
 International Journal of 

Molecular Sciences

Article

Metabolic and Lipidomic Assessment of Kidney Cells Exposed
to Nephrotoxic Vancomycin Dosages

Simon Lagies 1,2 , Roman Pichler 3,4 , Georg Vladimirov 1 , Jana Gawron 1, Fabian Bäzner 1 ,
Annabell Schreiner 1, Dajana Kadena 1, Dietmar A. Plattner 2 , Soeren S. Lienkamp 3,5

and Bernd Kammerer 1,2,6,*

����������
�������

Citation: Lagies, S.; Pichler, R.;

Vladimirov, G.; Gawron, J.; Bäzner, F.;

Schreiner, A.; Kadena, D.; Plattner,

D.A.; Lienkamp, S.S.; Kammerer, B.

Metabolic and Lipidomic Assessment

of Kidney Cells Exposed to

Nephrotoxic Vancomycin Dosages.

Int. J. Mol. Sci. 2021, 22, 10111.

https://doi.org/10.3390/

ijms221810111

Academic Editor: Monica Valentovic

Received: 31 August 2021

Accepted: 15 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Integrative Signalling Analysis, University of Freiburg, 79104 Freiburg, Germany;
simon.lagies@zbsa.uni-freiburg.de (S.L.); georgvladimirov@web.de (G.V.); jana@gawron24.de (J.G.);
fabian.baezner@gmx.de (F.B.); annabell-schreiner@gmx.de (A.S.); kadenadajana@yahoo.com (D.K.)

2 Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany;
dplatt@chemie.uni-freiburg.de

3 Department of Medicine IV, Nephrology and Primary Care, Medical Center–University of Freiburg,
Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany;
roman.pichler@uniklinik-freiburg.de (R.P.); soeren.lienkamp@anatomy.uzh.ch (S.S.L.)

4 Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg,
79110 Freiburg, Germany

5 Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
6 BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
* Correspondence: bernd.kammerer@zbsa.uni-freiburg.de

Abstract: Vancomycin is a glycopeptide antibiotic used against multi-drug resistant gram-positive
bacteria such as Staphylococcus aureus (MRSA). Although invaluable against resistant bacteria, van-
comycin harbors adverse drug reactions including cytopenia, ototoxicity, as well as nephrotoxicity.
Since nephrotoxicity is a rarely occurring side effect, its mechanism is incompletely understood. Only
recently, the actual clinically relevant concentration the in kidneys of patients receiving vancomycin
was investigated and were found to exceed plasma concentrations by far. We applied these clinically
relevant vancomycin concentrations to murine and canine renal epithelial cell lines and assessed
metabolic and lipidomic alterations by untargeted and targeted gas chromatography-mass spectrom-
etry and liquid chromatography-mass spectrometry analyses. Despite marked differences in the
lipidome, both cell lines increased anabolic glucose reactions, resulting in higher sorbitol and lactate
levels. To the best of our knowledge, this is the first endometabolic profiling of kidney cells exposed
to clinically relevant vancomycin concentrations. The presented study will provide a valuable dataset
to nephrotoxicity researchers and might add to unveiling the nephrotoxic mechanism of vancomycin.

Keywords: vancomycin; nephrotoxicity; tubule; metabolomics; lipidomics; GC/MS; LC/MS; mass
spectrometry

1. Introduction

Vancomycin is a glycopeptide antibiotic with activity against gram-positive bacteria,
such as Staphylococcus aureus [1]. Since the emergence of methicillin-resistant Staphylococcus
aureus, vancomycin is increasingly used in clinics with prolonged duration and elevated
dosages. However, vancomycin harbors the risk of several adverse effects, which include
ototoxicity [2], thrombocytopenia [3], and neutropenia [4]. Additionally, higher dosages of
vancomycin are associated with an increased risk of acute kidney injury [5]. Hence, Du
et al. used physiologically-based pharmacokinetic modeling and simulation and verified
their results with a human specimen [6]. This study found vancomycin levels in the kidney
which were up to 50-fold higher than plasma vancomycin levels. Therefore, vancomycin
associated acute kidney injury is highly clinically relevant and the mechanisms behind it
have only partially been unraveled. Wang and colleagues found that vancomycin activates
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microRNA-301a-5p in a methyl-CpG-binding domain protein 2 dependent manner, ulti-
mately driving proximal tubule cells into apoptosis [7]. Similarly, Chen et al. uncovered
stimulation of p53-dependent apoptosis by microRNA-192-5p in a human renal epithelial
cell line upon vancomycin treatment [8]. Another mechanism to activate apoptosis in
kidney cells used by vancomycin is the suppression of complex I, which leads to elevated
levels of mitochondrial superoxide [9]. The production of reactive oxygen species (ROS)
enhances the permeabilization of the mitochondrial membrane, resulting in apoptosome
activation [10,11]. ROS also contribute to apoptosis by the formation of cardiolipin per-
oxides, a mitochondria specific phospholipid [12]. Hence, oxidative species also mediate
expression of pro-inflammatory cytokines, as treatment with antioxidant species ameliorate
vancomycin-induced nephrotoxicity [13].

A common consequence of mitochondrial redox imbalance is the activation of other
redox dependent pathways. Specifically, the pharmacological inhibition of complex I results
in an increase of glucose metabolization to lactic acid [14]. Complex I oxidizes reduced
nicotinamide adenosine dinucleotide (NADH) and thus the inhibition of it causes increased
levels of NADH [15]. Accumulated NADH is then oxidized by lactate dehydrogenase and
replenishes the redox pool necessary to drive glycolysis [16]. Another redox dependent
glucose metabolizing pathway is the polyol pathway, in which glucose is reduced to
sorbitol, which is then oxidized to fructose [17]. The latter reaction also leads to the
production of NADH [18]. Therefore, when the redox pool is shifted to elevated NADH,
sorbitol cannot be oxidized to fructose anymore, resulting in an accumulation of sorbitol.

Despite the apparent role of mitochondria in vancomycin-induced acute kidney injury,
no metabolomics studies of vancomycin treated kidney cells have been conducted so far.
Du et al. used kidney cells’ supernatant after a 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-
2H-tetrazolium-5-carboxanilide assay (XTT-assay) for an exometabolic screen based on
reversed-phase chromatography mass spectrometry. They aimed at discovering potential
bio-markers for vancomycin-induced nephrotoxicity and found several lyso-phospholipids
in the supernatant of cells with low viability [6].

In regard with other nephrotoxins, metabolomics is widely used. The well-known
chemotherapeutic drug cis-diamminedichloroplatinum II (cisplatin) is nephrotoxic [19]
and has a high impact on renal metabolism. Among others, we showed accumulation of
glucose and down-regulation of glycolysis intermediates together with a loss of amino
acids [20]. Cyclosporine A is an immunosuppressive drug with adverse activity against
the kidney [21]. Metabolic profiling of cultured kidney cells treated with different doses of
cyclosporine A revealed a stark induction of glutathione metabolism, as well as alterations
in amino acids and tricarboxylic acid cycle (TCA-cycle) intermediates [22]. Hence, the ra-
diocontrast agent diatrizoic acid was also shown to induce an oxidative stress response [23].
Administration of the antiviral drug acyclovir, commonly causing acute kidney injury
to rats, revealed excessive excretion of nitrogen containing metabolites to the urine [24].
Metabolomics is also capable of detecting alterations induced by non-toxic pathologi-
cal stress conditions, such as high glucose and protein levels present in diabetic kidney
disease [25].

In the presented study, we analyzed for the first time cellular changes in the metabolome
and lipidome of kidney cell lines exposed to clinically relevant doses of vancomycin. We
uncovered increased glycolysis and sorbitol levels, which might stem from the known
mitochondrial disturbances caused by vancomycin.

2. Results and Discussion
2.1. Vancomycin Is Taken Up in a Dose-Dependent Manner

To assess metabolic alterations induced by highly concentrated vancomycin, we
treated mouse inner medullary collecting duct cells (mIMCD-3 cells) and Madin–Darby
canine kidney cells (MDCK cells) with control media and media containing 0.25 mg/mL,
1 mg/mL or 4 mg/mL vancomycin. During these experiments, no major changes regarding
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morphology or cell number were observed (data not shown). As displayed in Figure 1,
both cell lines have taken up vancomycin in a dose-dependent manner.
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Figure 1. Vancomycin in cells and cell culture medium. Extracellular (top) and intracellular (bottom)
vancomycin levels in mIMCD-3 cells (left) and MDCK cells (right) are shown. Y-axes show intensities
which were acquired by liquid chromatography-mass spectrometry (LC/MS) and normalized to
phenol red or O-methyl-L-tyrosine in cell culture media or within the cells, respectively. Error bars
indicate standard deviation. N = 3.

2.2. Metabolic Profiling of Vancomycin Treated Kidney Cell Lines

After proving the uptake of vancomycin by the used kidney cell lines, we subjected
metabolite extracts to untargeted metabolic profiling by gas chromatography-mass spec-
trometry (GC/MS). Additionally, glutathione levels and small chain acyl-carnitines were
acquired by targeted LC/MS analysis. In total, 88 metabolites were thoroughly identified
using both mass spectra and retention time/index information. The data set was first
analyzed by principal component analysis (PCA) as shown in Figure 2. Treatment with
0.25 mg/mL vancomycin did not result in global alterations, neither in mIMCD-3 cells nor
in MDCK cells. Such alterations were visible with 1 mg/mL only in mIMCD-3 cells, and in
both cell lines, when a concentration of 4 mg/mL was applied.
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vancomycin, blue: 4 mg/mL vancomycin. Dots represent samples, shaded area: the confidence interval. N = 3.

Statistical analysis revealed 35 significantly altered metabolites (one-way analysis of
variance (ANOVA), corrected for multiple testing by false discovery rate (FDR),
q-value < 0.05) in mIMCD-3 cells and 11 significantly altered metabolites in MDCK cells.
Detailed results of statistical analyses can be found in supplementary Table S1. These num-
bers also reflect the more profound impact of vancomycin on mIMCD-3 cells in comparison
to MDCK cells as seen in the PCA (Figure 2). In Figure 3, these significant alterations
are displayed in heat maps, in which range-scaled z-scores are shown. In both cell lines,
distinct clustering is visible between control and 4 mg/mL vancomycin treatment.

In mIMCD-3 cells, small-chain acyl carnitines were down-regulated upon high-dose
vancomycin treatment together with sugars and some sugar alcohols. Upregulated metabo-
lites included key metabolites of glycolysis and the tricarboxylic acid cycle. In contrast
to myo-inositol and meso-erythritol, the sugar alcohol sorbitol was up-regulated upon
vancomycin exposure. A cluster of amino acids, which were mainly essential amino acids,
trended to increase in 4 mg/mL vancomycin compared to the control, but they peaked
in the 1 mg/mL vancomycin condition. An up-regulation of glycolysis and lactic acid in
particular can point to a decreased activity of oxidative phosphorylation [26]. A disturbed
activity in oxidative phosphorylation was already described and substantiates our find-
ing [9]. A decreased TCA-cycle flux might also explain accumulating citrate levels. The
decrease in acyl-carnitines further supports this hypothesis, since fatty acid oxidation is
a predominant energy source in tubule cells [27]. An elevated usage of glucose also fits
with the accumulation of sorbitol in tubule cells [25]. In line with that, we detected higher
levels of sorbitol along with increased intermediates of glycolysis in 4 mg/mL vancomycin
treated mIMCD-3 cells. In addition, sorbitol acts as an osmolyte in the kidney [28]. Thus,
higher doses of vancomycin in the cell culture medium could also contribute to an in-
crease of sorbitol. However, this is probably a minor contribution given the high osmolar
pressure normally applied to renal epithelium [29]. Activation of sorbitol accumulation is
corroborated by a dose-dependent decline in myo-inositol levels, a known effect of high
sorbitol pathway activity [30]. The fact that fructose was decreased might suggest sorbitol
accumulation was caused by redox imbalance [31]. Indeed, glutathione and glutathione
disulfide increased in parallel, which points to an increased synthesis in response to redox
imbalance (Figure 3 left). Elevated glutathione synthesis was already associated with
another nephrotoxin, namely cyclosporine A [22].
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In MDCK cells, some essential amino acids, tended to decrease with higher van-
comycin doses. Four metabolites were significantly elevated in the 4 mg/mL vancomycin
condition in comparison to the control cells. Three of them were catabolites of glucose,
and lactic acid and sorbitol were likewise regulated as in the mIMCD-3 cell line. Together
with the low levels of one small-chain acyl carnitine, these results confirm the finding from
the mIMCD-3 cells: an impaired mitochondrial oxidative phosphorylation might have
increased glycolysis, with parallel sorbitol accumulation.

2.3. Lipidomics of Vancomycin Treated Kidney Cell Lines

Next, the lipophilic extracts were analyzed by targeted lipidomic analysis. Marked
differences were unveiled in the baseline lipidomic profile of the two cell lines (Supplemen-
tary Figure S1). Additionally, the two cell lines behaved differently towards vancomycin
exposure: only slight differences were observed in the PCA of MDCK cells between the
control and 4 mg/mL vancomycin, whereas in mIMCD-3 cells, these conditions were
clearly separated from each other (Figure 4).

In line with that, no significant alterations in lipid species upon vancomycin treatment
were detected in MDCK cells, while 22 lipids were significantly altered in mIMCD-3 cells:
in accordance with the metabolite analysis, two long chain acyl-carnitines were decreased
in the 4 mg/mL condition (Figure 5). This confirms a reduced fatty acid oxidation in this
cell line. Several lipids were up-regulated in mIMCD-3 cells, mainly glycosphingolipids
and phosphatidylethanolamines (Figure 5). Activation of glycosphingolipid synthesis
was already found in cisplatin induced acute kidney injury [32]. Four of the up-regulated
glycosphingolipids are hexosyl-ceramides. Glucosyl-ceramides are known to be altered
in several kidney diseases [33] and are involved together with other glycosphingolipids
in apoptosis signaling [34,35]. Although we did not observe huge differences of cell mass,
this might already prime the cells to enter into apoptosis.
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Int. J. Mol. Sci. 2021, 22, 10111 7 of 11

Phosphatidylethanolamines were increased upon high-dose vancomycin (Figure 5).
Previous studies showed a decrease in phosphatidylethanolamines using aristolochic acid I,
celiptium, and cisplatin [36–38], but in the latter case, cisplatin led to an increase of certain
phosphatidylethanolamines in the renal medulla. This indicates that the regulation of
phosphatidylethanolamines might be more complex in acute kidney injury and more toxins
have to be tested to evaluate whether or not this lipid species is commonly regulated. Most
of the lipids altered in mIMCD-3 cells upon vancomycin treatment were glycosphingolipids,
which were increased. These lipids already had a higher basal level in the MDCK cell
line, which might explain why these lipids did not further increase when vancomycin
was applied. However, the lipidomic results from the mIMCD-3 cells should not be
overinterpreted since they were not observed in MDCK cells.

3. Conclusions

To the best of our knowledge, this is the first metabolomics study of kidney cells
treated with clinically relevant concentrations of the nephrotoxin vancomycin. These
concentrations were only recently modelled by Du et al. and were found to exceed typical
plasma concentrations up to 50-fold. We showed that these high concentrations were
still dose-dependently taken up by the two kidney cell lines used. Further, although
MDCK cells responded less than mIMCD-3 cells, both seemed to upregulate anaerobic
glycolysis. This might be due to disturbances of the redox pool, which were already shown
by Arimura et al. [9]. In line with an altered redox state and a consequent malfunctioning of
mitochondria, is an increase in anaerobic glycolysis [26]. In addition, glucose metabolism
towards fructose is disturbed in parallel to redox imbalance, which might explain increased
sorbitol levels in both cell lines, and resulting from that, a decrease of myo-inositol [25].
The latter metabolite was however only altered in mIMCD-3 cells. A reduced functionality
of mitochondria can also be assumed by the decrease in acyl-carnitines in high-dose
vancomycin cells. Acyl-carnitines serve as shuttles for fatty acids, making them available
for oxidation in mitochondria [39].

Lipid profiling revealed marked differences between the two cell lines and might
have contributed to the decreased vulnerability of MDCK cells towards vancomycin on
the lipidomic level. Therefore, the detected differences of glycosphingolipids should be
critically evaluated, as they were only observed in one cell line. Future studies should
investigate the metabolic effects of vancomycin in animal models to further understand
the pathological mechanisms underlying vancomycin-induced acute kidney injury.

In conclusion, this study provides a new data set of several altered and unaltered
metabolites and lipids in two established kidney cell lines treated with high concentrations
of vancomycin. This might aid in developing new hypotheses of mechanisms of action in
vancomycin induced nephrotoxicity.

4. Materials and Methods
4.1. Cell Culture

Mouse inner medullary collecting duct cells (mIMCD-3, ATCC® CRL-2123™, ATCC,
Manassas, VA, USA) were grown in Dulbecco’s modified Eagle’s medium (DMEM)/F12
medium (Gibco™) containing penicillin/streptomycin, and 10% fetal bovine serum (FBS).
Madin-Darby canine kidney cells (MDCK, ATCC® CCL-34™, ATCC, Manassas, VA, USA)
were grown in DMEM (Gibco™) containing penicillin/streptomycin, and 10% FBS. Both
cell lines were seeded in 6-well plates and grown until confluency. Cells were washed once
with phosphate buffer saline before treatment with vancomycin.

For treatment, 48 mg vancomycin hydrochloride (Hikma Pharmaceuticals, London,
UK) were dissolved in 12 mL of the respective cell culture medium to yield a 4 mg/mL
solution. This solution was sterile filtered and diluted with a corresponding cell culture
medium to 1 mg/mL and 0.25 mg/mL. The cells were incubated with 2 mL of vancomycin
containing (4, 1 and 0.25 mg/mL) or the control cell culture medium for 24 h.
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4.2. Cell Harvest

The cells were harvested as previously described [40]. In brief, cell culture medium
was centrifuged to remove cell debris, transferred to a new vial and snap frozen in liquid
nitrogen. Cells were washed twice with 0.9% NaCl and quenched with 1 mL ice-cold
methanol:water (1:1, v:v) containing internal standards. Cells were scraped off, transferred
to a new vial, and snap frozen. Cell culture medium and cells were stored at −80 ◦C
until analysis.

4.3. Analysis of Vancomycin in Cell Culture Media

100 µL of cell culture medium were mixed with 900 µL ice-cold acetonitrile:methanol
(3:1, v:v), vortexed and centrifuged (45 min, 20,000× g, 4 ◦C). 100 µL of the supernatant
were evaporated in a speedvac and the pellets reconstituted in 100 µL ddH2O. 70 µL
were transferred into an LC-Vial and 20 µL was used to prepare a mixed quality control
sample. Vancomycin was analyzed by reversed-phase chromatography coupled to mass
spectrometry using a gradient of water/0.1% formic acid with acetonitrile/0.1% formic
acid (Waters: Acquity Hsst3 2.1 × 100 mm, 1.8 µm. Agilent Technologies, Waldbronn,
Germany: G4220A, G4226A, G1316A, G6460A triple-quadrupole mass spectrometer). Gas
temperature was set to 350 ◦C, gas flow was 8 L/min, and sheath gas temperature was
250 ◦C with 5 L/min flow. The nebulizer pressure was maintained at 30 psi. Capillary
voltage was 3000 V in positive ionization mode with 500 V nozzle voltage. Samples were
injected in a randomized order with regular injections of quality control samples to monitor
possible analytical drifts.

4.4. Cell Lysis for Metabolomics and Lipidomics

500 µL chloroform (containing heptadecanoic acid as internal standard) was added to
the methanol:water cell suspension and lysed by rigorous vortexing. Afterward, phases
were separated by centrifugation. 300 µL of the upper phase were evaporated for GC/MS
analysis, 300 µL of the upper phase were evaporated for LC/MS analysis and 200 µL of the
lower phase were evaporated for lipidomics analysis.

4.5. Analysis of Glutathione and Small Chain Acyl-Carnitines

Glutathione and glutathione disulfide were analyzed as described by Schlimpert
et al. [41] Authentic standards of small chain acyl-carnitines were used to determine
retention times and multiple reaction monitoring (MRM) transitions and added to the
existing method. MRM-transitions were determined with the MRM-optimizer software by
Agilent Technologies.

4.6. Untargeted GC/MS Profiling

Untargeted metabolic profiling was conducted as previously described [20]. In brief,
pellets were derivatized by methoxyamination and silylation and injected on an HP5-MS
column. Gas chromatography was coupled with an electron ionization mass spectrometer.
Data files were deconvoluted and peak picking performed by AMDIS [42]. Features were
aligned with the online tool SpectConnect [43]. Metabolites were identified by mass spectra
and retention indices from three different libraries [44–46] and an in-house data base.

4.7. Targeted Lipid Profiling by LC/QqQ-MS

Lipids were analyzed by targeted LC/MS MRM-analysis (Waters: BEH C18
2.1 × 100 mm, 1.8 µm. Agilent Technologies, Waldbronn, Germany: G4220A, G4226A,
G1316A, G6460A triple-quadrupole mass spectrometer). Chromatographic separation was
as previously described [40]. The gas temperature was set to 290 ◦C with a flow rate of
10 L/min. The sheath gas flow rate was 11 L/min at 370 ◦C. The nebulizer pressure was
25 psi. The mass spectrometer was operated with +5 kV/−4 kV and 500 V nozzle voltage.
Details about transitions and collision energies are shown in Supplementary Table S2. The
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samples were kept at 15 ◦C and 5 µL were injected in randomized order with regular
quality control samples in between.

4.8. Data Processing and Statistical Analysis

Intensities of metabolites or lipids were normalized to an internal standard and
by the sum of all peaks [47]. MetaboAnalyst 5.0 were used for statistical analyses [48].
Missing values were replaced by one fifth of the minimal values of each feature. Samples
with >25% relative standard deviation in the quality control samples were excluded from
analysis. For principal component analysis and heat map generation, values were range-
scaled. One-way ANOVA was used to determine significance, followed by false discovery
rate-based multiple testing correction. A q-value cut-off of 0.05 was used. ANOVA was
followed by Tukey’s post-hoc test. Results of statistical analyses are show in Supplementary
Table S1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221810111/s1, Figure S1: heat map of all detected lipids, Table S1: Results of statistical
analyses, Table S2: MRM transitions of lipids, Table S3: Results of metabolic analysis, Table S4:
Results of lipidomic analysis.
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