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Abstract: Growing evidence highlights the endocannabinoid (EC) system involvement in cancer
progression. Lipid mediators of this system are secreted by hematopoietic cells, including the
ECs 2-arachidonoyl-glycerol (2AG) and arachidonoyl-ethanolamide (AEA), the 2AG metabolite
1AG, and members of N-acylethanolamine (NAE) family—palmitoyl-ethanolamide (PEA) and
oleoyl-ethanolamide (OEA). However, the relevance of the EC system in myeloproliferative neoplasms
(MPN) was never investigated. We explored the EC plasma profile in 55 MPN patients, including
myelofibrosis (MF; n = 41), polycythemia vera (PV; n = 9), and essential thrombocythemia (ET; nn = 5)
subclasses and in 10 healthy controls (HC). AEA, PEA, OEA, 2AG, and 1AG plasma levels were
measured by LC-MS/MS. Overall considered, MPN patients displayed similar EC and NAE levels
compared to HC. Nonetheless, AEA levels in MPN were directly associated with the platelet count.
MF patients showed higher levels of the sum of 2AG and 1AG compared to ET and PV patients,
higher OEA/AEA ratios compared to HC and ET patients, and higher OEA/PEA ratios compared
to HC. Furthermore, the sum of 2AG and 1AG positively correlated with JAK2V!7F variant allele
frequency and splenomegaly in MF and was elevated in high-risk PV patients compared to in low-risk
PV patients. In conclusion, our work revealed specific alterations of ECs and NAE plasma profile in
MPN subclasses and potentially relevant associations with disease severity.

Keywords: endocannabinoids; N-acylethanolamines; myeloproliferative neoplasms; myelofibrosis;
polycythemia vera; essential thrombocythemia

1. Introduction

The endocannabinoid (EC) system is composed by the lipid endogenous compounds—
N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoyl-glycerol (2AG), the enzymatic
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machinery responsible for ligand synthesis and degradation, and the cannabinoid receptors 1 (CB1)
and 2 (CB2) [1]. AEA and 2AG are synthesized on demand from membrane phospholipids of many
cell types, in the brain and peripheral tissues, as well as in blood cells. Although ECs are supposed to
act via paracrine and autocrine communication, their presence in the bloodstream has been quantified
and associated with multiple physiopathological conditions [2,3]. CB1 and CB2 are G-protein-coupled
receptors; however, CB1 is highly expressed in the central nervous system and in nearly all peripheral
tissues, and CB2 is mainly detected in immune cells [4,5]. Both receptors are involved in the regulation
of cell proliferation, differentiation, apoptosis, and migration. While AEA acts as a full agonist for both
CB1 and CB2, 2AG is a full agonist for CB2 [6].

As amember of the monoacyl-glycerol family, 2AG is an intermediate of diacyl- and triacyl-glycerol
metabolic pathways. Due to the poor chemical stability, this compound rapidly and spontaneously
isomerizes into 1AG, so that the sum of 2AG and 1AG levels (2+1AG) is often used for evaluating the
2AG biomarker potential in plasma [7,8]. In addition, although long considered inactive, the isomer
1AG was recently shown to have potential agonistic activity supporting 2AG function [9].

AEA belongs to the N-acyl-ethanolamide (NAE) family, also including oleoyl-ethanolamine (OEA)
and palmitoyl-ethanolamine (PEA) [3]. These signaling lipids share the biosynthetic and degradative
machinery as well as non-CB targets, such as the transient receptor potential vanilloid 1 (TRPV1),
G-protein-coupled receptors GPR55 and GPR119, and peroxisome proliferator activator receptors
(PPAR). NAEs were described to reciprocally influence their activity on target receptors by competing
for degrading enzymes, according to an entourage effect mechanism [10,11]. Moreover, although the
circulating levels of the three NAEs were found to be highly directly correlated [7,12], imbalances in their
relative abundances were associated with their poor metabolic profiles [8,13]. In addition, PPAR-alpha
and -gamma targets mediate NAE anti-inflammatory properties [14]. In particular, in contrast to 2AG,
which is involved in immune cell recruitment, AEA suppresses pro-inflammatory cytokines production
and enhances the release of anti-inflammatory cytokines regulating the immune responses [15-17].
Furthermore, PEA was shown to counteract systemic inflammation in mice and humans [14] and
to support the increased intestinal permeability associated with inflammation along with OEA [18].
PEA also exhibited immune-modulating properties on different T-cell subsets, thereby representing a
new pharmacological player for the treatment of human chronic inflammatory disorders [19].

Interestingly, ECs have been recently found to modulate hematopoiesis, including megakaryocyte
maturation, thrombopoiesis, and platelet aggregation, as well as chemokine release and migration of
immunocompetent cells [15,20-22]. Importantly, blood cells and platelets act as sources of ECs, whereas
various hematopoietic cell subsets, particularly B-cells, display high levels of CB2 [23]. In addition,
ECs released by platelets are involved in thrombogenic processes [24].

EC system implication in various hematological malignancies has also been investigated [25].
In this regard, high levels of CB2 in hematopoietic precursor cells were shown to exert a role in
leukemogenesis [26]. Interestingly, Jorda et al. [27] described that CB2 is expressed in acute myeloid
leukemia (AML) blast cells, but not in normal myeloid cells, and that it is associated with migration
of bone marrow (BM) precursors mediated by 2AG. Of interest, CB2 revealed oncogenic properties
abrogating myeloid differentiation [28]. Recently, interest in the EC system emerged for another
hematological malignancy, multiple myeloma (MM). Indeed, it was shown that plasma cells expressed
high levels of CB2 and that cannabinoid derivatives selectively induced apoptosis in MM cell lines and
primary plasma cells from MM patients [23], similarly to what previously reported for AML [29]. Hence,
the EC system in these malignancies might represent a potential target for therapeutic exploitation.

Atvariance with the mentioned hematological malignancies, to date, no studies investigated the EC
system role in myeloproliferative neoplasms (MPN). The MPN include clonal disorders of hemopoietic
stem cells such as polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis
(MF) that are driven by mutations in Janus kinase 2 (JAK2), myeloproliferative leukemia (MPL),
or calreticulin (CALR) genes [30]; however, none of these could be detected in 2-15% of the patients
(triple-negative patients, TN). All MPN are characterized by an increased risk of thromboembolic
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complications and by the predisposition to evolve into AML. Recently, a selective JAK1/2 inhibitor,
ruxolitinib, was introduced into clinical practice; however, many patients did not respond or did not
tolerate this drug [31]. Therefore, more effective therapies are urgently needed.

To our best knowledge, the circulating levels of ECs and related compounds in hematological
malignancies have never been reported. Here, for the first time, we investigated the circulating profile
defined by levels of the sum of 2AG and 1AG and by the levels and the relative abundances of the NAE
AEA, PEA, and OEA in patients affected by MPN, including ET, PV, and MF. In addition, we associated
the EC and NAE profile with clinical parameters, mutational status, and disease severity to gain further
insight into MPN etiology and to highlight potential disease-related biomarkers.

2. Results

2.1. Study Cohort

The cohort included 55 patients affected by MPN, recruited at the University Hospital of Bologna,
and 10 healthy control (HC) volunteers from the general population. Patients were enrolled at diagnosis
or after at least three months from stopping cytotoxic therapy (n = 22). MPN patients were subdivided
into ET (n =5), PV (n = 9), and MF (n = 41). Table 1 reports the clinical and laboratory parameters
of each class. No differences in sex distribution (p = 0.129) were observed, whereas differences were
detected in age among classes (p < 0.001). MF patients were older (median: 72 years; range: 46-89 years)
compared to HC (median: 59 years; range: 31-73 years; p = 0.030), ET (median: 52; range: 42-57 years;
p = 0.005) and PV (median: 57, range: 2671 years; p = 0.002). MPN patients were further stratified
into two risk categories: 11 (20%) low-risk (age of <60 years and having no thrombosis history) and 39
(70%) high-risk (age of >60 years and having thrombosis history) patients.

Table 1. Clinical and laboratory features of patients within myeloproliferative neoplasms (MPN)
subclasses (essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF)) and
healthy control (HC). Data are expressed as median (range). One-way ANOVA: ET vs. MF: * p < 0.050;
** p < 0.010; *** p < 0.001; PV vs. MF: # p < 0.050; # p < 0.010; *## p < 0.001; HC vs. MF: * p < 0.050;
+*+p <0.010; *** p < 0.001. F: female, M: male, WBC: white blood cell count, PLT: platelet count, Hgb:
hemoglobin, RBC: red blood cell count, Het: hematocrit.

Descriptive

Parameters HC (n =10) ET (n =5) PV (n=9) MF (1 = 41)
Sex (F/M) 5/5 23 3/6 19/22
Age (years) 59 (31-73) 52 (42-57) ** 57 (26-71) # 72 (46-89) *
WBC (10%/ul) 6.1 (4.3-9.0) 7.5 (7.4-10.3) 8.1 (7.4-14.9) 9.9 (1.6-38.6)
PLT (103/uL) 261 (159-306) 463 (330-656) * 438 (229-762) 121 (38-632)
Hegb (g/dL) 141 (12.9-155) 142 (14-154)** 139 (11-1620) ¥ 9.9 (7.2-15.28) ***
RBC (105/uL) 4.6 (4.1-5.3) 5.59 (4.6-5.65) 5.5 (3.38-7.4) * 3.7(2.4-6.2)
Het (%) 415(37.6-467)  447(43-47.98)**  46.5 (41.8-49.5) "  30.87 (24.16-50.69) +*

2.2. EC and NAE Plasma Profile of MPN Subclasses

The levels of AEA, PEA, and OEA and the ratios of PEA/AEA, OEA/AEA, and OEA/PEA, along
with the levels of 2+1AG for each MPN subclass and HC are reported in Figure 1. The global analysis
of MPN patients showed no significant differences in EC and NAE plasma levels between patients
and HC. Additionally, the concentrations of the three NAEs did not significantly vary among MPN
classes and HC (AEA: p = 0.098; PEA: p = 0.203; OEA: p = 0.276; Figure 1a—). However, when NAE
ratios were evaluated, significant differences of OEA/AEA and OEA/PEA were found among classes
(p =0.001 and p = 0.005, respectively). In particular, MF patients exhibited higher OEA/AEA and
OEA/PEA ratios as compared to HC (p = 0.030 and p = 0.010, respectively; Figure 1e—f) and higher
OEA/AEA ratios compared to ET (p = 0.020). Furthermore, we found that 2+1AG was significantly
higher in MF compared to in both ET (p = 0.001) and PV patients (p = 0.030) (Figure 1g). When PV
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patients were classified according to risk, high-risk PV patients showed 2-fold increase of 2+1AG levels
compared to low-risk PV patients (19.0 + 2.6 pmol/mL vs. 6.8 + 0.9 pmol/mL; p = 0.030; Figure 1h).
Notably, the overall results were not altered, when age was included as a covariate in the analysis.
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Figure 1. Box-and-whiskers plots for plasma levels of arachidonoyl-ethanolamide (AEA),
(a) palmitoyl-ethanolamide (PEA); (b) oleoyl-ethanolamide (OEA); (c) PEA/AEA ratio; (d) OEA/AEA
ratio; (e) OEA/PEA ratio; (f) and 1/2-arachidonoyl-glycerol (2+1AG); (g) in HC (n = 10) and ET (n = 5),
PV (n =9), and MF (n = 41) patients. One-way ANOVA: * p < 0.05. (h) 2+1AG plasma levels in PV
patients at high risk (age of >60 years and/or having thrombosis history; n = 3) and low risk (age of
<60 years and having no history of thrombosis; n = 6). T-test: * p < 0.050. (i) Pearson’s correlation
results between AEA and platelet count (PLT) in MPN patients (1 = 43).

Circulating levels of 2+1AG and NAEs were not associated with hematological parameters such
as white blood cell count, red blood cell count, hemoglobin, platelet count, and hematocrit within
MPN classes; however, we observed a direct association of AEA levels with the platelet count when
the overall cohort of MPN patients was considered (r = 0.363; p = 0.016; Figure 1i).

2.3. EC and NAE Plasma Profile According to Risk Classification, Mutational Status, and Clinical
Manifestations in MF Patients

The large sample size available for the MF class (n = 41) allowed us to perform further investigations.
Notably, sex differences were observed in MF, with higher NAE and 2+1AG levels in females (1 = 19)
compared with in males (1 = 21) (AEA, p = 0.010; PEA, p = 0.022; OEA, p = 0.008; 2+1AG, p = 0.001;
Figure 2a). According to the dynamic international prognostic scoring system (DIPSS) [32], MF patients
displayed high risk in five cases (12.1%), intermediate-2 risk in 15 cases (36.6%), intermediate-1 risk
in 13 cases (31.7%), and low risk in one case (2.4%). Besides, 15 (36.5%) patients were diagnosed
as secondary MFE, with five (12.1%) being post-PV MF and 10 (24.3%) being post-ET MF patients.
No significant differences were detected in the EC and NAE profile among DIPSS risk categories and
between primary and secondary MF.
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Figure 2. EC and NAE plasma profile according to mutational status and clinical manifestations in MF
patients. (a) Box-and-whiskers plots for plasma levels in female (n = 19) and male (1 = 21) MF patients.
T-test: * p < 0.050; ** p < 0.010. (b) AEA, PEA, OEA and 2+1AG levels; (c) PEA/AEA, OEA/AEA,
and OEA/PEA ratios according to ]AI(ZV617F (n=17), calreticulin (CALR; n = 14), and myeloproliferative
leukemia (MPL; n = 7) mutational status or triple-negative (TN; n = 3). One-way ANOVA: * p < 0.050; **
p <0.010; *** p < 0.001. Correlation of 2+1AG with (d) JAK2VOI7F variant allele frequency (VAF; n = 17)
and (e) splenomegaly (1 = 41). Pearson’s correlation test.

MF patients were further analyzed according to the mutational spectra as defined by JAK2V617F

(n =17), CALR (n = 14), and MPL (n = 7) mutations and by the absence of these mutations (TN; n = 3).
We found that JAK2V67F-mutated MF patients had lower 2+1AG levels compared with patients
carrying CALR (p = 0.006) and MPL mutations (p < 0.001) (Figure 2b), as well as lower PEA/AEA ratios
compared with MPL-mutated patients (p = 0.003; Figure 2c). Data were still significant when adjusted
for age as a covariate. Furthermore, 2+1AG levels were positively correlated with JAK2V61”F variant
allele frequency (VAF) (r = 0.563; p = 0.035; Figure 2d), but not with mutant allele burden of CALR type
1/2 (p = 0.752). Notably, 2+1AG levels were also directly associated with splenomegaly in the overall
MEF class (r = 0.394; p = 0.025; Figure 2e).

3. Discussion

The EC system is involved in many pathophysiological processes, and its role in cancerogenesis has
been postulated [33]. The cancer-associated dysregulation of the EC system might lead to measurable
changes in circulating EC levels [34]. Here, we investigated the potential role of the EC system as a
disease-specific circulating hallmark of rare MPN.

MPN are known to be characterized by an increased pro-inflammatory status [30,31,35]. Although
we did not detect any alteration in circulating levels of AEA, PEA, and OEA in MPN compared to in
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HC, we reported, for the first time, that AEA concentration was correlated with the platelet count in
these patients. Of interest, it has been previously published that AEA in the blood may be one among
the factors required for platelet survival [36].

Previous studies demonstrated that circulating concentrations of 2AG are increased in
pro-inflammatory states [37-39] and are directly correlated with interleukin 6 (IL-6) levels [2,40].
Those findings, on one side, are consistent with our data showing the increased 2+1AG levels
associated with the high-risk condition in PV patients. On the other side, the increased 2+1AG levels
we described in MF patients could be related to the strong correlation between IL-6 levels and disease
severity in MF that we described in our previous study [41]. Additionally, it has been reported that the
pathogenesis of MF is linked to the altered megakaryocyte proliferation and differentiation [42,43].
Notably, Gasperi et al. [15] observed that 2AG is a regulator of megakaryocyte/platelet functions.
Our findings might suggest a role of this EC in the abnormal megakaryocytopoiesis associated
with MF. Furthermore, our data suggested that a potential dysregulation of NAE balance occurs in
MF patients in terms of higher OEA/AEA and OEA/PEA ratios. EC and NAE dysregulation have
been largely described in obesity and metabolic impairment in humans [12,37]. In previous studies
performed in a cohort of healthy subjects from the general population, we reported that 2AG and OEA
derangements were associated with insulin resistance and dyslipidemia independently from body
mass index (BMI) [8,13]. Another study highlighted how human leukemia cells are able to induce
insulin resistance as a mechanism to favor the uncontrolled growth of malignant cells [44]. Whether
the dysregulation of the EC and NAE profile we described in MF is related to tumor metabolism and
growth deserves further investigations.

Another relevant finding of our study relies on the association of the EC system with the
mutational spectrum of MF. For instance, JAK2V67F-mutated patients displayed lower mean levels
of 2+1AG compared to CALR and MPL mutation carriers. As 2AG is rapidly released in response to
pro-inflammatory stimulation of immune cells [45], our results seem to suggest that specific alterations
of the immune system depend on the mutational status, as previously reported by our group [46].
On the other hand, 2+1AG was directly correlated with JAK2V®1”F VAF. Most importantly, increasing
levels of this EC were associated, in the overall MF cohort, with splenomegaly, a marker of disease
severity. These results led us to hypothesize that 2AG levels might be differentially regulated by the
three driver-mutated genes in MF and that increasing levels are closely related to disease severity.

Despite the fact that the role of gender in the symptomatology of MPN is still undefined [47,48],
Barraco et al. [49] observed that female patients had a specific phenotype with slower disease progression
and better prognosis. Here, for the first time, we found higher PEA and 2+1AG plasma levels in MPN
female compared to in male patients (data not shown), which was particularly evident in MF subclass,
showing a similar trend also for AEA and OEA plasma levels. These features supported the need for
gender-specific analysis to better interpret experimental results in MPN.

Altogether, our work highlights the potential involvement of the EC system in the pathophysiology
of MPN, further revealing specific associations with features of MPN subclasses. Circulating levels
of ECs and related compounds are part of the complex immune-neuro-endocrine system [1,17,34,50],
and the present investigation might suggest that this cross-talk is deranged in MPN. Indeed, the
depicted alteration in EC and NAE plasma profile might represent a putative biomarker to monitor
disease onset and progression in hematological malignancies. Nevertheless, the observations that we
reported need to be substantiated in further studies involving larger cohorts of patients and other
hematological malignancies, taking into account sex specificities.

In conclusion, our work involving severe and rare hematological malignancies, overall referred to
as MPN, revealed for the first time disease-specific alterations of EC and NAE plasma profile, which
could help in elucidating the impact of the EC and NAE systems in the pathogenesis, progression,
and identification of novel therapeutic strategies.



Int. ]. Mol. Sci. 2020, 21, 3399 7of 11

4. Materials and Methods

4.1. Study Cohort

All patients and HC gave written informed consent under the approval of the local medical ethical
committee of the University Hospital of Bologna (Code 7/2019/Sper/AOUBO of 01/23/2019-Comitato
Etico di Area Vasta Emilia Centro), and the study was conducted in accordance with the Declaration of
Helsinki. Ten HC from the general population and 55 patients affected by MPN were recruited at the
University Hospital of Bologna.

4.2. Blood Sampling

Patients and HC gave blood between 8 and 10 a.m,. after overnight fasting. Blood was collected
into K2 EDTA-containing tubes (Vacutainer® tubes, Becton Dickinson, Franklin Lakes, NJ, USA)
and processed within 1 h from withdrawal. Tubes were centrifuged for 15 min at 3000x g to obtain
platelet-poor plasma, and the derivative was aliquoted and stored at —80 °C.

4.3. Mutation Analysis

JAK2VO17F allele-burden was assessed in granulocyte DNA with the ipsogen JAK2 MutaQuant Kit
(Qiagen, Marseille, France) 505 on the 7900 HT Fast Real-Time PCR System (Applied Biosystem, Monza,
Italy). CALR exon 9 sequencing was performed by the next-generation sequencing (NGS) approach
with GS Junior (Roche-454 platform; Roche Diagnostics, Monza, Italy); analysis was performed with
AVA Software (GRCh38 as referenced). Rare CALR mutations identified by NGS were confirmed by
Sanger sequencing. MPL mutations were investigated by the ipsogen MPLW515K/L. MutaScreen Kit
(Qiagen) and by Sanger sequencing (for MPLS505N and other secondary exon 10 mutations).

4.4. EC and NAE Measurements

AEA, PEA, OEA, 1AG, and 2AG plasma levels were measured by a validated in-house assay [7].
Briefly, 0.5 mL of plasma underwent liquid-liquid extraction with 2 mL toluene after the addition
of isotopic internal standards. Extracts were injected into the LC-MS/MS platform (HPLC Series200,
PerkinElmer, Waltham, Massachusetts; API4000 QTrap, Sciex, Toronto, ON, Canada), separated on
a Discovery HS C18 column (7.5 cm X 4.6 mm; particle size: 3 um), ionized in positive mode by
atmospheric pressure chemical ionization and detected by multiple reaction monitoring of both
quantitative and confirmation transitions. Baseline separation between 2AG and 1AG isomers was
achieved. Functional sensitivities were 0.02 for AEA, 0.20 for PEA and OEA, 0.16 for 2AG, and
0.08 pmol/mL for 1AG.

4.5. Statistical Analysis

Mean, SD, frequency, median and range were used as descriptive statistics. PEA/AEA, OEA/AEA,
and OEA/PEA molar ratios and the sum of 2AG and 1AG were computed. The normality of variable
distribution was analyzed by the Kolmogorov-Smirnov test. All significantly skewed variables showing
a positive skewness were transformed according to the equation written as logyo(x + k), whereas those
showing a negative skewness were transformed according to the equation described as the squared root
of (x + k). k values resulting in zero skewness after transformations were chosen. Differences in age, sex,
and study-specific variables among classes were tested by T-test, ANOVA, and ANCOVA. Specifically,
for MF disease, factors other than gender as platelet count (<100 X 10%/L), anemia (hemoglobin: <10),
peripheral blasts (>1%), marrow fibrosis grade, large splenomegaly (palpable, >10 cm below the left
costal margin), and MPN-10 total symptoms score (TSS) (>20) were considered in univariate analysis.
Regression analysis was performed according to the Pearson’s correlation test. The outliers were
detected using the Grubbs’s test and excluded from the analyses. p-values <0.050 were considered
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significant. Statistical analyses were performed by Graphpad (Graphpad Software Inc., La Jolla, CA,
USA) and by Medcalc version 18.2.1 (MedCalc Software bvba, Ostend, Belgium).
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Abbreviations

MPN myeloproliferative neoplasms

MF myelofibrosis

ET essential thrombocythemia

pv polycythemia vera

HC healthy control

EC endocannabinoid

NAE N-acylethanolamide

AEA N-arachidonoyl-ethanolamine (anandamide)
1AG 1-arachidonoyl-glycerol

2AG 2-arachidonoyl-glycerol

2+1AG 1/2-arachidonoyl-glycerol

PEA palmitoyl-ethanolamide

OEA oleoyl-ethanolamide

LC-MS/MS liquid chromatography-tandem mass spectrometry
CB1/2 cannabinoid receptors %

WBC white blood cell

PLT platelet count

Hect hematocrit

RBC red blood cell

Hgb hemoglobin

TSS total symptoms score

DIPSS dynamic international prognostic scoring system
JAK2 janus kinase 2

CALR calreticulin

MPL myeloproliferative leukemia protein

TN triple-negative

VAF variant allele frequency

BMI body mass index
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