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Abstract: (1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated
protein kinase involved in regulating physiological processes in the central nervous system. However,
the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported.
The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze
their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CrePR2 (Cre*/ ~),
Mikafloxiflox | pxk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old
mice induced the gene deletion (Actin-Cre®R12 (Cre*/~), Mkk4®™, Mkk7%% genotype), which was
verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of
MKK4/MKK?7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS,
unlike what happens in the liver and heart. These data could be correlated with the high levels
of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment
position of immature hippocampal neurons together with alterations in their dendritic architecture
pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion:
All these data supported that the MKK4/MKK7-JNK pathway has a role in adult neurogenic activity.

Keywords: Cre-LoxP; MKK4; MKK7; pJNK; DCX; hippocampus

1. Introduction

The c-Jun NH2-terminal kinases (JNKs) are members of the Mitogen-Activated Protein
Kinases (MAPKSs) super-family. JNK activity regulates several cellular functions, such
as cell growth, differentiation, survival, and apoptosis through their impact on gene
expression, cytoskeletal protein dynamics, and cell death/survival pathways. In fact, the
best-described mechanism linked to the JNK pathway signaling is its pro-apoptotic action
following sustained or intense exposure to cellular stress (including oxidative, genotoxic,
and osmotic stress) or pro-inflammatory cytokines such as tumor necrosis factor (TNF)-«
and interleukin (IL)-13. This allows regulating physiological and pathological processes
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in autoimmune diseases, diabetes, cancer, cardiac hypertrophy, and neurodegenerative
diseases [1-5].

Two MAP Kinase Kinases (MAPKKs)-MKK4 and MKK7-activate JNK proteins through
dual phosphorylation at threonine and tyrosine residues (TPY-motif). In turn, MKK4 and
MKK? are activated by multiple MAP Kinase Kinase Kinase (MAPKKK) and MAPKKKKs,
including the Mixed-Lineage Kinase (MLK), Transforming Growth Factor 3-Activated Ki-
nase (TAK), Apoptosis Signal-regulating Kinase (ASK), MAPK/RK Kinase Kinase (MEKKs),
Dual Leucine Zipper Kinase (DLK), and their different isoforms in response to different
stimuli. The scaffold JNK-Interacting Proteins (JIP) facilitate this sequential phospho-
rylation cascade. Their inactivation is regulated by Mitogen-Activated Protein Kinase
Phosphatase (MKP)-1 and-7 [6].

MKK4 and MKK? are crucial in the central and peripheral nervous systems’ (CNS and
PNS) developmental processes, such as commissural fibers development, cell migration,
and correct positioning of neuronal cells [7,8]. Indeed, it has been evidenced that MKK4 has
dynamic changes during embryogenesis and postnatal development not only in the brain
but also in other organs, such as liver and thymus [9]. In this way, Mkk4 knock-out (KO)
mice display altered hepathogenesis and die early in embryonic development, specifically
between days 10.5 and 12.5, as also occurs to the c-jun~/~ mice. Moreover, Mkk4 has been
identified as a tumor-suppressor gene [9]. In turn, Mkk4 gene deletion has revealed a
compensatory effect of Mkk7 [3,10,11]. MKK4 and MKK? proteins are differentially located
in neurons: while MKK4 is present in the cell body and their processes (dendrites and
axons), MKK? is mainly detected in the nucleus. Therefore, whereas both MKK4 and
MKK? can stimulate JNK in the nuclear fraction, MKK4 activity is likely to take part in
maintaining the high basal activity on neurites. Consequently, MKK4 seems to be the kinase
that mediates JNK dendritic outgrowth and establishes neural circuits in the brain [7].

Studies using KO mice with a single genetic mutation or mutation combinations of
JNK1, JNK2, and JNK3 isoforms reported valuable data about their function [12]. Accord-
ingly, jnk3-null mice show a reduction of c-JUN phosphorylation in ischemia-hypoxia [13]
and in excitotoxicity [14], while Juk1~/~ mice display progressive degeneration of long
nerve fibers together with alterations in microtubule stability, evidencing a role of JNK1 in
axonal growth and dendritic architecture maintenance [15,16].

In addition, the use of Juk1=/~, Juk2~/~, and Jnk3~/~ mice supported the fact that
the JNK signaling pathway controls adult neurogenesis [17,18]. However, the specific
mechanisms by which the molecular effectors of the JNK pathway are involved in all these
processes remain obscure. Moreover, KO conventional murine models have significant
limitations since the deletion key members of the pathway such as Mkk4 or Mkk7 and the
double deletion Jnk1/[nk2 affect embryonic development and induce lethality [7,8,19,20].
In this sense, the conditional KO mice for Mkk4 and Mkk7 created with the Cre-LoxP
system and Nestin promoter surpass the embryonic lethality, but the animals die soon after
birth [7,8].

To overcome these limitations, the present study aimed to assess the role of MKK4 and
MKK? in immature hippocampal neurons and dendritic architecture maintenance, using
a new conditional-induced KO mice, the hemizygous Actin-Cre®R12 (Cre*/~), Mkk4/1ox/flox,
Mkk70*/flox_ These mice allow a controlled deletion of Mkk4 and Mkk7 genes in postnatal
stages or adults.

The results obtained in the present work demonstrate that the Mkk4*/>Mkk7%/» geno-
type mice can be induced in adulthood, showing a decrease in MKK4 and MKKY proteins
in different areas of the CNS (hippocampus, cortex, and cerebellum) as well as in heart
and liver. This protein depletion was correlated with a reduction of JNK phosphorylation.
Moreover, the analyses of immature neurons in the subgranular zone (5GZ) of the hip-
pocampus in these KO Mkk4®/2Mkk7"/® mice evidenced modifications in their distribution
and dendritic pattern when compared with wild-type (WT) mice. Finally, alterations in the
dendritic distribution pattern of cortical neurons were also detected.
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2. Results
2.1. Characterization of Mkk4 and Mkk7 Gene Deletion and Protein Elimination in the
Hippocampus of Actin-CreERT2 (Cre*/~), Mkk4 /2, Mkk7%/® Adult Mice

The relative quantification of MKK4 and MKK? proteins was evaluated in the CNS,
heart, and liver in two-month-old WT mice by immunoblot assays. The results showed
that the amounts of MKK4 and MKKY? were higher in the CNS than in heart and liver
(Figure 1A—C). In addition, the lower protein abundance of MKK7 was found in the heart
and liver (Figure 1A,C).
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Figure 1. Levels of MKK4 and MKK? proteins in different CNS areas, heart, and liver in mice adulthood. (A) The
immunoblot shows MKK4 and MKK?7 protein levels in different tissues of WT adult mice. (B) The bar graph represents the
MKK4 protein levels in the CNS (cortex, cerebellum, and hippocampus), heart, and liver. (C) The bar graph represents the
MKKY? protein levels in the CNS (cortex, cerebellum, and hippocampus), heart, and liver. Abbreviations. MKK4, Mitogen
Kinase Kinase 4; MKK7, Mitogen Kinase Kinase 7; GAPDH, glyceraldehyde-3-phosphate-dehydrogenase; CTX, cortex; CB,
cerebellum; HP, hippocampus. One-way ANOVA and post hoc Fisher’s Least Significant Difference (LSD) (1 = 3) were used
in the statistical analysis. * p < 0.05 vs. CTX, *** p < 0.001 vs. CTX, $ p < 0.05 vs. HP, $$ p < 0.001 vs. HP, $$$ p < 0.001 vs. HP,
#p <0.05vs. CB, ## p <0.01 vs. CB.

Since Mkk4 and Mkk7 genetic disabling results in a lethal embryonic phenotype [7,19,21],
we generated a conditional KO hemizygous Actin-Cre®RT? (Cre*/~), Mkkdflox/fiox \fi7lox/flox
mice by crossing different mice colonies. Double KO Actin-CrefR™2 (Cre*/ ), Mkk4®/,
Mkk7%® mice were induced after tamoxifen administration at 2 months old. The most
effective tamoxifen treatment to obtain the double deletion was a dose of 10 mg.

A deletion of Mkk4 (Figure 2A) and Mkk7 (Figure 2B) was detected by PCR tail DNA
genotyping. This deletion was detected in Actin-Cre®RT2 (Cre*/~), Mkk4®™, Mkk7%™ mice
after 3 (data not shown), 7, and 14 days of tamoxifen treatment (Figure 2A,B). On the
contrary, the deletion was not observed in Actin-CreFRT2 (Cre=/ =), Mkk4/ox/flox \f 7flox/flox
mice treated with tamoxifen and vehicle (Figure 2A,B). However, in Actin-CreFRT2 (Cre*/ )
Mkk4floxtflox \ik7f10x/flox mice treated with vehicle, a band of 300 bp was observed, indicating
low expression (Figure 2B). This was to be expected, as there is evidence that some inducible
Cre mice lines may undergo spontaneous recombination [22]. However, Actin-CreERT2
(Cre*/ ), Mkk4/1ox/flox Mk 7A10x/foX showed reduced spontaneous recombination activity and
does not alter MKK4 and MKK? protein expression. In addition, Actin-Cre®R™? (Cre=/~),
Mkk4flox/fox Mk 7o¥/flox and WT mice were used as a negative control for the subsequent
experiment.

The hippocampus was used to elucidate the time necessary to diminish MKK4 and
MKKY protein levels. As shown by immunoblot, this decline was evident after 7 days
of tamoxifen administration, and it was more noticed after 14 days (Figure 2C). This
result was supported by the immunohistochemistries against MKK4 and MKKY in the
hippocampus of Actin-Cre®RT2 (Cre*/~), Mkk4™®, Mkk7%® mice after 14 days of tamoxifen
administration. Immunohistochemistries showed that MKK4 and MKK? decline their
expression in Actin-CreERT2 (Cre*/ ), Mkk4®2, Mkk75/A (Figure 2D).
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It is important to note that not complete removal of the proteins was achieved from
both MKK4 and MKK?7 in the hippocampus; for this reason, this experimental model
resembles a knock-down. However, the animals presented phenotypic alterations after
16 days of tamoxifen administration, such as signs of distress, weight loss, and reduced
activity. Since mortality was high after 20 days of tamoxifen administration, all experiments
were carried out 14 days after tamoxifen administration. At this time, we achieved the
maximum levels of MKK4 and MKK? protein reduction without any phenotype alteration.
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Figure 2. Gene deletion of Mkk4 and Mkk7 in inducible double KO adult mice, Actin-CreERT2 (Cre*/—), Mkk4/lox/flox Mkk7fi0x/ﬂox .
(A,B) Representative agarose gel electrophoresis of PCR for genotyping Mkk4 and Mkk7 gene deletion. A deletion of Mkk4
and Mkk7 genes is estimated in CRE (+) + T mice after 7 and 14 days of tamoxifen treatment. This deletion is not observed
in CRE (+) + V,CRE (=) + T, or CRE (—) + V groups. (C) Immunoblot assay shows the progressive elimination of MKK4
and MKK?7 proteins in the hippocampus at 7 and 14 days after tamoxifen treatment in CRE (+) + T mice. After 3 days, the
protein levels have the same levels than in WT and CRE (—) + T mice. (D) Immunohistochemistries against MKK4 and
MKKY in adult hippocampus after 14 days of tamoxifen administration. Representative images of MKK4 in the whole
hippocampus (a—c) and of MKK? (d—f) for MKK?7. Detail of the hilus in images of MKK4 (a’,b’,c) and from MKK?7 (d"-f"),
respectively. Abbreviations. WT: wild-type, CRE (+) + T: Actin-CreERT2 (Cre+/ ), MKkk4d/D | Mik75/8 plus tamoxifen; CRE
(+) + V: Actin-CreERT2 (Cre*/—), Mkk4fo¥/flox | Mik7flox/flox plus vehicle, CRE (—) + T: Actin-Cre®R12 (Cre~/~) Mkk4flox/flox,
Mk 7flox/flox plus tamoxifen; CRE (—) + V: Actin-CreERT2 (Cre™ / ) Mikkdfloxlflox | ppik7floxiflox. 7. vehicle, T: tamoxifen, bp: base
pair.

The elimination of MKK4 and MKK?7 proteins was screened in the liver, heart, and CNS
of Actin-CreERT2 (Cre*/ —), Mkk42/2, Mkk72/2 mice and their control mice groups (Table 1).
The analyses were done through Western blot, using antibodies against MKK4 (Figure 3)
and MKKY7 (Figure 4). We evaluated protein levels in WT and the other experimental
groups at 14 days after vehicle or tamoxifen administration. A reduction in MKK4 and
MKK? levels was only detected in Actin-CreFRT2 (Cre*/ ~), Mkk4®/2, Mkk72/4 mice (CRE
(+) + T group). There was a higher reduction or apparent absence of these proteins in
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the heart and liver. The decreases in MKK4 levels achieved were ~80% in cortex, ~60%
in hippocampus, ~52.4% in cerebellum, ~83.2% in liver, and ~98% in heart (Figure 3).
Meanwhile, the expression levels of MKK? dropped ~66% in the hippocampus, ~56%
in cortex, and ~60% in cerebellum of Actin-CreERT2 (Cre+/ ), MKk42/8 Mkk72/2 mice
(Figure 4). MKKY? disappeared in heart and liver after 14 days of tamoxifen administration
(data not shown).
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Figure 3. MKK4 protein levels in different tissues of WT, Actin-CreERT2 (Cre— / ) Mkkafloxiflox | Mg 7flox/flox and Actin-CreERT2
(Cre*/—), Mkk4®/2, Mkk7%/2 mice. (A-E) The figure depicts representative Western blots and their respective graphs of the
relative quantification of MKK4 in different tissues: cortex (A), cerebellum (B), hippocampus (C), heart (D), and liver (E),
after 14 days of treatment. A reduction of MKK4 levels is detected in CRE (+) + T group. No effects in protein levels are
observed in CRE (—) + V, CRE (=) + T, and CRE (—) + V groups. One-way ANOVA and post hoc Fisher’s Least Significant
Difference (LSD) (1 = 3) were used in the statistical analysis. * p <0.05 vs. CRE (+) + V, **p <0.01 vs. CRE (+) + V,** p <0.001
vs. CRE (+) + V. Abbreviations. WT: wild type, CRE (+) + T: Actin-CreERT2 (Cre+/ ), Mkk4D/! A Mkk7 A/A plus tamoxifen;
CRE (+) + V: Actin-Cre®RT2 (Cre*/—), Mkk4/10¥/flox | Mkk7/ox/flox plus vehicle, CRE (—) + T: Actin-CrePRT2 (Cre=/~), Mikk4/lox/flox,
Mk 7flox/flox plus tamoxifen; CRE (—) + V: Actin-CreFRT2 (Cre~ / ), Mik4floxiflox | pge7flox/flox; . vehicle, T: tamoxifen, bp: base

pair.
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Figure 4. MKKY protein levels in different tissues of WT, Actin—CreERTz(Cre*/ ), Mkkafloxlflox - pgg7flox/flox and Actin-
CreBRT2(Cret/ —), Mkk4®/ 5 Mkk78/2 mice. (A-C). Representative image of Western blots of MKK7 and their respective
relative quantification in WT, CRE(+) + T, CRE(+) + V, CRE(-) + T, and CRE(-) + V groups after 14 days of treatment. The
analyses were performed in different tissues: cortex (A), cerebellum (B), and hippocampus (C). One-way ANOVA and post
hoc Fisher’s Least Significant Difference (LSD) (1 = 3) were used in the statistical analysis. * p < 0.05 vs. CRE(+) + V,** p < 0.01
vs. CRE(+) + V. Abbreviations. WT: wild type, CRE (+) + T: Actin-CreFRT2(Cret/ =), Mkkd®™, Mik75/5 plus tamoxifen; CRE(+)
+ V: Actin-CrePRT2(Cret/ —), Mkk4/10¥/ox | Mk 70¥/flox plus vehicle, CRE(—) + T: Actin-CrePRT2(Cre=/ =), Mkkaflox/flox, Mk 7flox/flox
plus tamoxifen; CRE(-) + V: Actin-CreERU(Cre*/ ), Mikk4flox/flox \ik7flox/flox. v Vehicle, T: tamoxifen, bp: base pair.

2.2. Genetic Ablation of Mkk4 and Mkk7 Reduces Phosphorylation of [INK in the Hippocampus

The phosphorylation of JNK (pJNK) in the hippocampus was evaluated in WT,
Actin-CreFRT2(Cre~/ ), Mkk4flox/flox Nik7flox/flox and Actin-CreERT2(Cret/—), Mkk42/4,
MKkk72/2 mice in a time course of 3,7, and 14 days after tamoxifen administration. Basal lev-
els of JNK phosphorylation from Actin-CrePRT?(Cre~/~), Mkk4flox/flox nkk7flox/flox mice
were higher than those of WT mice (Figure 5A). A significant reduction of JNK phosphory-
lation after 7 and 14 days of tamoxifen was observed in Actin-CreFRT2(Cre*/~), Mkk44/2,
Mkk72/2 mice when compared with WT and Actin-CreERT2(Cre—/—), Mkk4flox/flox
Mkk7flox/flox mjce (Figure 5A,B).
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Figure 5. ]NK phosphorylation levels in the hippocampus of the different experimental groups. (A). Inmunoblot represents
a time course of pJNK and JNK levels. Deletion of Mkk4 and Mkk7 reduces the basal activity of JNK. Immunoblots show a
significant reduction of JNK phosphorylation after 14 days post-administration of tamoxifen in inducible KO mice (Actin-
CrePRT2 (Cre*/ =), Mkk4™2, Mkk7®®). (B). Graph bars represent the protein levels of pJNK in the different experimental
groups. One-way ANOVA and post hoc Fisher’s Least Significant Difference (LSD) (n = 3) were used in the statistical
analysis. * p < 0.05 vs. CRE(-) group, *** p < 0.001 vs. CRE(—) group, #p < 0.05 vs. WT. Abbreviations. WT: wild type, CRE(+)
+ T Actin-CreERTZ(Cre+/ ), MkkaD/A Midc75/A plus tamoxifen; CRE(-): Actin-CreERTZ(Cre*/ ), Mik4floxiflox | pig7flox/flox . T

tamoxifen.
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2.3. Immature Hippocampal Neurons in Actin-CrefRT?(Cre*/~), Mkk4™2, Mkk7™/® Mice Were
Misaligned and Showed Alterations in the Dendritic Pattern

The immature neurons located in the SGZ of the hippocampus were analyzed in Actin-
CreFRT2(Cret/ ), Mkk4™2, Mkk7%/® mice and compared with the ones in WT and Actin-
CrePR12(Cre=/ =), Mkkdf10x/flox | Mkk7/ox/flox mice. The analysis was performed by immunoflu-
orescence against two well-known cell markers of immature neurons: Doublecortin (DCX)
and Calretinin (CR), 14 days after tamoxifen administration.

The quantification of immature neurons (DCX* cells) revealed a slight decrease in
those cells in Actin-CreERT2(Cre=/ ), Mkk4/loxflox | Mk 7fl0x/flox  and Actin-CreERT2(Cret/ ),
Mkk4>/ A Mkk7 DA mice compared to WT (Figure 6A,B). No differences were found in their
number between Actin-CreERT2(Cre—/—), Mkk4lox/flox | Nkk7o¥/flox and Actin-CreERT2(Cret/ ),
MKk4A , Mikk7%2 mice (Figure 6B). However, DCX* cells were mislocalized over the SGZ
and Granular Cell Layer (GCL) in Actin-CrePRT2(Cre*/ =), Mkk4™®, Mkk7%® mice versus
the other genotypes (Figure 6A). To evaluate this differential position between genotypes,
we segmented manually the SGZ and GCL in three linear bins over the images obtained
from immunofluorescence against DCX (Figure 6A). We defined them as sub-layer 1 (SGZ
or GCL proximal to the hilus), sub-layer 2 (middle section of GCL), and sub-layer 3 (GCL
proximal to molecular layer). The number of DCX" cells in sub-layer 1 was lower in
Actin-CrePRT2(Cre=/ ), Mkk4flox/flox | pic7flox/flox mice and Actin-CreERT2(Cre*/ ), Mkk4A,
Mkk7%/% mice compared to WT (Figure 6A). DCX* cells in the sub-layers 2 and 3 were higher
in Actin-Cre®R12(Cret/—), Mkk4®2, Mkk7/® mice than WT and Actin-CreFRT2(Cre=/-),
Mkk4flox/fox | M 7fox/flox mijce. Finally, the dendritic morphology of DCX* cells was altered
in Actin-Cre®RT2(Cre*/ ~), Mkk4™®, Mkk7%/® mice, showing a loss in dendritic branches and
a delay in arborization complexity (Figure 6C).

2.4. Reduction of MKK4 and MKK?7 Proteins Alters the Late Differentiation of Immature
Hippocampal Neurons

An immunofluorescence against calretinin (CR), as a marker of early mature neu-
rons, was performed after 14 days of tamoxifen administration. The results revealed
that there was a reduction of the number of CR* neurons in Actin-CreERT2(Cre=/"),
Mkk4flox/flox -\ figc7flox/flox apnd Actin—CreERTz(Cre” ), MKkk42/8 MKk72/2 mice com-
pared with WT mice (Figure 7A). The difference was heightened in Actin-CrePRT2(Cre*/ ™),
MKkk4?/4, Mkk72/2 mice (Figure 7B). In addition, the double immunofluorescence against
DCX and CR showed that the number of DCX*/CR* cells was equal in WT and Actin-
CreFRT2(Cre=/~), Mkkaflox/flox \ik7flox/flox mice (Figure 8A), although the number of
early mature cells (CR*) was lower in Actin-CreERT2(Cre—/ ), Mkk4flox/flox ©\fig7flox/flox
mice (Figure 7A). However, the number of double-labeled cells (DCX* /CR*) was decreased
in Actin-CrePR2(Cre*/~), Mkk4%/#, Mkk7%/4 mice compared with the other genotypes
(Figure 8B).
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Figure 6. Distribution of immature neurons along the granular cell layer in WT, Actin-CreERT2(Cre=/ =), Mikk4flox/flox,
Mk 70x/10x | and Actin-CreERY2(Cre*/—), Mkk4®2, Mkk7%2 mice. (A) Immunofluorescence analysis of DCX™ cells in WT
(a,a’), Actin-Cre®RT2(Cre=/—), Mkk4flox/flox pik7fox/flox (b b) and Actin-CreERT2(Cret/ ), Mkk4®™, Mkk7%/2 (c,¢’) adult mice
show that they are mislocalized in GCL. Graph (right panel) represents the neuronal counting over the bins that segment the
GCL (1, toward hilus, 2, middle GCL, 3, toward molecular layer) in a representative section from each group. Arrowheads
show cell nuclei; arrows indicate cellular processes. Scale bar, 100 pm. Abbreviations. GCL, granule cell layer, h, hilus, SGZ,
subgranular zone. (B) Graph represents the number of immature neurons (DCX* cells) in the complete GCL of dentate
gyrus (DG). A reduction is observed in Actin-CrePRT2(Cre=/ =), Mkkaflox/flox Mk 710¥/f0x  and Actin-CreERT2(Cret/ —), Mkk4®/A,
MKkk7%/5 adult mice compared with WT adult mice. (C) Representative morphological reconstruction of DCX* cells that
evidence alterations in the dendritic pattern of Actin-CreFRT2(Cre*/ ~), Mkk4™2, Mkk7%/® adult mice compared with WT
adult mice. Scale bar, 100 um. One-way ANOVA and post hoc Fisher’s Least Significant Difference (LSD) (n = 3) were used
in the statistical analysis $$$ p < 0.001 vs. WT in sub-layer 1, ¥¥¥ p < 0.0001 vs. WT in sub-layer 1, ### p < 0.0001 vs. WT in
sub-layer 2, **** p < 0.0001 vs. CRE (—) in sub-layer 2. &&& p < 0.001 vs. WT.
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Figure 7. Number of early mature neurons in WT, Actin-CreERTz(Cre*/ ), Mik4floxiflox | pqygc7flox/flox
and Actin-CreERT2(Cre*/ =), Mkk4®2, Mkk7%/2 adult mice. (A) Immunofluorescence against CR* cells
(arrowheads) reveals a reduction of these cells in Actin-CreEXY2(Cre—/ ), Mkk4/loxflox | Mk 7flox/flox (1)
and Actin-Cre®RT2(Cre*/~), Mkk4®/®, Mkk7%/A () versus WT adult mice (a). Asterisk shows GCL
lacking CR* cells in Actin-CreERT2(Cret/ =), Mkk4®®, Mkk72 mice (c). (a’—c"): granule cell layer is
visualized through Hoechst stain. Graph represents the counting of CR-positive cells over GCL. Scale
bar, 100 um. Abbreviations. ML, molecular layer, GCL, granule cell layer, h, hilus, SGZ, subgranular
zone (B) Graph represents neuronal counting of immature neurons (CR* cells) in the complete GCL of
DG from Actin-CreFRT2(Cre*/ ), Mkk4®A, Mkk7%/2, Actin-CreERT2(Cre=/—), Mkk4flox/flox | i 7flox/flox
and WT adult mice. Scale bar, 100 um. One-way ANOVA and post hoc Fisher’s Least Significant
Difference (LSD) (n = 3) were used in the statistical analysis. **** p < 0.0001 vs. WT, #### p < 0.0001 vs.
CRE (-).
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Figure 8. Gene deletion of Mkk4 and Mkk7 impairs differentiation process in immature neurons in GCL in Actin-CreFRT2

(Cret/ =), Mkk4™D, Mkk7/2 adult mice. (A). Double immunofluorescence against CR* and DCX* in WT adult mice (a,a’,a*),
Actin-Cre®RT2(Cre=/—), Mkkdflox/flox | Mik7/ox/flox (b b’ b*) and Actin-CreERT2(Cre*/ ), Mkk4®/d, Mkk72/2 (¢,¢’,¢*) adult mice.
Merged channel is presented in (a—c), transformation in gray-inverted signal is represented for CR (a’-¢”) and DCX (a*-c*).
Arrowheads indicate double-positive cells (CR*/DCX*): The same cell is observed in the merged image and in the different
fluorescence channels. Abbreviations. IML, inner molecular layer, GCL, granule cell layer, h, hilus, ML, molecular layer, SGZ,
subgranule zone. Scale bar, 100 um. (B). Graph represents neuronal counting of double-positive neurons (DCX* and CR")
in the complete GCL of DG as a percent of total DCX" neuronal count. A decrease is estimated in Actin-CreERT2(Cret/ ),
MKkk4®/2 | Mkk75/2 adult mice versus WT and Actin—CreERTz(Cre*/ ), Mikkafloxiflox | pgick7flox/flox adult mice. One-way ANOVA
and post hoc Fisher’s Least Significant Difference (LSD) (n = 3) were used in the statistical analysis. **** p < 0.0001 vs. WT,
##HH# p < 0.0001 vs. CRE (—).
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2.5. Neuronal Dendritic Pattern Is Disorganized in Actin-CreERT2(Cret/—), Mkk4b/B,
Mkk7%2 Mice

Since the JNK pathway controls the stabilization of dendritic projections [15,16],
immunofluorescence against microtubule-associated protein (MAP2) was used to analyze
the dendritic pattern of neurons in the sensorimotor cortex. A disorganization of the
dendritic field was observed in Actin—CreERTz(Cre+/ ), Mkk4®B | Mkk75/8 mice compared
to WT and Actin-CreERT2(Cre=/~), Mkk4/loxflox | Mk 7flox/flox mice (Figure 9). This finding
supports that the decrease in JNK activity through MKK4 and MKK? deletion interferes in
neuronal architecture processes. Furthermore, the Hoechst stain revealed a loss of neural
cells in upper cortical layers (II-1II) in Actin-CrePRT2(Cre*/ ), Mkk4®2, Mkk7%/2 mice
compared to WT and Actin-CreFRT2(Cre=/ =), Mkk4flox/flox  pfge7lox/flox mijce (Figure 9).

MAP2 Hoechst

WT

Actin-CretR™2(Cre /)
Mkk4 flox/flox
Mkk7 flox/flox

Actin-CretR™2(Cre*/")
Mkk4>/A
Mkk75/A

Figure 9. Distribution pattern of MAP2 in somatosensory cortex. Immunofluorescence against MAP2 displays the length of
the dendrites. Actin-CreERT2(Cre*/~), Mkk4®™, Mkk7%A mice (c) shows dendritic alterations compared with WT (a) and
Actin-CreERT2(Cre=/ =), Mkk4flox/flox Mgk 7flox/flox (b) Hoechst stain in blue of the same sections visualized with MAP2
immunofluorescence, WT (a*), Actin-CreERT2(Cre=/—), Mkk4flox/flox | Mg 7flox/flox (b*) and Actin-CreERT2(Cret/ —), Mkk4®A,
Mkk75/A (¢*) adult mice. Arrowheads mark the distribution of dendritic fibers in somatosensorial neurons of WT (a) and
Mkie4flox/flox pfpg7flox/flox mjce (b). Asterisks show shorter dendrites in Actin-CreERT2(Cre*/ —), Mkk4®2, Mkk72 mice (c)
compared to the other genotypes (a,b). Scale bar, 100 um. L, layer.
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3. Discussion

In the present work, we generated a new adult murine model with a double dele-
tion (Mkk44/2, MKkk7%/2 genotype). After 14 days of tamoxifen administration, Actin-
CreERT2 (Cre” ), Mkk44/ A MKK72/8 adult mice showed a reduction of MKK4 and MKK7
proteins in the CNS and other tissues, such as the heart and liver. This diminution pro-
voked a decrease in JNK phosphorylation, which correlated with alterations in the position,
dendritic pattern, and differentiation of immature hippocampal neurons as well as with
changes in the dendritic pattern of cortical neurons.

3.1. The Levels of MKK4 and MKK7 Are Not Equal in the Different Tissues

Actin—CreERTz(Cre+/ ), Mkk42/8 MKkk72/2 mice overcome the developmental draw-
backs of conventional KOs for Mkk4 or Mkk7 [23] and even some conditional KO mice,
allowing MKK4 and MKKY? protein reductions in adults. Although the decrease was
induced in all the body, it was not equal in all tissues, which was probably because of dif-
ferences in their physiological basal levels. Thus, while protein elimination was apparently
total in the heart and liver, it was partial in the CNS, supporting that MKK4 and MKK7
levels are higher in the CNS than in other tissues, which is in accordance with the results
obtained with Western blot in WT mice (Figure 1). In this line, Lee et al. showed that the
levels of Mkk4 transcripts were high in the cerebral cortex, hypothalamus, hippocampus,
and cerebellum of adult mice [24]. All these data emphasized that the MKK4/MKK?7 /JNK
signaling pathway has an important role in the adult CNS [25]. Moreover, the different
subcellular localizations of these proteins supports that they have distinct functions, and
therefore, their levels vary in distinct tissues [21,23]. This is supported by Tournier et al.,
who found that the simultaneous disruption of the Mkk4 and Mkk?7 genes was required to
block JNK activation caused by the exposure of cells to environmental stress (e.g., ultravio-
let radiation) [26]. However, with stimuli such as pro-inflammatory cytokines (e.g., TNF
and IL-1), the disruption of the Mkk7 gene alone could prevent JNK activation.

3.2. MKK?Y Plays an Essential Role in Heart and Liver Tissues

After analyzing the levels of MKK4 and MKK?7 in different tissues of Actin-CreFRT2
(Cre” ), MKk42/8 MKk72/2 adult mice, we observed that the presence of MKK7 was
reduced or absent in the heart and liver. These data are in accordance with those of Nishina
et al., who evidenced low levels of MKK? in embryonic tissue of mice, which was probably
restricted to the skin, lung epithelium, and epithelial layers lining the olfactory cavity
developing teeth. By contrast, MKK4 was ubiquitous and with high basal levels [21].
Despite the scarce levels of MKK7 detected in heart and liver, several studies support the
notion that this protein has a critical role in these tissues, both in embryonic development
and adulthood [7,27]. Indeed, Ooshio et al., through hepatocyte and hematopoietic cell-
specific deletion of Mkk?7, using Albumin (Alb)-Cre and Myxovirus resistance protein-1
(Mx1)-Cre line, evidenced that MKKY is essential for wound-healing processes following
parenchymal destruction by carbon tetrachloride (CCly) in the liver [27]. In addition, MKK?7
suppress branching morphogenesis through the modulation of hepatocyte-extracellular
matrix interaction.

Concerning MKK? and cardiac tissue, Liu et al. revealed an essential protective role
of this protein in the heart from hypertrophic insults in cardiomyocytes, hence preventing
the transition to heart failure [28].

3.3. The Levels of JNK Phosphorylation Were Decreased in Actin-CreERT2(Cret/~), Mkk4®/3,
Mkk75/2 Mice

MAP kinase cascade, which senses cellular and extracellular stress, conveys cellular
response to regulate cell fate. The timing and duration of JNK activation determines
whether cells proliferate or adapt to metabolic or toxic stress or undergo programmed cell
death instead, such as apoptosis, necrosis, and even other forms of cell death. MKK4/MKK?7
proteins have a role in the control of JNK activation by interacting with JNK via D-motif,
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phosphorylating JNK [29]. Since the levels of pJNK are correlated with the activity of
this signaling pathway, and they are reduced with the Mkk4 and Mkk7 deletion, we
circumscribed the analysis when Actin-CrePRT2(Cre*/~), Mkk4®/%, Mkk7%/% mice had a
significant reduction of JNK phosphorylation at 14 days after tamoxifen administration.
These data reinforce that Mkk4 and Mkk7 gene deletion correlated with JNK activity
diminution.

3.4. The Deletion of Mkk4 and Mkk7 Gene Alters Immature Hippocampal Neurons

Tangential-to-radial migration has been described for immature hippocampal neu-
rons [30,31]. First, neuroblasts migrate tangentially after the last division from neuron
stem cell clusters through the SGZ, and then apical dendrites extend toward the molecular
layer [32]. In agreement with this, neuroblasts are lined up in the SGZ and have their
apical dendrites projected in the radial direction both in WT and Actin-CrefRT2(Cre=/"),
Mkk4flox/flox \fig7tlox/flox mice However, in Actin—CreERTz(Cre+/ ), MKkk42/8 MKk7A/4
mice, these cells were disarranged, since they were displaced over the GCL, maintaining
immature cell markers. These finding suggest that MKK4 and MKK? have a role in adult
neuroblast migration and differentiation processes, in accordance with the results obtained
by Smith, Coker, and Tucker, who identified that the JNK signaling pathway is a regulator
of branching and nucleokinesis during the migration of cortical interneurons [33]. In this
respect, Nestin-Cre, Mkk7119%/flox mice showed severe defects along embryonic brain devel-
opment in radial migration and axonal growth [8]. In addition, Nestin-Cre, Mkk4flox/flox
mice showed misalignment of cerebellar granule cells and defects in radial migration [34].
However, no changes in cell differentiation were identified in Mkk41oX/flox or MK 7flox/flox
mice under Nestin-Cre promoter in developing ages, as it occurs in our adult mice, which
is probably due to the combinatorial effect of the double deletion. Moreover, the analyses
with Nestin-Cre mice have the disadvantage that even though they survive after birth,
eventually, they die at postnatal day 21.

The alterations detected in the dendritic projections of immature hippocampal neurons
and mature cortical neurons of Mkk42/4 and Mkk72/4 mice support that the MKK4/MKK7-
JNK signaling pathway has a role in the maintenance of the dendritic and axonal pro-
cesses [35] in accordance with Bjorkblom et al., who found that JNK phosphorylation of
MAP2 plays an important role in defining dendritic architecture in the brain [36].

In this line, different studies reported that JNK1 regulates neural architecture through
the phosphorylation of cytoskeletal substrates [36-38]. Further studies should be done to
determinate how MKK4/MKK?7/JNK signaling is involved in all these neuronal processes.

To know the specific functions of the JNK signaling pathway in neural cell subpop-
ulations, conditional KOs mice would be used with recombination under specific neural
promoters instead of using the ubiquitous promoter Actin. In this way, there are CamKII«x-
Cre mice that express Cre recombinase in postmitotic glutamatergic neurons of the CA1
hippocampus and layer V cerebral cortex [39,40] or Synapsyn [-Cre mice that drive the
expression of Cre in general mature neurons [41]. Other Cre mice, such as Glial Fibrillary
Acid Protein (GFAP)-Cre or GFAP-CreFRT2, will allow the recombination glial linage [42,43]
involved in the homeostatic functions control in health and disease.

4. Material and Methods
4.1. Animals

Mice carrying homozygous floxed Mkk4 and Mkk7 genes were generated in our
lab by crossing Mkk4flox/flox mice [7] with Mkk7fox/flox mjce [44]. Double homozy-
gous floxed mice (Mkk4flox/flox Mk 7flox/flox genotype) were selected and mated with
conditional Actin-CreFRT? (Cre*/~) mice (see Supplementary Figure S1). Thus, hemizy-
gous (1) Actin-CreFRT2(Cre*/ —), Mkk4flox/flox \ik7flox/flox 2y Actin-CreFRT2(Cre=/ ),
Mkk4flox/flox \fig7lox/flox and (3) C57BL/6 (WT mice) were used in this study. All mice
were housed in constant and controlled environments during the experiments with a
light/dark cycle of 12 h. The mice had free access to food and water. The experiments were
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conducted in accordance with the Council of Europe Directive 2010/63. The procedure
was registered and accepted by the Catalan Government Decree 214 /97, 30 July 2020, the
University of Barcelona, and the Animal Experimentation Ethics Committee.

4.2. Tamoxifen Treatment

Actin-CreFRT2(Cre*/ —), Mkk4flox/flox \fig7flox/flox o_month-old mice were used to
obtain a double KO mouse Mkk4 and Mkk7 (Actin-CreERT2(Cre*/~), Mkk42/AMKkk72/4
genotype). These mice have a Cre recombinase expressed under the Actin promoter and
fused with human estrogen receptor that can be activated with tamoxifen as a selective
estrogen receptor modulator. The CRE activation with tamoxifen allows controlling the
specific time to delete floxed genes [45]. Tamoxifen was administered via orogastric gauge,
at different doses and days, in order to evaluate the dose and time necessary to delete MKK4
and MKK?7 proteins. The optimal dose found was 5 mg per day for two consecutive days.
Tamoxifen (Sigma-Aldrich, Madrid, Spain) was dissolved in a solution containing 90% of
sunflower oil and 10% ethanol. Actin-CreERT2 (Cre’/ ), MKkk4flox/flox \ficc7flox/flox e
were used as controls and were treated with vehicle solution (90% of sunflower 0il /10%
ethanol) or tamoxifen for two consecutive days. After 3 days, the Actin-CreFRT2(Cre*/ ),
Mkk4%/AMKk7%/2 genotype was detected. The protein elimination was screened in the
heart, liver, and CNS at 3, 7, and 14 days after tamoxifen administration. The studies were
done after 14 days of tamoxifen administration because beyond 16 days, the deterioration
of treated animals was severe, since they showed signs of distress, weight loss, reduced
activity, and after 20 days of treatment, there was high mortality (50%). Animals of each
genotype used are shown in Table 1. Tamoxifen treatment is shown in Scheme 1.

Table 1. Genotypes of animals used in this study.

Genotype Treatment Purpose: Group Name
HEMIZYGOUS Actin-Cre®RT2(Cre*/ =), Mkk4floxtfox, Mk 7ox/flox Tamoxifen Mkk4®A, Mkk75/» genotype ~ CRE (+) +T
HEMIZYGOUS Actin-CreERT2(Cret/ —), Mikdflox/flox | pfjeg7flox/flox Vehicle Control CRE (+) +V
NEGATIVE Actin-Cre®RT2(Cre=/ =), Mkk4flox/flox | Nk 7flox/flox Tamoxifen Control CRE (=) +T
NEGATIVE Actin-CreERT2(Cre=/ ), Mkk4flox/flox | Nk 7flox/flox Vehicle Control CRE (=) +V
NEGATIVE Actin-CreERT2(Cre—/—), Mkk4flox/flox | Njc7flox/flox None Control CRE (—)
C57BL/6 None Control WT

T = tamoxifen treatment, V = vehicles. Tamoxifen (Sigma-Aldrich).

0d 1d 2d 3d 7d 14d|
! I 1 1 I I

2 month old Vehicle or Vehicle or ,
Tamoxifen (Smg)  Tamoxifen (Smg) Determination of Mkk4/Mkk7 protein levels

Scheme 1. Tamoxifen treatment.

4.3. Genotype Determination in Mice and Deletion on Tissue

PCRs on tail DNA were used to identify offspring carrying the Mkk4/1° allele using
forward (5-GACATTGAGTTCCTTGCG-3') and reverse (5'-TCCTATGTAGTAGGAGTTTG-
3) primers. Mkk4* and Mkk4!°x alleles were identified with fragments of ~390 bp and
~490 bp, respectively. To find Mkk71°* alleles, PCRs on tail DNA were performed using
forward (5'-CTGCCTGTAGCATGCCCGAGCTGTC-3') and reverse (5'-AGCTGTCTCATCT
GTGCACCTCCCAGC-3') primers, which gave fragments ~290 bp for Mkk7* and ~390 bp
for Mkk7!1°% alleles. For detecting deletion after tamoxifen administration, PCRs on tail
DNA and on brain tissue were performed using forward (5-GGCAGCTTGTCAGATG-3)
and reverse (5-TCCTATGT AGTAGGAGTTTG-3') primers yielding ~850 bp fragment
for Mkk4*, ~900 bp for MKkk4floX  and ~450 bp for Mkk42. In addition, forward (5'-
ATGCAGGCCATTGGGAAGTACCAAG-3') and reverse (5'- AGAAAAATGAAGCCCGAC
TGTGCCT-3') primers were used to identify Mkk7 alleles; since this PCR yielded only one
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band (300 bp for Mkk7%), forward (5-TGAGCGAGCTCATCAAGATAATCAGGT-3') and
reverse (5'-GTTAGCATTGAGCTGCAAGCGCCGTCT-3') primers were also added to am-
plify the 550 bp fragment from the intron of the LC3 genome as internal control. We identi-
fied the Transgene Cre sequence using forward (5-GCATTACCGGTCGATGCAACGAGTG
ATGAG-3') and reverse (5-GAGTGAACGAACCTGGTCGAAATCAGTGCG-3') primers,
yielding a 400 bp fragment. Finally, forward (5-TGGACAGGACTGGACCTCTGCTTTCCT
AGA-3') and reverse (5-TAGAGCTTTGCCACATCACAGGTCATTCAG-3') primers to
Intestinal Fatty Acid-Binding Protein (I-FABP) gene (200 bp fragment) were used as internal
control. See Supplementary Figure S2.

4.4. Preparation of Lysates

From the CNS, we dissected the cortex, hippocampus, and cerebellum. In addition,
liver and heart were used. Tissues were homogenized with lysis buffer (137 mM NaCl,
20 mM Tris-HCl, pH 8.0, 1% NP 40, 10% glycerol, 1 mM PMSE, 10 pug/mL aprotinin,
1 pg/mL leupeptin, and 0.5 mM sodium orthovanadate). Homogenates were spun at
13,000 rpm for 20 min at 4 °C, and the protein content of the supernatants was determined
by the BCA method (Pierce Company, Rockford, MI, USA). A range of 20-50 ng of protein
was mixed with a loading buffer (3-mercaptoethanol 100 mM, Tris-HCl pH 6.8, 2% Sodium
Dodecyl Sulfate, SDS) and was denatured at 95 °C for 5 min.

4.5. Immunoblot Analysis

Protein extracts were loaded in 12% SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide
Gel Electrophoresis) at 90 V for 2-3 h and transferred overnight at 4 °C and 45 V to a PVDF
membrane (0.45 um, Millipore, Bedford, MA, USA). The membrane was blocked in 10%
non-fat milk in TBS-Tween, pH 7.4, for 4 h at RT. Afterwards, the membrane was incubated
with specific primary antibodies for MKK4 (1:1000, 91525, Cell Signaling Technology, Lei-
den, The Netherlands), MKK?7 (1:5000, ab52618, Abcam; and 1:1000, 4172, Cell Signaling
Technology, USA), total JNK (1:1000, 91525, Cell Signaling Technology, Leiden, The Nether-
lands), phospho-JNK (1:500, 9251S, Cell Signaling Technology, Leiden, The Netherlands),
and GAPDH (1:20,000, 2118, Cell Signaling Technology, USA) O/N at 4 °C. After several
washes, the membrane was further incubated with a HRP-linked secondary antibody,
Anti-rabbit IgG, or anti-Mouse IgG (7074, 7076, Cell Signaling Technology, Leiden, The
Netherlands) diluted at 1:2000 in TBS-Tween for 1 h at RT. The signals were developed with
chemiluminescent substrate (ECLTM Western Blotting Analysis System, GE Healthcare,
Madrid, Spain) before film exposure (Medical X-ray film, Fujifilm (Rosex, Barcelona, Spain).
GAPDH was used to normalize differences in gel loading. Semi-quantitative values were
obtained using Image Lab software (Bio-Rad, Madrid, Spain). The size of the bands was
determined using molecular weight markers (1610374, Bio-Rad).

4.6. Immunofluorescences

Free-floating technique immunofluorescences were conducted in coronal sections of
20 um. Animals were perfused with 40 g/L of paraformaldehyde in 0.1 mol/L of phosphate
buffer. The brains were removed, subsequently rinsed in the same solution with 300 g/L of
sucrose for 48 h, and frozen. Then, they were cut in a cryostat (Leica Microsystems, Wetzlar,
Germany). Free-floating coronal sections were rinsed in 0.1 mol/L phosphate buffer (PB),
pH 7.2. After that, brain slices were pre-incubated in a blocking solution (100 mL/L of fetal
bovine serum (FBS) and 2% gelatin in PBS with 5 mL/L Triton X-100) at room temperature
(RT). Then, the samples were incubated overnight (O/N) at 4 °C with different primary
antibodies: goat anti-DCX (1:200, sc-8066, Santa Cruz Biotechnology, Heidelberg, Germany),
mouse anti-MAP2 (1:1000, 015M4775V, Sigma), and rabbit anti-Calretinin (1:2000, 7699/4,
Swant Inc, Burgdorf, Switzerland). The secondary antibodies used were Alexa Fluor 488
donkey anti-goat (1:200, A11055, Life technologies, Madrid, Spain), Alexa Fluor 594 goat
anti-mouse (1:200, A11005, Thermo Fisher Scientific, Madrid, Spain), and Alexa Fluor 594
goat anti-rabbit (1:200, Thermo Fisher Scientific, A11012, Madrid, Spain). Sections were



Int. . Mol. Sci. 2021, 22, 9545

16 of 18

References

counter-stained using 0.1 pg/mL Hoechst 33,258 (Sigma-Aldrich, USA) for nuclear staining.
Sections corresponding to the hippocampal levels between Bregma —1.28 and —2.12 mm,
according to the Atlas reported by Paxinos and Watson [46] were used to analyze the
hippocampus and cortex (3 animals/genotype, 4-8 sections/animal).

4.7. Data Analysis

Student’s t-test was performed to compare two conditions, and one-way ANOVA post
hoc Fisher’s Least Significant Difference (LSD) tests were used for comparison in 3 or more
conditions. Level of significance was fixed at « = 0.05. Both statistical analyses and graphs
were created with the Graph Pad InStat software V5.0 (Graph Pad Software Inc., San Diego,
CA, USA).

5. Conclusions

The new transgenic Actin-CreERT2 (Cre*/ ), Mkk4flox/flox ©\figc7flox/flox mice allow
inducing the conditional deletion of Mkk4 and Mkk7 genes in adults, hence overcoming
the lethality induced with other KOs. Thus, these types of mice would allow studying
the specific functions of MKK4 and MKKY proteins in adult organisms. Specifically, here,
we identified the role that the MKK4/MKK?7/JNK signaling pathway plays to control the
positioning, morphology, and differentiation of the immature hippocampal subpopulation.
This approach will make it possible to control adult pathways through the modulation of
specific proteins that can be used as targets.
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