Supplementary figure 1. Kaplan-Meier survival curves of the 3 patient cohorts. Patients were divided into 3 cohorts based on criteria recently proposed by an international consortium: ${ }^{28}$ patients without evidence of progression (cohort $A, n=236$), patients who developed disease progression (transformation and/or disease-related death) during follow up (cohort $B, n=61$), and patients who had already transformed to sAML at the time of sampling (cohort $C, n=40$). Median survival was 30 months in cohort $A, 21$ months in cohort B, and 5 months in cohort C, respectively.

Suppl. Fig. 1

Supplementary table 1. Laboratory values of the 3 patient cohorts: patients without evidence of progression (cohort A), patients who developed disease progression
(transformation and/or disease-related death) during follow up (cohort B), and patients who had already transformed to secondary AML at the time of sampling (cohort C).

Parameters	Cohort A, N=236	Cohort B, N=61	Cohort C, N=40
WBC x 109/L; median (range)	$12.2(2.5-139)$	$17.9(3.6-94)$	$27.8(4.1-205)$
Hb g/dL; median (range)	$11.0(4.3-14.9)$	$11.1(6.4-15.3)$	$9.8(4.1-14.1)$
Platelet x $10^{9} / \mathrm{L} ;$ median (range)	$115(5-726)$	$89(7-695)$	$56(17-397)$
PB Blast \%; median (range)	$0(0-17)$	$0(0-13)$	$2.0(0-94)$
Monocyte \%; median (range)	$22(3-60)$	$24(4-74)$	$26(0-74)$

Supplementary table 2. Frequencies of other than RASopathy gene mutations in the 3 patient cohorts: patients without evidence of progression (cohort A), patients who developed disease progression (transformation and/or disease-related death) during follow up (cohort B), and patients who had already transformed to secondary AML at the time of sampling (cohort C). NGS analysis was performed as described in Patients and Methods. Details regarding gene panel, library preparation and data processing have been reported previously. ${ }^{27}$ In case of conflicting results for the pathogenicity of a variant, the underlying data were manually rechecked. Variants were considered (likely) benign unless they satisfied all of the following conditions: the mutation occurred in a protein coding region, the mutation function was not synonymous, the annotation from ClinVar was not benign, and the change was not found at a frequency of 1% or higher in a population. Clearly pathogenic variants and variants of unknown significance were retained as potential mutations. Only mutations with allele frequencies of at least 20% were considered as positive, and only mutations with a frequency of at least 10% in the total cohort are shown.

Genes	Cohort A	Cohort B	Cohort C	P
SETBP1	$33 / 198(17 \%)$	$16 / 57(28 \%)$	$15 / 58(26 \%)$.090
TET2	$145 / 198$ (73\%)	$35 / 57(61 \%)$	$39 / 58(67 \%)$.202
EZH2	$35 / 198(18 \%)$	$9 / 57(16 \%)$	$12 / 58(21 \%)$.784
ASXL1	$34 / 198(17 \%)$	$17 / 57(30 \%)$	$11 / 58(19 \%)$.106
SRSF2	$76 / 198(38 \%)$	$19 / 57(33 \%)$	$17 / 58(29 \%)$.409
RUNX1	$17 / 198(9 \%)$	$11 / 57(19 \%)$	$13 / 58(22 \%)$.007
TP53	$21 / 198(11 \%)$	$8 / 57(14 \%)$	$5 / 58(9 \%)$.635

Supplementary table 3. Detailed informations (region, ENST, ENSP, variant allele frequency) of molecular aberrations detected in RASopathy genes in samples of patients with CMML derived AML.

Sample	Gene	Region	ENST	ENSP	VAF
1	NRAS	115258748	c.34G>A	p.Gly12Ser	25.44
2	NRAS	115258748	c. $34 \mathrm{G}>\mathrm{C}$	p.Gly12Arg	47.89
3	NRAS	115258747	c.35G>A	p.Gly12Asp	90.63
4	NRAS	115258748	c.34G>A	p.Gly12Ser	30.58
5	NRAS	115258748	c.34G>C	p.Gly12Arg	38.77
6	NRAS	115258748	c. $34 \mathrm{G}>\mathrm{C}$	p.Gly12Arg	31.90
7	NRAS	115258744	c.38G>A	p.Gly13Asp	49.92
8	NRAS	115258747	c.35G>A	p.Gly12Asp	47.69
9	NRAS	115258748	c. $34 \mathrm{G}>$ T	p.Gly12Cys	70.17
10	NRAS	115258744	c.38G $>$ T	p.Gly13Val	44.51
11	NRAS	115256521	c.190T>G	p.Tyr64Asp	32.78
12	$\begin{aligned} & \text { NRAS } \\ & C B L \\ & \hline \end{aligned}$	$\begin{aligned} & 115258747 \\ & 119148922 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { c. } 35 \mathrm{G}>\mathrm{A} \\ & \text { c. } 1142 \mathrm{G}>\mathrm{C} \end{aligned}$	$\begin{aligned} & \text { p.Gly12Asp } \\ & \text { p.Cys381Ser } \end{aligned}$	$\begin{aligned} & 30.20 \\ & 23.20 \end{aligned}$
13	NRAS NF1	$\begin{aligned} & \hline 115258744 \\ & 29663388 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { c. } 38 G>A \\ & \text { c. } 4979 T>A \end{aligned}$	p.Gly13Asp p.lle2015Asn	$\begin{aligned} & 36.22 \\ & 35.22 \end{aligned}$
14	NRAS	115258747	c.35G>A	p.Gly12Asp	45.60
15	NRAS	115258744	c.38G>A	p.Gly13Asp	28.40
16	KRAS	25398285	c.34G>A	p.Gly12Ser	21.72
17	KRAS	25398284	c.35G>A	p.Gly12Asp	41,46
18	KRAS	25398285	c.34G>A	p.Gly12Ser	47.74
19	KRAS	25380279	c.179G>	p.Gly60Val	49.14
20	KRAS	25398285	c. $34 \mathrm{G}>\mathrm{A}$	p.Gly12Ser	34.24
21	KRAS	25380283	c.183A>T	p.Gln61His	40.20
22	KRAS	25398285	c. $34 \mathrm{G}>\mathrm{C}$	p.Gly12Arg	46.00
23	KRAS	25398284	c.35G>A	p.Gly12Asp	43.19
24	KRAS	25398266	c.53C>A	p.Ala18Asp	47.59
25	KRAS	25398284	c. $35 \mathrm{G}>\mathrm{C}$	p.Gly12Ala	34.63
26	KRAS NF1	$\begin{aligned} & 25380285 \\ & 29496957 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { c. } 112-17440 \mathrm{C}>\mathrm{T} \\ & \text { c. } 528 \mathrm{~T}>\mathrm{A} \end{aligned}$	p.Thr58Ile p.Asp176Glu	$\begin{aligned} & \hline 55.06 \\ & 37.34 \\ & \hline \end{aligned}$
27	CBL	119148991	c.1211G>A	p.Cys404Tyr	86.02
28	CBL	119148919	c.1139T>C	p.Leu380Pro	93.67
29	CBL	119148891	c.1111T>C	p.Tyr371His	89.49
30	CBL	119148925	c.1145A>G	p.Lys382Arg	74.40
31	CBL	119149246	c.1254C>G	p.Phe418Leu	92.30
32	CBL	119148991	c.1211G>A	p.Cys404Tyr	34.30
33	CBL	119148883	c.1103A>G	p.Tyr368Cys	32.21
34	NF1	29653035	c.4970A>G	p.Tyr1657Cys	87.90
35	NF1	29554236	c.4956C>A	p.Asn1673Lys	27.66
36	NF1	29496957	c.630T>A	p.Asp176Glu	49.44
37	NF1	29665757	c. $6855>A$	p.Tyr2285*	86.50
38	PTPN11	112940006	c.1658C>T	p.Thr553Met	52.86
39	PTPN11	112888165	c.181G>T	p.Asp61Tyr	34.83
40	PTPN11	112926910	c.1530G>T	p.Gln510His	50.43
41	PTPN11	112888202	c. $218 \mathrm{C}>\mathrm{T}$	p.Thr73Ile	27.50

