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Abstract: Due to the high rate of spontaneous abortion (SAB) in porcine pregnancy, there is a
major interest and concern on commercial pig farming worldwide. Whereas the perturbed immune
response at the maternal–fetal interface is an important mechanism associated with the spontaneous
embryo loss in the early stages of implantation in porcine, data on the specific regulatory mechanism
of the SAB at the end stage of the implantation remains scant. Therefore, we used high-throughput
sequencing and bioinformatics tools to analyze the healthy and arresting endometrium on day 28
of pregnancy. We identified 639 differentially expressed lncRNAs (DELs) and 2357 differentially
expressed genes (DEGs) at the end stage of implantation, and qRT-PCR was used to verify the
sequencing data. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and
immunohistochemistry analysis demonstrated weaker immune response activities in the arresting
endometrium compared to the healthy one. Using the lasso regression analysis, we screened the
DELs and constructed an immunological competitive endogenous RNA (ceRNA) network related
to SAB, including 4 lncRNAs, 11 miRNAs, and 13 genes. In addition, Blast analysis showed the
applicability of the constructed ceRNA network in different species, and subsequently determined
HOXA-AS2 in pigs. Our study, for the first time, demonstrated that the SAB events at the end
stages of implantation is associated with the regulation of immunobiological processes, and a specific
molecular regulatory network was obtained. These novel findings may provide new insight into the
possibility of increasing the litter size of sows, making pig breeding better and thus improving the
efficiency of animal husbandry production.

Keywords: ceRNA; HOXA-AS2; immune response; pig; spontaneous abortion

1. Introduction

Spontaneous abortion (SAB) of embryos in porcine pregnancy remains a global and
primary concern in commercial pig farming. Previous studies have shown that around
20–30% of porcine embryos are lost between days 12 and 30 of pregnancy during the
peri-implantation stage [1]. Due to the presence of a unique non-invasive epitheliochorial
placenta in the porcine animals [2], post-attachment development and growth of the
embryos require precise interaction with the endometrium. This interaction demands
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proper and abundant coordination of transcription factors, cytokines, chemokines, and
hormones [3,4]. Previous studies have shown that specific chemokines and their receptors
coordinate the enrichment of immune cells and their localization at the maternal–fetal
interface around gestation day 15 [5,6], which is essential in supporting the critical processes
of maternal–fetal adaptations. Besides, deficits in endometrial vascular remodeling that
coincide with immune cell recruitment appear to be associated with retardation of the
development retardation and spontaneous loss of the embryo [7–9]. Whereas the perturbed
immune response at the maternal–fetal interface is an important mechanism associated
with the spontaneous embryo loss in the early stages of implantation in porcine [8,10],
data on the specific regulatory mechanism of the SAB at the end stage of the implantation
remains scant.

Long non-coding RNAs (lncRNAs) are a large class of RNAs with a nucleotide length
of >200, low conservation and expression level, and tissue specificity [11]. Multiple lncRNA-
specific regulatory mechanisms have been reported to influence transcription and post-
transcriptional events, such as direct transcription regulation or miRNA-mediated indirect
regulation of competitive endogenous RNA (ceRNA) network [12,13]. Recent studies have
demonstrated that lncRNAs could regulate the expression of transcription factors, thus
regulating biological processes [14]. Besides, lncRNAs have been shown to play key roles
in embryo development during early pregnancy stages [15], while accumulating evidence
indicates that lncRNAs, such as metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), mediate angiogenesis, and could enhance neovascularization after myocardial
infarction [16]. However, whether the lncRNAs could modulate the adaptations of the
maternal–fetal interface during pregnancy and the exact molecular mechanism during
the SAB of the embryos is yet to be determined. Here, gilts on day 28 of pregnancy (end
of implantation), which is accompanied by the high level of pregnancy loss [17,18], were
selected for this study, we showed data from an integrated analysis of the health and
arresting conceptus attachment site (CAS), with insights into the molecular mechanism
of SAB during early pregnancy in pigs (Figure 1). We provided novel information that
may increase the litter size of sows and make pigs breeding better, thereby improving the
efficiency of animal husbandry production.
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diagrams, which demonstrate the healthy or arresting embryos at day 28 of pregnancy. Details of the
methods and results are described later.
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2. Results
2.1. Genome-Wide Identification and Characterization of the lncRNAs and mRNAs

A total of 701,720,602 raw reads were generated from the 4 paired endometrium
porcine samples using Illumina Hiseq 2500 platform. Out of the total raw reads, 695,694,564
were clean (Supplementary Table S2), accounting for 99% of raw reads. Mapping of these
reads to the genome showed that most of them were in the exon region (Figure 2A). Further
analysis of the coding potential using CNCI, CPC, and Pfam software identified 10,258
novel lncRNAs, representing 52.3% of all the identified lncRNAs (Figure 2B). Of the novel
lncRNAs, 47.7%, 30.8%, or 21.4% were long intergenic non-coding RNAs (lincRNAs),
sensed overlapping lncRNAs or antisense lncRNAs, respectively (Figure 2C). Besides,
analysis of genomic location distribution showed that the lncRNAs were mainly distributed
on chromosomes 1 and 6, while the mRNAs were mainly on chromosomes 1, 2 and 6.
Whereas the location of the mRNAs was approximately the same as the distribution of the
lncRNAs, their abundance was more than that of the lncRNAs (Figure 2D).

To further understand the differences between the lncRNAs and mRNAs in the
HE or AE, we compared and analyzed data on gene structure and expression patterns.
Notably, both the length of the lncRNAs and the number of exon and open reading frames
(ORF) of the lncRNAs (Figure 2E,F) were shorter than that of the mRNAs (Figure 2G).
The average length of the lncRNA and mRNA was 2430.95 and 3523.44 nt, respectively.
Consistent with previous reports [19], our data showed that the lncRNA was richer with
repeat sequences compared with the mRNA, including 12.70% short interspersed nuclear
elements (SINES), 13.60% long interspersed nuclear elements (LINES), 5.40% long terminal
repeats (LTR), 2.38% DNA elements, and 0.02% unclassified. There were 65.90% non-
repetitive sequences (Figure 2H), which indicated that the lncRNAs might be playing
specific biological functions in evolution. In addition, Figure 2I,J shows that the distance
within the same category group is closer. The data indicated a correlation within the paired
sample group (Supplementary Table S3).

2.2. Differentially Expressed LncRNAs (DELs) and Their Functions

Using an FDR < 0.05 and |FoldChange| > 2, we identified 639 DELs in both the HE
and AE. There were 528 upregulated and 111 downregulated DELs (Figure 3A, Supple-
mentary Table S4). Hierarchical clustering analysis and raincloud plot showed lncRNAs
expression patterns among the samples (Figure 3B,C). To identify the function of the DELs,
we performed GO enrichment and KEGG pathway analyses on the lncRNA nearest target
genes. Data from the KEGG pathway analysis showed significant enrichment of many
immune-related pathways, such as ‘Herpes simplex virus 1 infection’, ‘Human T-cell
leukemia virus 1 infection’, and ‘Leishmaniasis’. Thus, the DELs might be mediating
immune functions (Figure 3E, Supplementary Table S5). On the other hand, the GO enrich-
ment analysis showed that the DEL nearest target genes were enriched in some biological
processes, such as ‘regionalization’, ‘anterior/posterior pattern specification’, and ‘histone
phosphorylation’ (Figure 3D, Supplementary Table S5). We then randomly selected 4 DELs
for validation using qRT-PCR (Figure 3F, Supplementary Table S6), and the data consistent
with the results obtained from the bioinformatics analyses.
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Figure 2. Identification and characterization of lncRNAs and mRNAs. (A) Distribution of the reads in different regions of
the genome. (B) Screening of candidate novel lncRNAs. Three tools (CPC, CNCI, and PFAM) were used to analyze the
coding potential of the lncRNAs, and the iterated lncRNAs were designated as candidate novel lncRNAs and used together
with annotated lncRNAs for subsequent analysis. (C) Classification of the novel lncRNAs. (D) Distribution of lncRNAs and
mRNAs in the genome. (E–G) Transcript length, exon number, and ORF length distribution of the lncRNAs and mRNAs.
(H) Pie chart showing the percentage distribution of repeat sequences in the lncRNA and mRNA populations. (I,J) PCA
and hierarchical clustering heatmap were used to check the differences between paired endometrial samples.
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Figure 3. Screening and enrichment analysis of the differentially expressed lncRNAs (DELs) in AE compared with HE.
(A) DELs expression profile by scatter plot. Each point represents one lncRNA. The red points represent upregulated
lncRNAs while the blue points represent downregulated lncRNAs. (B) Hierarchical clustering heatmap of the DELs. The
color scale is from −2.0 (blue, lower lncRNA expression level) to 2.0 (red, higher lncRNA expression level). Each row
represents one lncRNA, and each column represents one sample. The red band on the left side of the heatmap represents
clustering of the upregulated lncRNAs, and the green represents the downregulated lncRNAs. (C) Raincloud plot of the
upregulated and downregulated DELs. (D) GO enrichment analysis of the DELs nearest target genes. (E) KEGG pathway
analysis of the DELs nearest target genes. The different color represents the categories to which the KEGG pathway belongs.
(F) Validation of the expression of genes using qRT-PCR. The relative expression level was normalized by log10.

2.3. Analysis of Differentially Expressed Genes (DEGs) and Their Functions

Analysis of the differential expression identified 2357 DEGs, including 1415 upreg-
ulated and 942 downregulated genes (Figure 4A, Supplementary Table S4). Hierarchical
clustering analysis and raincloud plot categorized the genes with significant changes into
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two clusters (Figure 4B,C). Similarly, we performed GO enrichment and KEGG pathways
analysis on the DEGs. As demonstrated by the DELs, the significantly enriched KEGG
pathways involved immune-related pathways, such as ‘Human T-cell leukemia virus 1
infection’ and ‘Lysosome’, thus signifying mediation of the immune functions (Figure 4E,
Supplementary Table S5). Besides, the GO functional analysis showed that the DEGs were
associated with development processes (Figure 4D, Supplementary Table S5). Similarly, the
RNA-sea data on the 4 DEGs was randomly selected and validated by qRT-PCR (Figure 4F,
Supplementary Table S6).
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Figure 4. Screening and enrichment analysis of the differentially expressed genes (DEGs) in AE compared with HE.
(A) DEGs expression level analysis by scatter plot. Each point represents one gene. The red points represent upregulated
genes while the blue points represent downregulated genes. (B) Hierarchical clustering heatmap of the DEGs. The color
scale is from−2.0 (blue, lower gene expression level) to 2.0 (red, higher gene expression level). Each row represents one gene,
and each column represents one sample. The red band on the left side of the heatmap represents the clustered upregulated
genes, while the green represents downregulated gene clusters. (C) Raincloud plot of upregulated and downregulated
DEGs. (D) GO enrichment analysis of the DEGs. (E) KEGG pathway analysis of the DEGs. The different color represents
the categories to which the KEGG pathway belongs. (F) Validation of the expression of genes using qRT-PCR. The relative
expression level was normalized by log10.
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2.4. Weakened Immunobiological Activities in AE

To further determine whether the DEGs between the AE and HE were related to
the immunological functions, 139 immunobiological process gene sets were downloaded
from MSigDB, and then gene set variation analysis (GSVA) was performed based on
139 GO terms (Supplementary Table S7). The two different states of the endometrium had
significant differences in the GSVA, and the immunobiological processes were enriched
in the HE (Figure 5A,B). Furthermore, the gene set enrichment analysis (GSEA) of the
immunobiological processes showed a significant positive enrichment of ‘cell activation
involved in immune response’ and ‘regulation of immune response’ in the HE group
(Figure 5C, Supplementary Figure S1). The results of immunohistochemistry proved that
CD44 was significantly expressed in HE (Figure 5F,G). Overall, our data demonstrated that
these DEGs are involved in immunobiological processes, and weakened immunobiological
activities in AE.

In addition, we downloaded a total of 1793 immune genes from Immport (Supple-
mentary Table S8), an immune database, and then obtained 128 immune-related (IR) DEGs
(Figure 5D). Analysis of the protein–protein interaction (PPI) networks of the IRDEGs using
the STRING database showed that IL6, EGFR, HGF, BDNF, and FGF2 were key nodes of
the IRDEGs (Figure 5E).

2.5. Construction of Immunological ceRNA Network Related to the SAB

To identify the lncRNA implicated in SAB, we performed a lasso regression analysis of
the DELs and identified the following 8 lncRNAs: ENSSSCT00000004780, TCONS_00042638,
TCONS_00051274, TCONS_00071236, TCONS_00108310, TCONS_00161675, TCONS_00177102,
and TCONS_00215223 (Figure 6A,B). We then predicted the target miRNAs for these 8
lncRNAs, and estimated the target miRNAs for the 128 IRDEGs. The overlapping miRNAs
were selected for the construction of the ceRNA network. Given the potential correlation
between the lncRNAs and the genes in the ceRNA network, we conducted a correlation
analysis and selected lncRNA and gene pairs with a correlation coefficient of >0.8 (Supple-
mentary Table S9). As a result, we obtained an immunological ceRNA network comprising
52 unique RNAs (4 lncRNAs, 15 miRNAs, and 33 genes), as shown in Figure 6C.

In addition, in order to evaluate whether the constructed immunological ceRNA
network was related to SAB, we downloaded 930 endometrial spontaneous abortion genes
(ESABGs) from the GeneCard database (Supplementary Table S8). The data showed that
the proportion of these genes in the IRDEGs was significantly higher than in the DEGs,
indicating that the SAB process was probably triggered by the overlapping immune genes
(Figure 6D,F). We further constructed the SAB ceRNA network from the immunological
ceRNA network (4 lncRNAs, 11 miRNAs, and 13 genes) (Figure 6G). The related DELs and
several DEGs that were identified in the ceRNA network were verified by the qRT-PCR
(Figure 6H), demonstrating the robustness of the constructed ceRNA network.
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Figure 5. Weakened immunobiological activities in AE. (A) Gene set variation analysis (GSVA) demonstrated enrichment
of the immunobiological processes in HE. Each row represents one biological process, and each column represents one
sample. (B) Raincloud plot of the GSVA enrichment results. (C) Gene set enrichment analysis (GSEA) indicated a positive
enrichment of two immunobiological processes (‘cell activation involved in immune response’ and ‘regulation of immune
response’) in HE. The heatmap on the right shows the gene expression level in the two biological processes of enrichment.
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(D) Venn diagram of immune genes (IGs) and DEGs, the intersection indicates the differentially expressed genes related to
immunity. (E) PPI network of IRDEGs visualized using Cytoscape. The size of the circle represents the degree of interaction
between the genes. Immunohistochemical localization of CD44 in HE (F) and AE (G). CD44 expression was evident in HE,
while almost not expressed in AE. CE: chorionic epithelium; GE: glandular epithelium; LE: luminal epithelium.
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Figure 6. The immune-related endometrial spontaneous abortion (SAB) competitive endogenous RNA (ceRNA) network.
(A) Results of the lasso regression analysis for 639 DELs. Ten-fold cross-validation was used to calculate the best lambda
value that results in the minimum mean cross-validation error. The red dot represents partial likelihood deviation, while
the vertical solid line represents its corresponding 95% confidence interval. (B) The coefficient values at varying levels of
penalty. Each curve represents an lncRNA. (C) The immune-related ceRNA network. The yellow quadrilateral represents
lncRNA, the red triangle represents miRNA, while the blue circle represents genes. The degree of connection of the nodes is
indicated by the size of the shape and the thickness of the edge. (D) Venn diagram of endometrial SAB genes (ESABGs) and
DEGs. (E) Venn diagram of ESABGs and immune-related differentially expressed genes (IRDEGs). (F) The bar chart shows
that EASG has a larger proportion in the IRDEG. (G) The immune-related endometrial SAB ceRNA network. The yellow
quadrilateral represents lncRNA, the red triangle represents miRNA, while the blue circle represents genes. The degree of
connection of the nodes is indicated by the size of the shape and the thickness of the edge. (H) Relative expression of the
DELs and several DEGs in the ceRNA network.
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2.6. Evaluation of the Applicability of SAB ceRNA Network among Animals Species

Due to the low conservation of the lncRNAs, using lncRNAs identified in different
species are generally not extrapolated for other species. To assess whether our constructed
ceRNA mechanism for SAB of the embryos could be applied to different species, we
analyzed the sequence conservation properties of the lncRNA TCONS_00161675, with the
most connectivity in the ceRNA network using NONCODE BLAST. Surprisingly, we found
a 716 bp region matching with NONHSAT211839.1 (human lncRNA), and 650 bp with
NONMMUT056947.2 (mouse lncRNA) (Supplementary Table S10). This demonstrated
that the TCONS_00161675 has an extremely high species conservation properties and
may play important roles in evolution. To further understand of the localization of the
TCONS_00161675 conserved region on the genome, the UCSC genome browser was used
to map the location with surrounding genes (Figure 7A). Interestingly, we found that the
identified lncRNA is an antisense lncRNA of the transcription factor, HOXA3. Compared
with the known Homo HOXA-AS2, we associated it with HOXA-AS2 in pigs. In addition,
the expression of HOXA-AS2 and HOXA3 were found to be simultaneously upregulated
compared with those in the HE (Figure 7C), and thus might be playing a common function.
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Figure 7. Assessment of lncRNA and miRNA conservation. (A) Schematic diagram of the 45,451,130–45,469,626 bp genome
annotation of pig chromosome 18, depicted with the gene loci of HOXA3 and the identified lncRNA TCONS_00167675,
which is highlighted by the red boxes. (B) Alignment of ssc-miR-9824-5p with miRNAs of different species in the seed
region. (C) Relative expression levels of TCONS_00161675 and HOXA3.
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Previous studies have shown that miRNAs function mainly through the seed se-
quences at nucleotide positions 2 through 7. Besides the seed sequences indicating that
the miRNAs target genes could be the same (Figure 7B) [20], overall, the SAB ceRNA
network with a highly conservative element composition could be applied in different
animal species.

3. Discussion

Porcine animals are a unique SAB model, where up to 45% of embryos are sponta-
neously lost as embryos develop, which allows detailed study of the specific molecular
regulation mechanisms [21]. The high-throughput RNA-seq of the HE or AE presents an
opportunity to improve our understanding of the molecular regulation of SAB. In this
study, we identified some lncRNAs and mRNAs involved in SAB and demonstrated that
SAB is related to the immunobiological processes, which is significantly weakened in the
arresting state. Subsequently, we constructed an immunological ceRNA network related to
SAB, and showed that it might be applicable to different animal species.

The implantation in pigs begins on days 15–16 of pregnancy and ends on days 27–28
of pregnancy. Previous studies have shown that around 20–30% of porcine embryos are
lost between days 12 and 30 of pregnancy [1]. In addition to the embryo loss caused by the
rapid conceptus elongation during the peri-implantation stage [22], another peak of embryo
loss is from the postattachment to the end of implantation, that is, days 15–28 of pregnancy,
which is accompanied by the maternal angiogenesis and endometrial lymphocytes recruit-
ment [6,7,18,23]. Tayade et al. analyzed the endometrium, endometrial lymphocytes, and
trophoblasts from days 15–23 of pregnancy to prove that blocked maternal angiogenesis
and the abnormal expression of proinflammatory factors leads to spontaneous fetal loss [24].
However, data on the specific regulatory mechanism of the spontaneous abortion at the end
stage of the implantation remain scant. Therefore, we comprehensively considered these
factors and finally selected day 28 of pregnancy at the end of implantation for this study.

Previous studies associated the loss of embryo with recruitment of lymphocytes and
angiogenesis in the porcine maternal–fetal interface during the early stage of implantation.
Whereas there was increased transcription of angiogenic genes in healthy implantation
sites, the arresting fetal sites showed rapid elevation in the expression of proinflammatory
cytokines, Fas and Fas ligands [24]. Although our results showed that SAB of embryos
on day 28 of pregnancy was related to immunological processes, the immunobiological
activities were higher in HE compared to the AE, while the expression of angiogenetic
genes was downregulated. The higher immune response activities in HE might be due to
the differences in the epitheliochorial placenta between the porcine and humans or rodents.
The porcine placenta forms through the attachment of chorion to the maternal epithelium
and six tissue layers separate maternal and fetal blood supplies [25]. To avoid maternal
rejection of the semiallogeneic embryo, it is necessary to regulate the immune response
activities for normal embryo development [6,26]. The high expression of angiogenetic genes
in AE could be due to the completion of embryo implantation on day 28 of pregnancy [17],
and the development of vascular system of the healthy endometrium to a level that could
maintain further embryo development.

In addition, growing evidence indicated that many lncRNAs play a vital role in the
regulation of cellular growth and disease development [27,28]. As an important molecular
regulatory mechanism for lncRNAs in exerting biological functions, ceRNA has attracted
immense research interest in the recent years [29]. Recent studies have shown that aberrant
expression of lncRNAs can lead to SAB [30]. Similarly, in this study, we have identified
8 SAB-related lncRNAs. Further, to clarify the biological implications of the expression
of these lncRNAs in SAB, we constructed an immunological ceRNA network, which in-
cluded 4 novel lncRNAs (TCONS_00051274, TCONS_00108310, TCONS_00161675, and
TCONS_00177102), 11 miRNAs, and 13 genes. However, the expression of the lncRNAs
was generally tissue and time-specific, and showed a low level of expression and sequence
conservation [31,32]. Thus, the previously constructed ceRNA was not applicable to other
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species. To our surprise, the lncRNAs in the SAB ceRNA network we constructed were
highly conserved among different animal species, and the miRNAs were evolutionarily
conserved [33]. Our constructed ceRNA network was, therefore, more likely to be applica-
ble to the other species. This provides a valuable animal model for studying SAB in other
species, such as humans.

Interestingly, our analysis found that the highly conserved lncRNA TCONS_00161675
overlaps with the transcription factor HOXA3 in the genomic location. Compared with the
known Homo HOXA-AS2, we associated the conserved gene with HOXA-AS2 in pigs. Pre-
vious studies have shown that HOXA3 plays an important role in embryonic development,
including control of distinct genetic programs for differentiation and morphogenesis in
different cell types [34,35]. In addition, HOXA-AS2 can regulate the expression of HOXA3
to perform specific biological functions in human [36,37]. Therefore, HOXA-AS2 may also
regulate the expression of HOXA3 in pigs in the execution of critical biological processes.

4. Materials and Methods
4.1. Ethics Statement and Sample Collection

This study was approved by the Ethics Committees of the Laboratory Animal Center
of South China Agricultural University (permit number: SYXK-2019-0136).

Tibetan gilts with an average litter size of 7–8, which have been artificially fed and
bred for multiple generations on farms in Guangdong, China, were slaughtered at a local
slaughterhouse on day 28 of pregnancy and the uteri were quickly removed and transported
to the laboratory in an icebox. The uteri samples were then opened longitudinally along
the anti-mesometrial side and the healthy and arresting embryos were analyzed. The
embryos were obtained from 4 different pigs and the analysis was based on embryo
length, weight, and vascularity of the placental membranes (Figure 1). Subsequently, the
embryos were exposed for visual classification of the healthy and arresting CAS. The ratio
between healthy and arresting embryos was around 3:1–4:1. After removing the embryos,
the healthy endometrium (HE) and arresting endometrium (AE) samples were collected,
immediately immersed in liquid nitrogen, and then transferred to a −80 ◦C freezer for
subsequent RNA extraction.

4.2. RNA Isolation, Library Construction, and Sequencing

Total RNA of endometrium tissues was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s instructions. The RNA purity and con-
centration were assessed using NanoPhotometer® spectrophotometer (IMPLEN, Westlake
Village, CA, USA). Furthermore, RNA integrity and quantity were measured using the
RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa
Clara, CA, USA), and the RIN (RNA integrity number) values were above 7.60.

The library was prepared by an rRNA depletion method [38], and constructed and
sequenced by Novogene Co. Ltd. (Beijing, China). Specifically, the ribosomal RNA was
depleted from total RNA using the Epicentre Ribozero™ rRNA Removal Kit (Epicenter,
Madison, WI, USA) following the manufacturer’s protocol. Subsequently, the RNA was
fragmented into 250–300 bp, and the fragmented RNA and dNTPs (dATP, dTTP, dCTP, and
dGTP) were used for reverse transcription of the first-strand cDNA. RNA was degraded
using RNase H, and second-strand cDNA was synthesized using DNA polymerase I and
dNTPs. Then, through the exonuclease/polymerase activities, the remaining overhangs
of double-stranded cDNA were converted to blunt ends. After the 3′ ends of the DNA
fragments were adenylated, sequencing adaptors were ligated to the cDNA. The library
was purified by using the AMPure XP system to select cDNA fragments preferably 350–
400 bp. Uridine digestion was performed using Uracil-N-Glycosylase, which was followed
by the cDNA amplification using PCR.

After the library was constructed, the concentration of the library was adjusted to
1 ng/ul. Agilent 2100 Bioanalyzer was deployed to detect the insert size of the acquired li-
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brary. Last, qPCR was used again to check the exact concentration of the cDNA library. The
library preparation was completed, and the libraries were sequenced on Illumina PE150.

4.3. Quality Control and Transcriptome Assembly

Raw reads were trimmed by removing adapter sequences, reads with more than
10% ploy-N, reads with ploy-A/T/G/C, and reads with more than 50% nucleotides with
Qphred ≤ 20. Besides, Q20, Q30, and GC contents of the clean reads were calculated. All
downstream analyses were based on the high-quality clean reads. Clean reads for each
sample were mapped to the reference genome (Sscrofa11.1, http://asia.ensembl.org/Sus_
scrofa/Info/Index, accessed on 3 October 2020) with the software HISAT2 (v.2.0.5) and the
reads alignment results were transferred to StringTie (v.1.3.3) for transcript assembly [39,40].

4.4. LncRNA Identification and Characterization

All transcripts were merged using Cuffmerge (v.2.2.1) software, and then, based on
the characteristics of lncRNAs, lncRNAs were identified from the assembled transcripts.
First of all, the transcripts with FPKM < 0.1, length < 200 bp, and exon numbers < 2 were
removed. Cuffcompare (v.2.2.1) was used to compare transcripts with the reference to
remove the annotated transcripts. Whereafter, we analyzed the coding potential of the
transcripts by three software (CNCI (v.2) [41], Pfam (v.1.3) [42], and CPC2 (v.3.2.0) [43])
and eventually identified novel lncRNAs. The repeat sequences were extracted using the
default parameters in Repeatmasker (v.2.10.0+) [44].

4.5. Differential Expression Analysis and Function Enrichment Analysis

Fragments per kilobase for a million reads (FPKM) of lncRNAs and mRNAs was
calculated by StringTie (v1.3.3). Then, a paired t-test was used to analyze the differential
expression of lncRNAs and genes, and the p-value was corrected by the FDR method [45].
FDR < 0.05 and |FoldChange| > 2 was set as the threshold of significant differential expres-
sion between AE and HE. Based on the gene expression data, principal component analysis
(PCA) was performed to analyze the similarity of the samples. In addition, we calculated
the Pearson coefficient to identify the differences within the paired sample groups.

The genes within 100 kb upstream and downstream of lncRNAs were used as the
nearest target genes of lncRNAs [46]. GO enrichment analysis of target genes of dif-
ferentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs) were
performed using the clusterProfiler R package (v.3.10.1) [47] and KEGG pathway analyses
were performed by the software KOBAS (v.3.0, http://kobas.cbi.pku.edu.cn/kobas3, ac-
cessed on 15 October 2020). Moreover, the protein–protein interaction (PPI) network was
analyzed using STRING database (https://string-db.org, accessed on 23 October 2020),
and Cytoscape (v.3.7.2, https://cytoscape.org, accessed on 23 October 2020) was used for
further visualization.

4.6. Quantitativereal-Time RT-PCR

The total RNA isolated from the endometrium tissue was subjected to quantitative
real-time PCR (RT-PCR). Briefly, we synthesized cDNA using a PrimeScript™ RT reagent
Kit with gDNA Eraser (TaKaRa, Dalian, China). We then performed quantitative RT-PCR
PowerUp™ SYBR™ Green Master Mix (ThermoFisher, Shanghai, China) on the Step One
Plus Real-Time PCR System (Life Technologies, Frederick, MD, USA). We adopted the
following qRT-PCR protocol: 95 ◦C for 10 min, 50 cycles of 95 ◦C for 15 s, 60 ◦C for
15 s, and 72 ◦C for 20 s. Primers were designed using NCBI Primer-BLAST and Oligo
7 (http://www.oligo.net, accessed on 11 December 2020), and all reactions were run in
triplicate (Supplementary Table S1). The relative expression of lncRNAs and genes were
calculated with the 2−∆∆Ct method and normalized using SLC39A7 and ZNF783.

http://asia.ensembl.org/Sus_scrofa/Info/Index
http://asia.ensembl.org/Sus_scrofa/Info/Index
http://kobas.cbi.pku.edu.cn/kobas3
https://string-db.org
https://cytoscape.org
http://www.oligo.net
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4.7. Immunological Function Verification of DEGs

Functional gene sets of immunobiological process were obtained from the molecular
signature database (MSigDB, v.7.2, https://www.gsea-msigdb.org/gsea/msigdb, accessed
on 6 January 2021). Subsequently, gene set variation analysis (GSVA) and gene set enrich-
ment analysis (GSEA) were conducted to explore the enrichment of DEGs in the functional
gene sets of immunobiological processes. The immune genes (IGs) were acquired from
the Immport database (https://www.immport.org/home, accessed on 7 January 2021)
and the endometrium spontaneous abortion genes (ESABGs) were downloaded from the
GeneCard database (https://www.genecards.org, accessed on 7 January 2021).

4.8. Immunohistochemistry

To evaluate the activities of immunobiological processes in HE and AE, we selected
CD44, an antibody involved in a broad range of leukocyte activities which reacts with all
leukocyte classes [48], to perform immunohistochemical analysis as in prior reports [49].
Briefly, 4 µm-thick uteri sections were deparaffinized and blocked with 5% BSA and then
incubated with anti-CD44 mouse monoclonal antibodies (GB14037, Servicebio, Wuhan,
China) at 4 ◦C overnight. Purified nonrelevant immunoglobulin G (IgG), at the same
concentration as the corresponding primary IgG, was used as the negative control. After
incubating with the secondary antibody, the sections were counterstained with hematoxylin
(Fisher Scientific, Shanghai, China). The images were taken by Nikon microscope 80i with
a digital camera DS-Fi1 (Nikon, Tokyo, Japan).

4.9. Construction of Competing Endogenous RNA (ceRNA) Network

To identify the potential lncRNAs associated with SAB, we performed a lasso re-
gression analysis on DELs. The sequence information of miRNAs was downloaded from
the miRBase database (v.22.1, http://www.mirbase.org, accessed on 5 February 2021).
Based on the ceRNA hypothesis, we predicted the interaction between lncRNAs and
miRNAs, and miRNAs and mRNAs by three computational target prediction algorithms
(miRanda (v.3.3) [50], Targetscan (v.7.0) [51], and RNAhybrid (v.2.1.2) [52]). The correla-
tion between lncRNAs and mRNAs was analyzed by calculating the Pearson correlation
coefficient, and the p-value was corrected by the FDR method. Then, we selected the
lncRNA-mRNA relationship pair with a correlation coefficient > 0.8 and FDR < 0.05 to
construct the ceRNA network.

4.10. Sequence Conservation Analysis of lncRNA and miRNA

The sequence of lncRNA was submitted to the NONCODE database (http://www.
noncode.org, accessed on 15 February 2021) for blast comparison analysis to understand the
conservation of lncRNA among different animal species, and visualized through the UCSC
genome browser (http://genome.ucsc.edu, accessed on 15 February 2021). In addition, the
conservation of miRNA was comprehended by analyzing the consistency of the miRNA
seed region sequence.

4.11. Statistical Analysis

The data are presented as the mean± the standard error of the mean (SEM). The group
data was compared using the Student’s t-test (GraphPad Prism version 8.0, San Diego, CA,
USA). A p-value of less than 0.05 was considered to be statistically significant.

5. Conclusions

In conclusion, we profiled the whole transcriptome expression of HE and AE in
porcine on day 28 of pregnancy and obtained some lncRNAs and mRNAs involved in SAB.
Our data demonstrated a correlation between SAB at the completion stage of implantation
and the immunobiological process, but showed different molecular mechanisms from the
beginning stage of the implantation. Finally, an immunological ceRNA network related
to SAB was constructed and HOXA-AS2 in pigs was identified. Further studies are,

https://www.gsea-msigdb.org/gsea/msigdb
https://www.immport.org/home
https://www.genecards.org
http://www.mirbase.org
http://www.noncode.org
http://www.noncode.org
http://genome.ucsc.edu
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however, required to verify the constructed ceRNA network and its applicability among
different species, as well as the specific molecular mechanisms of action of the identified
HOXA-AS2 in pigs. These novel findings will provide new targets for increasing the litter
size of sows, making pig breeding better and thus improving the efficiency of animal
husbandry production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22126644/s1, Supplementary Figure S1: GSEA enrichment analysis of DEGs, Supplemen-
tary Table S1: Primer sequence for the lncRNAs and genes for Real-time RT-PCR, Supplementary
Table S2: Summary of high-throughput sequencing in HE and AE, Supplementary Table S3: The
values of Pearson’s correlation coefficient, Supplementary Table S4: FPKM of DELs and DEGs in HE
and AE, Supplementary Table S5: GO enrichment and KEGG pathway analysis of nearest target genes
of DELs or DEGs, Supplementary Table S6: Validation of RNA-seq results by using qRT-PCR, Sup-
plementary Table S7: Immunobiological process gene sets, Supplementary Table S8: Immune genes
from the Immport database/endometrium spontaneous abortion genes from the GeneCard database,
Supplementary Table S9: Pearson correlation coefficient of lncRNAs and genes, Supplementary Table
S10: Conserved sequences of the lncRNA in different species.
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