore, the analyst must harness to derivatization
for signal enhancement and protection of sulfhydryl group. The last step of the analytical protocol
is deproteinization. It is important due to the fact that proteins in plasma samples present a variety
problems: among others, a large number of individual compounds, difficulty in resolving the analytes
of interest, low concentrations of exogenous or endogenous compounds of interest, and the presence
of proteins can modify the chromatographic column and preclude separation [28–30]. The separation
of protein pellet from supernatant is an additional step based on the transfer of supernatant. Thus,
the deproteinization and centrifugation extend the time of sample preparation. The second disadvantage
of deproteinization is the fact that LA as an amphiphilic molecule, possesses both hydrophilic and
hydrophobic fragments and can specifically interact with the surface of proteins. It was proven that
acidic deproteinization of plasma proteins markedly adsorb LA [21]; consequently, the analyte can be
accidentally removed from a sample with precipitated proteins and concentration of LA in the solution
becomes lower than expected. To counteract this problem, an addition of MeCN is recommended;
however, this step causes additional sample dissolving [21]. Another drawback of deproteinization is
increasing the number of polypropylene tubes using during sample preparation. This problem must
be stressed in ”the age of plastic”. All of these aspects were considered during the elaboration of
the new method for the simultaneous determination of LA and low-molecular-mass amino thiols in
human plasma.

2.1. The Thiol Group Derivatization

Compounds with activated halides, such as 2-chloro-1-methyllepidinium tetrafluoroborate
(CMLT), 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT), 1-benzyl-2-chloropyridinium
bromide (BCPB), 2-chloro-1-methylpyridinium iodide (CMPI), and 2-chloro-1-propylpyridinium
iodide (CPPI) are commonly used derivatization reagents dedicated to determination of endogenous
and exogenous thiols in various real-world samples [14,28,30–34] with the use of the HPLC–UV
technique. On the other hand, for the derivatization of LA in plasma samples, mainly BCPB is
recommended so far [21,34,35]. During the method development, we tested three of the most
commonly used derivatization reagent—CMLT, CMQT, and BCPB. In all cases, we found that after LA
derivatization, two different signals were observed (Figure 2). It was explainable due to the fact that LA
in its reduced form, DHLA, possesses two thiol groups that can react with the derivatizing reagent. It is
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commonly known that the proper conditions of the derivatization reaction, such as temperature, pH,
excess of the compound used for derivatization, affect the final structure of the final derivative [28–30].
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Figure 2. Chromatogram of α-lipoic acid after pre-column simultaneous reduction with tris(2-
carboxyethyl)phosphine and derivatization with 1-benzyl-2-chloropyridinium bromide in low excess
of the derivative reagent.

To continue studies on the proper parameters of LA and low-molecular-mass amino thiols,
derivatization with BCPB was chosen. This compound reacts specifically with thiols via the –SH group
to form stable 2-S-pyridinium derivatives with well-defined maximum absorption in the UV region
(at 274 nm for the reagent and 321 nm for the derivative) and can be used in a wide range of pH [31,35].
In order to establish optimum conditions for the derivatization of LA and thiols, the pH of the buffer,
the excess of BCPB, and time of derivatization reaction were tested. To estimate the stoichiometric
molar ratio of the reagents, the continuous variation method for the reaction of LA with BCPB was
applied. The derivatization reaction was carried out in 0.2 mol L−1 phosphate buffer, pH 6.0, and pH
9.0. The tests confirmed the presence of two different forms of LA derivatives and proved that these
substrates react in the molar ratio of 1:1 (LA 1) and 1:2 (LA 2) (Figure 3). A similar relationship has not
been mentioned in previously published studies. Additionally, we confirmed that the excess of BCPB
(Figure 4a) and pH of the reaction mixture (Figure 4b) affect the derivatization efficiency and favor
the reaction in which both –SH groups in the DHLA structure are blocked by BCPB. The high excess
of the reagent positively affected the derivatization of all analytes of interest (Figure 4c). A complete
derivatization reaction occurred after 10 min at pH 7.8 (Figure 4d).
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Figure 3. Estimation of stoichiometric molar ratio by continuous variation method for the reaction of
α-lipoic acid with 1-benzyl-2-chloropyridinium bromide. The reaction was carried out in 0.2 mol·L−1,
phosphate buffer, pH = 9.
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Figure 4. The influence of 1-benzyl-2-chloropyridinium bromide quantity, pH of the reaction mixture,
and time on derivatization reaction yield of dihydrolipoic acid, reduced glutathione, cysteine, cysteinylglycine,
and homocysteine. (a) Reaction of 1-benzyl-2-chloropyridinium bromide with dihydrolipoic acid carried
out in 0.2 mol L−1, phosphate buffer, pH = 9.0; (b) reaction of 1-benzyl-2-chloropyridinium bromide with
dihydrolipoic acid carried out in triple excess of the derivatizing reagent; (c) derivatization reaction carried
out in 0.2 mol L−1, phosphate buffer, pH = 7.8; (d) derivatization reaction carried out in 0.2 mol L−1,
phosphate buffer, pH = 7.8 in 2000-fold excess of the derivatizing reagent.

2.2. Reduction of Disulfide Bonds

LA and GSH, Cys, Hcy occur in the human body, mainly in the oxidative form. To release the
thiol groups and make them available for the derivatizing reagent, the reduction reaction is required.
For this purpose tris(2-carboxyethyl)phosphine (TCEP) solution was used. This reagent is known to be
powerful also under mild conditions of pH and temperature [28,31,33]. In our approach, disulfide
bonds were reduced in 10 min at room temperature at pH 7.8 (Figure 5a).

To reduce the number of steps and time of derivatization and reduction, we studied the efficiency of
simultaneous reduction and derivatization reactions. For this experiment, the mixture 0.25 mol L−1 TCEP
and 0.1 mol L−1 BCPB in 0.1 mol·L−1 NaOH was used. These reactions were completed at room temperature,
pH 7.8 after 15 min (Figure 5b). This experiment confirmed the possibility of simultaneous reduction and
derivatization of LA and low-molecular-mass amino thiols in plasma samples. The schemes of the reduction
and derivatization reactions of LA have been presented in Figure 6.
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Figure 6. Schemes of chemical reduction reaction equation of α-lipoic acid with tris-(2-carboxyethyl)
phosphine (a) and chemical derivatization reaction equation of dihydrolipoic acid with 1-benzyl-2-
chloropyridinium bromide (b).

2.3. LA and DHLA Separation from Proteins

LA possesses structural similarity to medium chain fatty acids, e.g., octanoic acid; for this
reason, it is preferably bounded by sit II in HSA [36,37]. For an accurate separation of free LA,
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removal of the analyte from plasma proteins is essential to prevent underestimation. For removal of
free LA from proteins, a different method based on liquid–liquid extraction [25–27,38], solid phase
extraction [39], and deproteinization [26,38] was elaborated. For liquid–liquid extraction of LA from
plasma samples, dichloromethane, diethyl ether, and ethyl acetate were considered. Results provided
by other investigators indicated that the recovery of extraction of LA form proteins with the use of
an acidic mixture of MeCN is 98% [21]. In our protocol to release free LA from proteins and to avoid
an additional step of extraction and protein precipitation, 20 µL of acetonitrile and 1 mol L−1 HCl
were added to the final mixture after derivatization. The addition of HCl was necessary to stop the
simultaneous reduction and derivatization reactions, and improve the stability of the derivatives.
The addition of MeCN is necessary to remove the LA–BCPB derivative from the protein surface.

2.4. Chromatographic Conditions

To avoid the step of protein precipitation, a chromatographic column dedicated to protein analysis
was used for this assay. As was confirmed previously, the Aeris WIDPORE XB-C18 column can be
successfully applied for this type of analysis [30]. Due to the unique separation parameters of the
HPLC technique, it has been frequently used in the analyses of biological fluids. In spite of that,
reversed-phase high performance liquid chromatography (RP-HPLC) has some limitations when
samples containing a mix of compounds possessing different physicochemical properties, different
size, and hydrophobicity of the particles are analyzed. To provide a good separation of the assay,
the chromatographic conditions were optimized in terms of the content of MeCN and TCA in the
mobile phase, pH of the mobile phase, gradient profile, and flow rate of the mobile phase to confirm
that the method can efficiently separate all compounds of interest. The amount of the organic modifier
and pH of the mobile phase were altered to affect changes in retention and selectivity, primarily by
changing the hydrophobicity of the eluent and degree of ionization of the analytes.

As is shown on the chromatogram depicted in Figure 7, the five BCPB derivatives of Hcy,
Cys, GSH, Cys–Gly, and DHLA have been well separated. The pyridinium derivative of DHLA
exhibits the highest hydrophobicity and elutes as the last. All analytes, including DHLA-BCPB, elute
within 12 min in contrast to our earlier published protocols dedicated for low-molecular-mass thiols
determination [40,41]. As can be seen in the chromatogram, optimization of the separation conditions
lead to a very good resolution and good peak symmetry in all analytes of our interest.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 16 
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Figure 7. Typical chromatograms of background, pyridinium derivatives of α-lipoic acid, oxidized
glutathione, cystine, cysteinylglycine and homocystine after simultaneous reduction and derivatization
in proxy matrix spiked with analytes and plasma samples collected from an apparently healthy adult.
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2.5. Method Validation

2.5.1. LOD and LOQ

According to the guidelines for biological sample analysis [42], limit of detection (LOD) and limit
of quantification (LOQ) are defined as the lowest concentrations giving the signal/noise ratio of 3 and 10,
respectively. The LODs for LA and low-molecular-mass thiols (Hcy, GSH, Cys, CysGly) in plasma samples
were 0.08 and 0.12 nmol mL−1, respectively, while LOQs were 0.12 and 0.16 nmol mL−1, respectively.

2.5.2. Linearity

For the plasma samples, six-point calibration plots were constructed for LA and low-molecular-mass
thiols in triplicate. In both cases, the correlation coefficients were greater than 0.999. All calibration data,
including regression equations, are shown in Table 1.

Table 1. Validation data.

Analyte Linear Range
(nmol mL−1)

Regression Equation R2 Imprecision (%) Recovery (%)

Min. Max. Min. Max.

Cys 40.0–400.0 y = 3.78x + 16.80 0.999 0.2 6.5 99.1 100.8
Hcy 2.0–20.0 y = 0.24x + 1.76 0.999 1.5 9.7 94 105.5
GSH 2.0–20.0 y = 0.24x + 0.87 0.998 1.2 8.4 98.4 106.2

Cys-Gly 2.0–20.0 y = 0.17x + 2.15 0.999 0.6 13.4 100.3 105.2
LA 0.12–5.0 y = 0.38x + 0.04 0.999 2.3 14.7 97.2 101.4

2.5.3. Accuracy and Precision

The accuracy and precision of the proposed method were proven by adding known amounts
of standard solutions of the analytes to plasma samples. Precision was calculated as the relative
standard deviation, whereas accuracy was considered as the percentage of analyte recovery using the
following formula:

accuracy (%) = 100% × (measured amount − endogenous content)/added amount. (1)

Measured concentrations were assessed by the application of calibration curves obtained on that
occasion. The estimated validation parameters were correct and met the requirements dedicated to
biological sample analysis [42,43]. All detailed data are presented in Table 2.

Table 2. Accuracy and precision.

Analyte Concentration
(nmol mL −1)

Precision (%) Accuracy (%)

Intra-day Inter-day Intra-day Inter-day

Cys
40 11.3 3.3 100.9 113.4

200 2.3 4.6 99.1 98.9
400 0.5 0.5 95.3 93.8

Hcy
2 5.8 4.2 94 103

10 5.8 0.5 105.5 100.5
20 1.7 5.3 103 99.7

GSH
2 5.6 5.6 98.4 106.2

10 4.2 2.9 104.1 102.2
20 1.8 3.8 106.2 99

Cys–Gly
2 6.2 4 105.2 98.6

10 4.2 1.1 103.6 100.3
20 1.2 4 99.2 100.4

LA
0.12 4.1 9.5 101.4 101.1
2.5 4 9.2 97.2 99.5
5 3.6 3.7 101.1 100.2
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2.6. Application to Authentic Plasma Samples

The analytical approach has been applied for the determination of Cys, Hcy, GSH, Cys–Gly,
and LA in plasma samples collected from nine apparently healthy volunteers in the age range
27–49 years, supplemented with one dose of commercially available 100 mg LA capsules. In the
analyzed samples the average content of the analytes of interest amounted to 130.3 ± 29.6 nmol mL−1

for Cys, 6.7 ± 2.4 nmol mL−1 for Hcy, 6.4 ± 4.5 nmol mL−1 for GSH, 15.5 ± 3.0 nmol mL−1 for Cys–Gly,
and 5.0 ± 0.8 nmol mL−1 for LA. The results have confirmed the applicability of the elaborated assay
for the analysis of human plasma samples.

3. Materials and Methods

3.1. Chemicals and Reagents

Oxidized glutathione, homocystine, cystine, cysteinylglycine,α-lipoic acid, andtris(2-carboxyethyl)
phosphine were received from the Sigma Aldrich Company (St. Louis, MO, USA). The derivatization
reagent, 1-benzyl-2-chloropyridinium bromide, was synthesized in our laboratory as described
previously [44]. The HPLC gradient grade acetonitrile used for chromatographic analysis, hydrochloric
acid (HCl) utilized for the standard solution preparation, sodium hydrogen phosphate heptahydrate
(Na2HPO4·7H2O), sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O), sodium hydroxide
and trichloroacetic acid were purchased from J.T. Baker (Deventer, The Netherlands). Deionized water
was produced in our laboratory.

3.2. Instrumentation

All analyses were performed on a 1200 Series HPLC system (Agilent Technologies, Waldbronn,
Germany) equipped with a quaternary pump, vacuum degasser, autosampler, module of temperature
control, and spectrofluorometric detector. All analyses were controlled by HP ChemStation software.
The Aeris WIDPORE XB-C18 (150 × 4.6 mm, 5 µm) column from Phenomenex, packed with 3.6 µm
particles, was used for the analytes separation. Water used for the mobile phase preparation was distilled
with the use of a Milli-QRG system from Millipore in Vienna, Austria. The pH of the phosphate buffer
and mobile phases was controlled using a HI 221 pH meter, model Hanna Instruments, Woonsocket,
RI, USA.

3.3. Human Plasma Samples

Samples collected from nine volunteers were studied. Volunteers were dosed with commercially
available LA capsules (100 mg of LA). The supplement was provided in the morning, half an hour
after breakfast. During the study, no additional medications were allowed except for LA. Blood was
collected into vacutainer tubes containing EDTA by venipuncture, immediately placed on the ice,
and centrifuged at 800× g for 15 min at room temperature. Plasma was used for the analyses without
delay or stored at −80 ◦C.

All investigations were performed after approval by the Ethical Committee of the University of
Lodz (decision identification code: 9/KBBN-UŁ/II/2017, approved on 6 November 2017). Informed
consent forms were obtained from all volunteers involved in the project.

3.4. Stock Solutions

A stock solution of 0.1 mol L−1 LA was prepared in 1 mol L−1 NaOH. Stock solutions of
0.05 mol· L−1 Cys, Hcy, GSH, and Cys-Gly were prepared in 0.2 mol·L−1 HCl. All of them were kept
at 4 ◦C for several days without a noticeable change in the analytes’ content. The working solutions
were prepared by dilution with water as needed. Stock solution of 0.2 mol·L−1 BCBP and TCEP
(0.125 mol·L−1) was prepared in 0.1 mol·L−1 NaOH. 0.2 mol L−1 pH 7.8 phosphate buffer was prepared
freshly every day.
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3.5. Human Plasma

A total of 50 µL of plasma was diluted with 150 µL of 0.2 mol L−1 pH 7.8 phosphate buffer and
treated with 5 µL of mixture 0.2 mol L−1 BCBP and 0.125 mol L−1 TCEP for 15 min. In the next step,
30 µL of 1.0 mol L−1 HCl and 30 µL of MeCN was added. Of the final sample, 5 µL was injected into
the chromatographic column.

3.6. HPLC conditions for Determination of LA and Low-Molecular-Mass Thiols in Human Plasma

The chromatographic separation of LA and low-molecular-mass thiols in human plasma was
obtained in 12 min. The analytes were eluted by the mobile phase containing (A) 0.1% TCA adjusted to
pH 2.25 with 1 mol L−1 NaOH and (B) acetonitrile with the gradient elution as follows: 0–5 min, 10–20%
(B); 5–9 min, 20–45% (B), 9–11 min, 45–10% (B). For column equilibration, a 1 min post time was used.
The flow rate of the mobile phase was 1 mL min−1. The peaks of 2-S-pyridinium derivatives of Cys,
Hcy, GSH, Cys–Gly, and DHLA were monitored at 321 nm. All signals were identified by comparison
of their retention times as well as diode-array spectra, taken at real-time of analysis, with that of the
authentic standard. Separations were performed at room temperature.

3.7. Calibration and Validation Process

Calibration standards were prepared by spiking 50 µL of human plasma with appropriate
disulfides to obtain the following concentrations: 0, 40, 100, 200, 300, 400 µmol L−1 plasma for Cys;
0, 2, 5, 10, 15, 20 µmol·L−1 for Hcy, GSH and Cys–Gly; and 0.0, 0.1, 1.0, 2.5, 4.0, 5.0 µmol L−1 for LA.
Then the samples were processed according to the procedure in Section 3.5.

To investigate LOD and LOQ of the analytes of interest, a proxy matrix (0.9% NaCl in 10 mmol·L−1

phosphate buffer, pH 7.4) was spiked with decreasing concentrations of the standard solution of LA and
low-molecular-mass thiols were subsequently subjected to all steps of the analytical procedure. The study
was repeated until the signal-to-noise ratio reached 3:1 and 10:1 for LOD and LOQ, respectively.

4. Conclusions

In this paper, we propose a new method for the simultaneous separation and determination of
Cys, Hcy, GSH Cys–Gly, and LA in human plasma. The assay is based on the simultaneous reduction
with TCEP and derivatization with BCBP and elimination of the deproteinization step from the sample
preparation protocol. Although in the literature, some assays dedicated to LA or GSH, or other amino
thiols can be found, they do not allow the simultaneous determination of biologically important
aminothiol antioxidants such as LA [24] and GSH [45] and other metabolically related low-molecular
thiols [30]. The presented methodology exhibits some advantages when compared to other previously
published reversed phase HPLC based methods. Our approach significantly simplifies and reduces
the time taken by the sample preparation step. In this case, only simultaneous reduction of disulfide
bonds and derivatization of thiols groups is involved. The step of deproteinization is eliminated.
From an analytical point of view, our test is simple, fairly fast, sensitive, and does not require large
sample volumes. Additionally, elimination of the deproteinization step allows us to prepare the
samples in vials, which helps to reduce the number of polypropylene tubes and “plastic laboratory”
waste. The validation parameters, including linearity, precision, and accuracy, were within the rules
for biological samples.

The analytical approach has been successfully applied for the determination of Cys, Hcy, GSH,
Cys–Gly, and LA in plasma samples collected from apparently healthy volunteers. The obtained results
have confirmed the applicability of the elaborated assay for the analysis of human plasma samples.
In our opinion, this method would act as a powerful analytical tool in high throughput screening of
large numbers of samples. To the best of our knowledge, the proposed assay is the first that allows the
simultaneous separation and determination of Cys, Hcy, GSH Cys–Gly, and LA in human plasma.
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Abbreviations

BCPB 1-benzyl-2-chloropyridinium bromide
Cys cysteine
Cys–Gly cysteinylglycine
DHLA dihydrolipoic acid
GSH glutathione
LDL-C low-density lipoprotein cholesterol
Hcy homocysteine
HSA human serum albumin
LA α-lipoic acid
MeCN acetonitrile
TCA trichloroacetic acid
TCEP tris(2-carboxyethyl)phosphine
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28. Kuśmierek, K.; Chwatko, G.; Głowacki, R.; Kubalczyk, P.; Bald, E. Ultraviolet derivatization of
low-molecular-mass thiols for high performance liquid chromatography and capillary electrophoresis
analysis. J. Chromatogr. B. 2011, 879, 1290–1307. [CrossRef]

29. Borowczyk, K.; Krawczyk, M.; Kubalczyk, P.; Chwatko, G. Determination of lipoic acid in biological samples.
Bioanalysis 2015, 7, 1785–1798. [CrossRef]

30. Borowczyk, K.; Wyszczelska-Rokiel, M.; Kubalczyk, P.; Głowacki, R. Simultaneous determination of albumin
and low-molecular-mass thiols in plasma by HPLC with UV detection. J. Chromatogr. B. 2015, 981, 57–64.
[CrossRef]
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