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Abstract: A group of seven peptides from spider venom with diverse sequences constitute the
latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions
have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically
characterized and compared the conformation and helix alignment of all seven peptides in their
membrane-bound state. These structural results could be correlated with activity assays (antimicro-
bial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of
the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the
helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a
novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive
of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as
artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional
averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without
causing significant bilayer disturbance. They act rather slowly or may even translocate towards
intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show
much antimicrobial action but can nonetheless perturb model bilayers.

Keywords: spider venom latarcin peptides; membrane permeabilization; solid-state 15N- and 31P-
NMR; oriented circular dichroism; fluorescence vesicle leakage; antimicrobial; hemolysis

1. Introduction

All species constitutively produce antimicrobial peptides (AMPs) to defend the host
from undesired microbial invasion [1]. Venoms, on the other hand, are toxic and complex
secretions applied through the sting, teeth, fangs, or harpoons of venomous animals, such
as insects, snakes, cone snails, and spiders [2]. The primary use of venom is to fight
aggressors and deter predators, in addition to paralyzing and/or killing and preserving
prey. Interestingly, depending on the organism’s habitat, many venoms are evolutionarily
optimized to also contain broad-spectrum antimicrobial peptides. Most of these short,
amphiphilic, and often cationic AMPs tend to act on bacterial membranes and hence show
an intrinsic tendency to destabilize the lipid bilayer. This property of AMPs has been
exploited since their discovery in the 1990s, with the aim of optimizing their potential
against microbial infections, evaluating their cytotoxicity toward cancer cells, and reducing
their hemolytic effects against erythrocytes, amongst other potential applications. AMPs
are essential components of the venom of many (but not all) spiders. From an estimated
150,000 species of spiders, only a quarter (approximately 43,000) of spider species are
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cataloged, and the venom components of only 174 spiders have been described [3–5].
These data clearly indicate the dearth of information available on potentially promising
molecules that are currently lacking attention and waiting to be optimized for a given
application. By some estimate, spider venom has been predicted to contain over 10 million
bioactive peptides [6] with a wide range of activities, including analgesic, antiparasitic,
cytolytic, antitumor, and anti-inflammatory activities. However, only a minuscule fraction
of these peptides have been studied or biophysically characterized to be exploited for
human benefit.

In this work, we focus on the membrane interactions of one such group of seven linear
helical peptides called latarcins (Table 1). Latarcins are the C-terminal fragments of larger
precursor proteins isolated from the venom of the spider Lachesana tarabaevi. They consist
of a signal peptide, followed by an acidic fragment that is cleaved off post-translationally,
resulting in one common group of seven AMPs. They were discovered, isolated and
characterized by Kozlov et al. in 2006 [7]. Latarcins were isolated from crude venom by
HPLC fractionation, characterized by mass spectrometry, and sequenced using amino acid
analysis. Table 1 shows the primary structure of latarcins. It was found that Ltc3a, Ltc4a,
and Ltc5a are amidated; the other four latarcins bear a free -COOH group at the C-terminus.
Once the sequence identity had been established, the peptides were chemically synthesized.
As with the majority of AMPs, latarcins were found to be unstructured in water, whereas,
in 50% trifluoroethanol (TFE), they are able to fold into α-helices [7]. It is well known that
TFE promotes α-helical structures [8,9] and that a majority of membrane-active peptides
tend to fold into helices in this solvent system. These helices, however, may or may not
represent the state of the peptide when it interacts with the target biomembrane.

Latarcins have been demonstrated to exhibit high antimicrobial, cytolytic, and mem-
brane perturbing activity, with the exception of Ltc6a and Ltc7 [7]. While the exact role of
these multifunctional peptides in the spider venom remains unclear, it appears that their
major contribution is toward the paralyzing and cytolytic effects [7]. Furthermore, based
on the observed synergistic effects of the venom components with other neurotoxins, it
is also proposed that latarcins may facilitate the passage of neurotoxins through cellular
barriers and sterilize the prey, in addition to protecting the venom glands from external
microbial infections [10]. Most investigations in the past have restricted their focus to
Ltc1 [11] or Ltc2a [12]. Based on circular dichroism spectroscopy (CD) and solution NMR
data in SDS micelles and restrained Monte Carlo simulations, a membrane-bound struc-
ture has been presented for these two selected peptides. In an attempt to fine-tune the
antimicrobial property of Ltc2a, it was further shown that the hydrophobic N-terminal
part in Ltc2a triggers hemolytic side effects [13]. The same has not been shown for other
latarcins. Although L. tarabaevi is reported to be a rich source of linear membrane-active
compounds [14], i.e., latarcins and other peptides, there has been no study thus far in
which all members of the latarcin family have been systematically studied in the presence
of membranes. Comparative studies on all members of the latarcin family include only a
determination of their antimicrobial and hemolytic activities [7,10]. Biophysical studies
have only been performed on Ltc1 and Ltc2a [7,11,12].
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Table 1. Sequences and properties of the seven latarcin peptides.

Name Sequence a L b Charged Residues c C/r d A. r e H. r f MW g

Ltc1 SMWSGMWRRKLKKLRNALKKKLKGE-acid 25 +11 − 2 = +9 0.36 2 9 3075

Ltc2a GLFGKLIKKFGRKAISYAVKKARGKH-acid 26 +11 − 1 = +10 0.38 3 11 2904

Ltc3a SWKSMAKKLKEYMEKLKQRA-amide 20 +8 − 2 = +6 0.30 2 8 2484

Ltc4a GLKDKFKSMGEKLKQYIQTWKAKF-amide 24 +8 − 2 = +6 0.25 4 9 2903

Ltc5 GFFGKMKEYFKKFGASFKRRFANLKKRL-amide 28 +11 − 1 = +10 0.36 7 12 3431

Ltc6a QAFQTFKPDWNKIRYDAMKMQTSLGQMKKRFNL-acid 33 +8 − 3 = +5 0.15 5 13 4053

Ltc7 GETFDKLKEKLKTFYQKLVEKAEDLKGDLKAKLS-acid 34 +10 − 8 = +2 0.06 3 12 3944
a Positive charges are marked in blue and negative charges in red, and the 15N-labeled position is underlined in each peptide. b Number of residues. c Positive charges, negative charges, and net charge. d Net
charge per residue. e Number of aromatic residues. f Number of hydrophobic residues. g Molecular weight in g/mol.
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All latarcins are positively charged (largely Lys rather than Arg) and contain several
aromatic amino acids (Table 1), but they do not show any sequence homology. Figure 1
(left column) illustrates how all latarcins can form amphipathic structures when folded
as an α-helix, as the hydrophobic residues are segregated on one face of the helical wheel
and the charged (and polar) ones on the opposite face. This property implies that they
should all bind favorably to lipid membranes in this conformation. However, there are
some noticeable differences among this group of peptides. For example, the net charge
varies from +2 to +10, and when considering the peptide lengths between 20 to 34 amino
acids, the average net charge per residue varies from +0.06 to +0.40. According to the
sequences and other properties listed in Table 1 as well as the patterns shown in Figure 1,
we propose here and will proceed to group the latarcins into four types with related
structural properties:

Group A peptides (Ltc1 and Ltc2a) consist of 25–26 residues and have a free C-
terminus. They carry the highest net charge, resulting from 9 to 10 exclusively cationic
groups without any anionic residues, besides 9–11 hydrophobic amino acids. In the helical
mesh representation, it can be seen (better than in the helical wheel) that the strip of
hydrophobic residues runs diagonally along/around the helix axis. Notably, in Ltc1, the
hydrophobic strip is disrupted by two cationic residues (Lys10; Arg15), which is not the
case in Ltc2a.

Group B peptides (Ltc3a and Ltc4a) are the shortest peptides with 20-24 residues
and possess an amidated C-terminus. Their net charge of +6 results from 8 positively
and 2 negatively charged groups, besides 8–9 hydrophobic amino acids. They display a
typical amphiphilic profile, with a straight strip of hydrophobic residues that are flanked
by cationic residues (nicely seen in the helical wheel representation).

Group C comprises only a single peptide (Ltc5) with 28 residues and an amidated
C-terminus. It has a net charge of +10 and an unusually high number of 7 aromatic amino
acids (mainly Phe) amongst 12 hydrophobic ones. The helical mesh representation indicates
that the hydrophobic strip becomes less defined towards the C-terminus.

Group D (Ltc6a and Ltc7) are the longest peptides with 33–34 residues, possessing a
free C-terminus. Ltc6a is rich in polar residues, while Ltc7 is particularly rich in charged
residues (8 Glu/Asp and 10 Lys). The resulting net charge of +5 and +2, respectively, is
relatively low. Some 12–13 hydrophobic residues contribute to a long and well-defined
amphiphilic profile.

Given the similar properties, we expect that the peptides within each group might
also display similar activities in the presence of membranes. For example, one can directly
predict from the charge that peptides in Groups A and C (Ltc1, Ltc2a and Ltc5), which
have the highest charge per residue of 0.36, should be favorably attracted to bacterial
membranes that are generally anionic. Previous studies have shown some indication in this
direction. In contrast, Group D peptides (Ltc6a and Ltc7), which have a lower net charge,
are expected to be less active against bacteria, while Group B should be moderately active.
From the helical wheels and mesh representations shown in Figure 1, one can also predict
that all latarcins should be able to fold into amphipathic helices and thereby interact with
lipid membranes. Previous studies have only shown a helical fold in TFE, and there are no
data on the entire set of latarcins to demonstrate their folding into helices upon binding
to a membrane. With the current understanding of the physical properties of peptides, it
is not possible, however, to predict how such helical peptides will behave when bound
to a membrane, i.e., whether they will stay on the surface, or become tilted, or insert as
oligomers, or have any tendency to aggregate non-productively. It is also not possible to
predict whether they would form any transient or stable pores or cause any damage to the
lipid bilayer that can be assessed by monitoring vesicle leakage.
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Figure 1. Helical wheels and helical meshes of the amphiphilic latarcin peptides (prepared using
the Protein Origami web application found at http://www.ibg.kit.edu/protein_origami/ [15]). It is
assumed that the peptides are fully helical (see text), and the hydrophobic face has been highlighted
in yellow. Residues are color-coded: yellow—hydrophobic; light blue—polar; dark blue—cationic;
red—anionic; green—Gly/Pro.

http://www.ibg.kit.edu/protein_origami/
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Therefore, for the first time, we have performed a combined study of the full set of all
seven latarcins using several biophysical techniques and biological assays. In particular,
we have characterized the structure of these antimicrobial peptides in lipid bilayers using
CD, oriented CD (OCD), and solid-state 15N-NMR methods to assess the predicted and
previously proposed structures [10–12] of the peptides per se and in the presence of lipid
bilayers. Using solution CD, one can determine whether they are indeed helical in the
presence of lipids, as implied in Figure 1 and demonstrated in TFE [7]. If they are helical,
it is important to know how they integrate into the membrane. This information can
provide important clues on the mechanism of action of these peptides on the target cell,
i.e., whether they stay folded or rather aggregate, or assemble to form pores in the bilayer,
or have any other targets inside the bacterial cell. For this purpose, we used OCD and
solid-state 15N-NMR to determine the helix alignment in oriented membrane samples.
Furthermore, we determined the antimicrobial and hemolytic properties of all peptides
and performed vesicle leakage to assess their intrinsic toxicity toward model membranes
of a given composition.

2. Results
2.1. Peptide Synthesis

All peptides were successfully prepared using solid-phase synthesis and purified
before use. To avoid purification troubles, a low load (LL) Wang resin (0.3 mmol/g) was
used for the longest latarcins (Ltc6a and Ltc7). This method resulted in crude peptides
containing a higher amount of the desired product as the major product. Other latarcins
were synthesized either on a Wang resin with normal loading (0.5–0.8 mmol/g) or on a
rink amide MBHA resin (0.78 mmol/g), depending on whether the C-terminus was an
acid or an amide. In each latarcin peptide, a single 15N-NMR label was introduced in the
backbone amide at a residue in the middle of the sequence (residue underlined in Table 1).
Analytical chromatograms of the purified peptides are shown in the Supporting Information
(Figure S1).

2.2. Circular Dichroism Spectroscopy

Most membrane-active peptides tend to be unstructured in aqueous solution, i.e.,
in the absence of lipids or a membrane-mimicking environment, and all latarcins were
reported to be unstructured in water [7]. As a reference, we checked their secondary
structure using solution CD in 10 mM phosphate buffer at a defined pH of 7 and found
that all peptides are indeed largely unfolded under these conditions (Figure S2). Ltc3a
shows a noticeable helical fold (ca. 30%) under these conditions. Next, we compared
the secondary structure of the full set of latarcins in the presence of lipid membranes,
for which there are no complete data available yet. Figure 2 shows that in the presence
of small unilamellar vesicles composed of DMPC/DMPG (7/3), all latarcins fold into α-
helices at a molar peptide-to-lipid ratio (P/L) of 1/50, as expected. A pronounced helicity
had been reported in helix-promoting solvents, such as TFE/H2O (50/50 v/v) [7], with a
positive band centered at 191 nm—with the exception of Ltc5, which had a positive band
at 195 nm. In TFE, the two characteristic negative bands of an α-helix center at 208 nm and
222–223 nm were observed for all latarcins. In our lipid mixtures, however, several peptides
show significant deviation from the idealized α-helix observed in TFE. While there is a
relatively small variation in the spread of the negative band intensities among the latarcins,
there is a noticeable shift in the positive maxima between the different peptides, as seen
in Figure 2. Ltc1, Ltc3a, and Ltc7 show a positive band around 192-193 nm, while for
Ltc4a and Ltc6a, the band is slightly shifted to 194 nm. Ltc2a shows a broad positive band
at this wavelength, and Ltc5 displays the most prominent red-shift of the positive band
with a maximum of 197 nm. The negative bands in Ltc5 are also shifted toward longer
wavelengths. The change from an unordered structure or nascent helical conformation in
the absence of lipids (Supplementary Figure S2) to a largely α-helical folded structure in
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the presence of lipids indicates that latarcins have a high tendency to bind to lipids and
undergo a structural transition in response to their environment.

Figure 2. Circular dichroism spectra of latarcins in the presence of small unilamellar vesicles made
from DMPC/DMPG (7/3) measured at a molar peptide-to-lipid ratio (P/L) of 1/50 at 30 ◦C.

2.3. Minimum Inhibitory Concentration

The effect of latarcins against four types of bacteria was determined using a minimum
inhibitory concentration (MIC) assay on two Gram-positive strains (Bacillus subtilis subsp.
spizizenii and Staphylococcus xylosus) and two Gram-negative strains (Escherichia coli and
Acinetobacter sp.). These results are shown in Figure 3. Although the antimicrobial activity
of latarcins is well documented, these experiments served to ensure that all studies were
performed on molecules that show the expected antimicrobial activity. Our results confirm
that among latarcins, Ltc1, Ltc2a, and Ltc5 are the most active against the strains used
in this study, as expected from their charge/residue ratio (Table 1) and from their large
hydrophobic sector seen in Figure 1. Ltc3a and Ltc4a are slightly less active than Ltc1,
Ltc2a, and Ltc5. Ltc6a is only active toward Gram-positive strains, whereas Ltc7 can be
considered inactive, as it did not inhibit bacterial growth even at the maximum peptide
concentration of 256 µg/mL used here.

2.4. Hemolytic Activity

Compared to other antimicrobial membrane-active peptides, latarcins show rather low
hemolytic activity, which makes this set of peptides interesting for further pharmacological
optimization. A hemolysis assay was performed to determine the activity of latarcins
against human red blood cells, allowing us to compare the results to those of previous ex-
periments in which rabbit erythrocytes were used [7]. The activity was determined for each
latarcin as a function of increasing concentration, up to a maximum of 256 µg of peptides
per mL. The hemolytic activity of latarcins is seen to vary considerably among the different
peptides. Figure 4 shows that Ltc2a exhibits 100% hemolysis at 128 µg/mL. The percentage
hemolysis of the other peptides was determined at the highest tested concentration of
256 µg/mL. Our results show that Ltc1 resulted in 36% hemolysis, followed by Ltc5, which
resulted in 27%. Ltc3a and Ltc4a showed low hemolysis of 16% and 12%, respectively, at
256 µg/mL. Ltc6a and Ltc7 had the lowest hemolytic activity (<3%). These hemolysis data
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demonstrate that peptides in any group show comparable activity, with the exception of
Ltc 2a. Furthermore, our results show that the peptides with higher antimicrobial activity
also display higher hemolytic activity, suggesting that this effect is due to an intrinsic
perturbation on the lipid bilayer.

Figure 3. Minimal inhibitory concentration (MIC) values of all latarcins determined for two Gram-
positive (Bacillus subtilis subsp. spizizenii and Staphylococcus xylosus) and two Gram-negative strains
(Escherichia coli and Acinetobacter sp.). (A) Group A peptides (Ltc1 and Ltc2a); (B) Group B peptides
(Ltc3a and Ltc4a); (C) Group C peptide (Ltc5) and positive control (BP100); (D) Group D peptides
(Ltc6a and Ltc7).

Figure 4. Hemolytic activity of latarcins as a function of the peptide concentration.

2.5. Vesicle Leakage Activity

The ability of the peptides to induce leakage in large unilamellar vesicles (≈120 nm
diameter) of POPC/POPG (1/1) was studied using a fluorescence assay using ANTS/DPX,
as described previously [16–18]. The different latarcins resulted in very different extents
of leakage, as seen in Figure 5. The highly membrane-active peptide Ltc2a (a strongly
antimicrobial and hemolytic agent) caused the most vesicle leakage (75%). Unexpectedly,
Ltc6a and Ltc7, which had shown a very low antimicrobial and hemolytic activity, were
found to give a high degree of 50% leakage. Ltc3a and Ltc4a induced 20% leakage, while
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Ltc1 and Ltc5 caused less than 8%. These data clearly demonstrate that the action of each
peptide is highly dependent on the composition of the target lipid membrane.

Figure 5. Peptide-induced leakage of ANTS/DPX in large unilamellar vesicles made of POPC/POPG
(1/1) lipids at a P/L of 1/50.

To find out whether the latarcins display any synergistic effects amongst each other, as
has been reported for other classes of antimicrobial peptides, further leakage experiments
were performed with pairwise combinations. Each peptide was studied at P/L = 1/100
alone, as well as in combination with the other six peptides, where each peptide was
present at P/L = 1/100. The extent of leakage for every combination was compared to the
sum of the individual leakages. For synergy to be confirmed, the synergy factor needs to
be at least 2. We found, however, that for all peptide combinations, the synergy factor was
close to or below 1 (Figure S3). It can thus be concluded in the leakage assay that there is
no synergy amongst any pair of latarcins.

2.6. Oriented Circular Dichroism

While CD is a quick and easy method to determine the secondary structure of any
peptides when bound to a membrane, oriented CD (OCD) can be used to estimate the
orientation of an α-helical peptide with respect to the membrane normal [19,20]. From
Figure 2, we know that latarcins are helical, so we can now use OCD to distinguish whether
these helices are bound flat on the bilayer surface, tilted obliquely into the membrane, or
inserted fully in an upright orientation in the bilayer.

Figure 6 shows the OCD data of all latarcins measured in DMPC/DMPG (7/3) at a
P/L of 1/100. This is the same lipid composition and peptide-to-lipid ratio as was used in
conventional CD above (see Figure 2), but in contrast to the vesicular samples containing
excess water, the oriented membranes for OCD are just about saturated with water. Our
OCD results confirm that all peptides are α-helical in macroscopically oriented membrane
samples, with the exception of Ltc6a. Notably, in the presence of excessively hydrated
vesicles, Ltc6a also had the lowest helical fold according to conventional CD (Figure 2,
Table S1). Here, in the absence of bulk water (Figure 6), it actually displays characteristic
spectral features of a β-pleated conformation with a broad and intense positive band
centered around 197 nm and a less intense negative band at 219 nm.
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Figure 6. Oriented CD spectra of latarcins in oriented membrane composed of DMPC/DMPG (7/3)
at a P/L = 1/100 measured at 30 ◦C.

The sign and intensity of the 208 nm band provide a characteristic signature of the
helix tilt angle in the membrane [19]. For a helical peptide that lies flat on the bilayer
surface, this band is the most intense. When the helix is obliquely tilted in the membrane,
the 208 nm band intensity diminishes, as seen in the spectrum of Ltc2a. Our data show
that Ltc2a is, in fact, the most tilted peptide among all latarcins. Ltc5 also appears to be
tilted in the membrane according to the reduced intensity of the 208 nm band, but we note
that it shows absorption flattening towards the low wavelength region, which is indicative
of peptide-peptide interactions. That is, a similar reduction in the intensity of the 208 nm
band was also seen in the solution CD of Ltc5. We, therefore, believe that this may be
due to differential scattering artifacts in the OCD spectrum caused by vesicle clustering,
possibly due to the presence of a large number of aromatic residues in Ltc5 and that the
peptide may, in fact, be surface-bound. Ltc3a and Ltc4a seem to show only a modest tilt or
possibly an averaged spectrum of two states that are fluctuating between surface-bound
and tilted, according to the intensity at 208 nm. The spectra of Ltc1 and Ltc7, due to their
pronounced negative signals at 208 nm, indicate that both these peptides remain flat on the
membrane surface under the conditions of OCD.

2.7. Solid-State 15N-NMR and 31P-NMR

While OCD provides a rough picture of the peptide alignment, the helix tilt angle
can be measured rather precisely by solid-state NMR using the same type of oriented
membrane sample. The chemical shift of a 15N-label in the peptide backbone reveals the
angle between the helix axis and the bilayer normal: a 15N-NMR peak close to 70 ppm
indicates a flat orientation of the peptide on the membrane surface with the helix axis
perpendicular to the membrane normal. A peak at around 180 ppm indicates that the helix
has a transmembrane orientation, while peaks between 70 and 180 ppm represent peptides
with accordingly tilted orientations [21]. If the peptides are not helical, then the orientation
cannot be determined from these 15N-NMR spectra (which is why CD/OCD need to be
performed first), but other information may be available. Oriented NMR samples were
prepared at a P/L of 1/100 in DMPC/DMPG (7/3), as for CD/OCD. The 15N-NMR spectra
of all latarcins are summarized in Figure 7, along with the corresponding 31P-NMR spectra
of the phospholipid component. The 31P-NMR spectra are a good indicator of (i) the quality
of the membrane sample and can reveal (ii) any perturbing influence of the peptide on
the lipid bilayer. As seen in Figure 7, most of the peptides are accompanied by a high
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proportion of well-oriented lipids. Only Ltc6a and Ltc7 display a large orientational spread
of disordered lipids, suggesting that these long peptides can disturb the lamellar bilayer
considerably. This conclusion is supported by the vesicle leakage data above. The 31P-NMR
spectrum of Ltc2a shows a distinct second peak around 20 ppm, which is indicative of
phase segregation of DMPC and DMPG in the presence of the peptide, suggesting that
the anionic DMPG tends to cluster around this peptide with the highest charge density
per residue.

Figure 7. Solid-state NMR of 15N-labeled latarcin peptides in oriented samples of DMPC/DMPG
(7/3), showing 31P-NMR of the phospholipids on the left and 15N-NMR of the peptides on the right.
The 31P peak close to 28 ppm corresponds to oriented lipids, whereas the broad distribution and
the peak around −15 ppm come from unoriented lipids. The 15N-NMR powder spectrum at the top
encompasses the entire range of chemical shifts: an oriented signal as 65 ppm (black dotted line)
indicates that a peptide lies flat on the membrane surface; higher ppm values indicate that the helix
is slightly tilted in the membrane, while 180 ppm indicates an upright transmembrane alignment
(not seen here).
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Except for Ltc6a, all other peptides were found to be helical in the oriented membrane
samples according to OCD; therefore, we can now use the 15N-NMR spectra to determine
their orientation in the membrane more accurately. Ltc1, Ltc4a, Ltc5, and Ltc7 give 15N-
NMR signals around 70 ppm, indicating that these helices lie flat on the membrane surface.
Ltc2a, with a chemical shift of 131 ppm, on the other hand, is distinctly tilted in the
membrane, as was also observed in the OCD experiments. According to our previous
analyses of similar helical peptides, this chemical shift corresponds to a helix tilt angle
of around 30–40◦ away from the flat surface orientation [22–24]. Ltc3a, with a chemical
shift of 93 ppm, is tilted only slightly by 10–20◦. Ltc6a has a relatively broad 15N-NMR
signal at 82 ppm, and the 31P-NMR spectrum shows that this peptide strongly perturbs
the lipid bilayer. Given that OCD had shown distinct signs of aggregation into β-sheets,
we can conclude that Ltc6a binds to the membrane and perturbs the lipid bilayer, but
it is not possible to determine the molecular alignment of Ltc6a when it has most likely
formed aggregates.

3. Discussion

In this work, we present a biophysical characterization of the full set of seven latarcin
peptides in membranes, using CD, OCD, NMR, and vesicle leakage assay. Furthermore,
we correlate these results with the antimicrobial and hemolytic activities of latarcins. These
data are summarized in Table 2. All latarcins used in this study were synthesized with a
backbone 15N-label and purified before use. As described in the introduction, we divided
the seven peptides into four groups based on their (genetically unrelated) sequences and
properties. Here, we evaluate and discuss our results.

Table 2. A summary of the biophysical and biological data of latarcins.

Peptide % Helix (CD) a OCD b NMR b % Leakage c MIC d % Hemolysis e

Ltc1 66 Surface Surface 7 +++ 100

Ltc2a 81 Tilted Tilted 77 +++ 36

Ltc3a 87 Slight tilt Slight tilt 20 ++ 16

Ltc4a 94 Slight tilt Slight tilt 22 ++ 12

Ltc5 85 Surface Surface 4 +++ 27

Ltc6a 65 Aggregated Aggregated 46 + 3

Ltc7 89 Surface Surface 54 − 2
a CD in DMPC/DMPG (7/3), P/L = 1:50. b Orientational state of the helix in DMPC/DMPG (7/3), P/L = 1:100. c Vesicle leakage in
POPC/POPG (1/1), P/L = 1:50. d Minimum inhibitory concentration (MIC) showing relative activity of latarcins. The antimicrobial activity
is coded as: (−) inactive, (+) marginally active, (++) moderately active, and (+++) highly active. e Hemolytic activity determined at a
peptide concentration of 256 µg/mL towards human red blood cells.

Similar to most membrane-active peptides, all latarcins remained essentially unfolded
in aqueous phosphate buffer (Supplementary Figure S2). However, in the presence of
vesicles composed of DMPC/DMPG (7/3) at a P/L of 1/50, all of them were found to fold
into the expected amphipathic α-helical structures, as illustrated in Figure 1. The CD line
shapes (Figure 2) were deconvoluted to estimate the secondary structure contributions
(Supplementary Table S1) using the CDSSTR, CONTIN-LL, and SELCON-3 algorithms
provided on the DICHROWEB online server as described previously [17]. In group A, Ltc1
and Ltc2a show nearly identical spectral features with bands centered around 208 nm and
224 nm except for the positive band, which shows some blueshift for Ltc1 towards lower
wavelength with reduced intensity, indicating that some unordered part may be present in
this peptide. This result is also reflected in the helix content, which is significantly reduced
for Ltc1 (66%) compared to Ltc2a (81%). Figure 1 shows that the two peptides have a
similar hydrophobic sector, but Ltc2a has more distinct segregation between the polar and
nonpolar residues, which favors better membrane binding and folding. In Ltc1, on the
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other hand, two charges (Lys10 and Lys21) are placed within the hydrophobic patch, as
seen in the helical mesh representation. Group B peptides also have almost identical CD
spectra and show the highest helix content of 87% to 94% (Table 2). These two peptides
have the most distinct segregation of polar and nonpolar residues in the folded form and
are therefore expected to build ideal α-helices, as shown in Figure 1. Group C (Ltc5) also
shows similar hydrophobic and hydrophilic sectors, and this peptide is also expected to
form an α-helix where most residues remain in the folded form. Despite the somewhat
unusual line shape with a positive band shifted to the long wavelength and the rather
intense negative band centered around 225 nm (in comparison to the band at 210 nm), Ltc5
indeed shows very high helicity (85%). The peculiar shift of the long-wavelength band can
be attributed to the presence of a large number of aromatic residues (Table 1) in Ltc5. The
helical mesh presented in Figure 1 shows that the hydrophobic sector is dominated by the
presence of these aromatic residues. In peptides containing a high proportion of aromatic
residues, such shifts of the long-wavelength band are well documented [25,26]. Group D
peptides show rather large differences in their CD line shapes. Ltc6a has the lowest helicity
(65%), whereas Ltc7 shows a pronounced line shape with a high helicity of 89% (Table 2).
Given the nearly identical length and number of hydrophobic residues, this appears to be a
surprisingly large difference in the folded fraction for these two peptides. In comparison to
Ltc6a, Ltc7 has a larger and better separation between hydrophobic and hydrophilic sectors.
Ltc6a actually carries several bulky hydrophobic residues (Tyr15, Met18, and Leu33) in
its polar sector, unlike Ltc7, where Ala31 may be regarded as a rather inconspicuous side
chain. These residues may cause some unfolding or perturb the binding of Ltc6a, resulting
in an overall lower helicity. To conclude, the CD experiments, performed under identical
conditions, were important because: (a) they show for the first time that all latarcins are
highly helical in the presence of a lipid membrane, and (b) the evidently helical state allows
a subsequent determination of the helix tilt angle using oriented circular dichroism and
solid-state NMR techniques.

The antimicrobial and hemolytic activities of latarcins have been reported previ-
ously [10]. In this work, we confirmed the antimicrobial action of latarcins on two
Gram-positive and two Gram-negative bacterial strains. These results are presented in
Figure 3, together with BP100, a well-known multifunctional antimicrobial peptide [27]
that was used as a positive control. These data support the classification of latarcins into
the suggested four groups. Ltc1 and Ltc2a, belonging to Group A, have the highest antimi-
crobial activity and closely resemble Ltc5 from Group C. This result may be expected due to
the high charge per residue of these peptides (Table 1). Here, the MIC lies universally below
4 µg/mL irrespective of the bacterial strain, demonstrating their broad spectrum and rather
indiscriminatory mechanism of bacterial killing. Next, only marginally less active are the
Group B peptides comprising of Ltc3a and Ltc4a, where antimicrobial activity is observed
in the range of 8–32 µg/mL. Similar to Groups A and C, Group B is also universally active
on all strains. The peptides in Group D are less active. Here, Ltc6a inhibits the growth
of the Gram-positive strains only, whereas Ltc7 does not inhibit bacterial growth up to a
peptide concentration of 256 µg/mL. Although Ltc7 was found to be ineffective against the
selected strains that have been tested here, it is conceivable that it may be active against
other bacterial strains found in the habitat of the spider L. tarabaevi or that it may have
some activity against other microorganisms or fungi.

Hemolysis assays were performed on human erythrocytes, in contrast to earlier assays
performed on rabbit erythrocytes in the literature [7]. Figure 4 shows that the hemolytic
action of latarcins varies widely. The Group A peptides (Ltc1 and Ltc2a) have the highest
hemolytic activity, with Ltc2a being the most hemolytic of all. They are followed by the
Group C peptide (Ltc5), which is less hemolytic than Group A peptides. Group B (Ltc3a
and Ltc4a) shows rather low hemolysis, which is noteworthy given their high antimicro-
bial action. Finally, Group D (Ltc6a and Ltc7) showed no or marginal hemolysis. The
order of the hemolytic activity of the seven latarcins thus follows the same order as of
the antimicrobial activity (Table 2). This finding suggests that the peptides have an indis-
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criminatory effect on the lipid membranes of bacteria or erythrocytes. Apparently, those
peptides that are able to kill bacteria are also able to induce hemolysis of human erythro-
cytes, despite their fundamentally different lipid compositions, electrostatic properties,
and transmembrane potentials.

We may, at this point, speculate about two hypothetical conclusions regarding the
biological membrane activity of the latarcin peptides. The first observation is that latarcins
do not seem to be able to discriminate between different target membranes, given the same
relative activities against different types of biomembranes, i.e., of prokaryotic and eukary-
otic cells. This unspecific target selection of latarcins appears quite plausible, considering
the venom’s purpose to disinfect the venom gland, paralyze and sterilize the prey, and
inflict pain and deter predators. The second hypothesis is that the peptides themselves
have encoded distinctly different degrees of activity and may therefore display functional
specificity toward lipid membranes in general. This means, for example, that Group D
peptides (Ltc6a and Ltc7) do not show much activity in bursting (bacterial or erythrocyte)
membranes but may display some rather different kinds of membrane activity, such as cell
penetration or others (which have NOT been tested here). At the same time, peptides in
Group A were found to be highly active against bacteria and erythrocytes, but they may
not show a good ability for more subtle membrane interactions.

One way to test these hypotheses is to study the effects of the peptides against
well-defined model membrane systems using a fluorescence leakage assay, which shows
whether the peptides can directly induce rapid membrane permeabilization. Here, we used
POPC/POPG (1/1) bilayers with a high proportion of anionic lipids. We found that our
results support the concept of functional specificity. Ltc2a is extremely effective at inducing
leakage in POPC/POPG vesicles, making this peptide an overall “membrane buster” that
has an indiscriminatory response to bacterial membranes, eukaryotic membranes, and
vesicles composed of synthetic lipids. The other Group A peptide, Ltc1, shows very low
fluorescent leakage despite having similar properties as Ltc2a, and the same is true for
Group C (Ltc5). It may have been expected that the high positive charge/residue ratio
of these two peptides should provide sufficient electrostatic attraction to anionic vesicles
and thus induce a high extent of leakage. Instead, we found that they induced the least
leakage in vesicles made from POPC/POPG. From the CD and NMR results, it is clear
that these peptides bind well but do not aggregate or perturb the bilayer, yet they are
antimicrobial (Table 2). Taken together, these results suggest that the two peptides, Ltc1
and Ltc5, might have intracellular targets in bacteria and can penetrate the lipid bilayer
without much physical damage. The two Group B peptides (Ltc3a and Ltc4a) show a
relatively low extent of leakage (20%), comparable to their low hemolysis, with moderate
antimicrobial activity. Group D peptides (Ltc6a and Ltc7), on the other hand, show either
low or no antimicrobial (or hemolytic) activity but induce considerable vesicle leakage
of 50% (Table 2). This means that they show specific action against the PC/PG model
membranes but not against bacteria and erythrocytes. This finding suggests that the last
two peptides, which showed no activity in our biological assays, may have other activities
that are relevant for the spider.

Another possibility that we investigated here was the question of whether there could
be any synergistic effects between the peptides. It is conceivable that some peptides do
not show any impressive activity per se but turn out to be highly active in combination
with another peptide partner. Such synergy is readily tested in a leakage assay because
much smaller amounts of peptides are needed compared to antimicrobial and hemolytic
experiments, and many samples can be prepared and measured effectively. All pairwise
combinations of the seven latarcins were tested, but no synergy was found for any pair.

To obtain some molecular impressions of the underlying peptide-lipid interactions,
the membrane alignment of the latarcins was examined using two complementary tech-
niques, namely OCD and solid-state 15N-NMR. Both of these methods use identical sample
preparation, where lipids are oriented on glass surfaces and well hydrated but without any
excess water. Under these conditions, the peptides remain fully bound to the membrane
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and do not float away into regions of bulk water. The orientation of the α-helical peptides
can be determined using these two methods, as seen in Figures 6 and 7. OCD clearly shows
that within Group A, the helix of Ltc1 is found to lie flat on the membrane surface. Ltc2a,
on the other hand, is the most tilted peptide of the entire series. Interestingly, Ltc2a also has
the highest membrane permeabilizing activity and the least selective effect on bilayers of
different compositions. Group B peptides (Ltc3a and Ltc4a) show similar spectral profiles,
indicating that both are surface-bound or very slightly tilted in the membrane. Ltc5 (Group
C) and Ltc 7 in Group D were also found to lay flat on the membrane surface in the OCD
experiments. Our results clearly indicate that when peptides bind to the membrane, they
may not fold completely, even though they seemed to fold from the CD line shapes in
TFE or in the presence of bulk water; thus, OCD is a unique way of determining the fold
change of the peptides in the membranous environment. Such structural transitions have
been observed previously, where otherwise helical peptides tend to unfold to aggregate as
β-sheets in the 2D plane of the membrane [28,29]. In fact, Ltc6a loses its helical fold and
aggregates in the oriented membrane samples prepared for OCD and 15N-NMR analysis;
therefore, one cannot determine its alignment within the membrane.

The solid-state 15N-NMR results (Figure 7) nicely confirm the peptide orientation
observed by OCD (Table 2). In these experiments, Ltc2a was found to be the most tilted
helix in the membrane, with a signal around 130 ppm. Ltc3a is tilted slightly in the
membrane, with a peak around 93 ppm, in line with our OCD results. All other latarcins
show a 15N-NMR signal around 64–68 ppm, indicating that these helices are surface-
bound. (Additionally, Ltc5 shows a signal clearly indicative of a surface-bound state, which
confirms our interpretation of the OCD data above, which had been challenged by the
presence of numerous aromatic residues.)

The 31P-NMR data show that most peptides do not perturb the lamellar bilayer order.
The Group D peptides are an exception in producing a high mosaic spread (i.e., orientational
disorder) of the lipids, and indeed they also show high vesicle leakage. Perhaps the most
striking observation here is the fact that Ltc2a is the only peptide to induce lipid segregation:
besides the usual signal at 26 ppm, a second 31P-NMR peak is seen to have emerged around
21 ppm in Figure 7. Such additional signal is sometimes observed in 31P-NMR of cationic
amphiphilic peptides in a DMPC/DMPG matrix [30,31], especially in cases where lipid
clustering has been demonstrated [32]. We, therefore, attribute the 31P-NMR signature
of Ltc2a to its ability to induce lipid segregation due to its high charge. Furthermore, a
significant upfield shift of a 31P-NMR signal would be expected if the lipids are motionally
averaged by diffusing through a highly curved environment. The latter effect would indeed
be plausible if Ltc2a were to cause a dimple in the bilayer due to its high tilt angle of 30–40◦

away from the membrane surface according to 15N-NMR.
Compared to the other latarcins, it is likely that the very high charge density in

Ltc2a (11 Lys amongst 26 amino acids, see Table 1) and its pronounced amphiphilicity
(11 hydrophobic residues) contribute to its particularly disruptive membrane interactions.
The most unusual feature of Ltc2a, in our opinion, is the strip of hydrophobic amino acids
that does not run in parallel along but rather diagonally around the helix axis, as seen in
the helical mesh representation of Figure 1. This amphiphilic profile is closely reminiscent
of a coiled-coil motif—a pattern that is typically known to drive the assembly of two (or
more) α-helices in an aqueous solution. In the case of Ltc2a, however, we suggest that
this particular structural element is instead critically important in modulating its preferred
mode of membrane binding. Given the 180◦ angle by which the hydrophobic strip is
wrapped around the helix, the fully folded Ltc2a molecule is expected to be quite unable
to bind straight onto the flat membrane surface, unlike most other known amphiphilic
peptides. Instead, the Ltc2a helix will be forced to insert more steeply into and possibly
across the lipid bilayer in a slanted manner in order to optimize its hydrophobic contacts
with the lipids, as was indeed observed here by OCD and NMR (Figures 6 and 7). This
unusual kind of coiled-coil amphiphilicity is described and interpreted here for the first
time with regard to a membrane-active peptide. It should be noted that Ltc1 possesses a
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similar coiled-coil pattern at first sight (see Figure 1), but its hydrophobic strip is interrupted
by two cationic residues (Lys10, Arg15). Therefore, it is much easier for Ltc1 to adjust to
the flat membrane surface by kinking. Indeed, the helicity of Ltc1 is found to be lower than
for Ltc2a in the membrane-bound state, according to CD (Figure 2). The other members of
the latarcin family display no coiled-coil features, as their amphiphilic profiles run parallel
to the helix axis in all cases. With its peculiar and well-defined coiled-coil motif and its
resultant vigorous membrane interactions, Ltc2a stands out distinctly from Ltc1 and the
other latarcins and also in all of the functional assays that were studied here. Ltc2a is found
to be the most aggressive and least selective membrane-permeabilizing agent, with an
extremely high antimicrobial, hemolytic, and leakage-inducing activity.

In summary, our results show that the amphiphilic latarcin helices lie on the mem-
brane surface or can tilt slightly into the lipid bilayer. It is tempting to speculate that,
mechanistically, the entire group of seven peptides covers a wide spectrum of activities
and specificities. Some act via lipid clustering and massive permeabilization (Ltc2a) or
by disordering the lamellar bilayer (Ltc6a, Ltc7), while others might be able to translocate
non-perturbingly towards intracellular targets (Ltc1, Ltc5). Some are highly antibiotic
but show low hemolytic effects (Ltc3a, Ltc4a, Ltc5a), while others destroy membranes
indiscriminately (Ltc2a), and yet, others are inefficient antibiotics but permeabilize lipid
bilayers (Ltc6a, Ltc7). Given the absence of any pairwise synergy, these diverse features
highlight the multiple purposes of spider venom.

4. Materials and Methods
4.1. Materials

15N-labelled amino acids were purchased from Cambridge Isotope Laboratories (An-
dover, MA, USA) and were Fmoc-protected using Fmoc-Cl as described previously [33]. The
lipids 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), 1,2-dimyristoyl-sn-glycero-
3-phosphatidylglycerol (DMPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine
(POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), were pur-
chased from NOF Europe (Grobbendonk, Belgium). The fluorescent lipid 1,2-dioleoyl-
sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rhod-PE) were
obtained from Avanti Polar Lipids. The fluorescent probes 8-amino-naphtalene-1,3,6-
trisulfonic acid sodium salt (ANTS) and p-xylene-bis(pyridinium)bromide (DPX) were
obtained from Invitrogen-Molecular Probes (Karlsruhe, Germany).

4.2. Peptide Synthesis

Latarcins were synthesized using Fmoc solid-phase peptide synthesis protocols as
previously described [32,34,35]. Briefly, as listed in Table 1, Ltc1, Ltc2a, Ltc6a, and Ltc7
were synthesized as C-terminal acids using Fmoc-Glu(OtBu)-Wang resin, Fmoc-His(Trt)-
Wang resin, Fmoc-Leu-Wang-LL-resin, and Fmoc-Ser(OtBu)-Wang-LL-resin, respectively.
Ltc3aa, Ltc4a, and Ltc5 were synthesized as C-terminal amides using Rink Amide MBHA
resin. Automated peptide synthesis was performed on a Syro II multiple peptide synthe-
sizer (Syro II; MultiSyntech, Witten, Germany) on a 100 µmol scale except for Ltc6a and
Ltc7 for which an equivalent of 50 µM low load (LL) resin was used. Double coupling
was performed using 100 µM chemistry with 4 equivalent excesses of amino acids using
HOBt/HBTU in the presence of DIPEA. For solid-state NMR experiments, each latarcin was
labeled at the backbone nitrogen at the underlined position (Table 1) using Fmoc-15N-Leu,
Fmoc-15N-Ile, or Fmoc-15N-Phe. These amino acids were coupled manually using 2 equiv-
alent excesses of isotope-labeled amino acids using the same method as described above
except that the coupling was extended for overnight to ensure complete coupling. Crude
peptides were cleaved using previously described methods [32,34,35] and purified using
C18 semi-preparative high-performance liquid chromatography (HPLC) methods with
water/acetonitrile gradients containing 5 mM HCl as described previously [35,36]. Gradi-
ents were individually optimized for each peptide to obtain high purity. The identity and
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purity (>95%) of the peptides was confirmed using analytical HPLC (Agilent Technologies,
Waldbronn, Germany) coupled to a mass spectrometer (q-TOF, Bruker, Bremen, Germany).

4.3. Vesicle Leakage Assay

For the leakage experiments, the buffer in which the vesicles were prepared contained
the fluorophore ANTS (12.5 mM), the quencher DPX (45 mM), 50 mM NaCl, and 10 mM
HEPES (pH 7.5). Liposomes were prepared by co-dissolving POPC/POPG 1/1 (mol/mol)
lipids in CHCl3/MeOH (3/1 v/v), together with 10−2 mol% Rhod-PE, by which the lipid
loss during vesicle preparation (extrusion and gel filtration, see below) could be quantified.
The peptide-to-lipid ratio (P/L) is given in mol/mol. The lipid mixture was dried under
N2(g) and dried under vacuum for 2–4 h. The obtained thin film was then re-suspended
in the buffer, which contained the fluorophore and the quencher, by vigorous vortexing,
followed by 10 freeze–thaw cycles. Large unilamellar vesicles (LUV) were obtained by
41-fold extrusion (Avanti Mini Extruder; Avanti Polar Lipids, Alabaster, AL, USA) of the
liposomes through a Nuclepore polycarbonate membrane (pore size 100 nm, Whatman-GE
Healthcare Europe, Freiburg, Germany) at a temperature 20 ◦C above the lipid phase
transition. Unencapsulated dye was removed by gel filtration using spin columns filled
with Sephacryl 100-HR (Sigma-Aldrich, Taufkirchen, Germany) and equilibrated with
an elution buffer (150 mM NaCl, 10 mM HEPES, pH 7.5), which balances the internal
vesicle osmolarity.

The leakage of entrapped ANTS was monitored by fluorescence dequenching of
ANTS [18]. Fluorescence measurements were performed in a thermostated cuvette with
constant stirring at 30 ◦C in the elution buffer used for gel filtration on a FluoroMax2
spectrofluorimeter (HORIBA Jobin Yvon, Unterhaching, Germany) by setting the ANTS
excitation wavelength to 355 nm and its emission wavelength to 510 nm. Peptide stock
solutions in water were prepared, and the peptide concentration was calculated from the
weighed amount. The vesicles (100 µM lipid final concentration) were added to the cuvette
containing the peptide at a concentration according to the P/L ratio to be tested. The
fluorescence signal was followed for 10 minutes, and after that time, Triton X-100 was
added to completely disrupt the vesicles. The level of 0% leakage corresponded to the
fluorescence of the vesicles immediately after their addition, while 100% leakage was the
fluorescence value obtained after the addition of Triton X-100.

The synergy of the peptides towards vesicle leakage was investigated by pair-wise
combinations of latarcins. The leakage was measured for each peptide alone at P/L = 1/100
and for peptide combinations at P/P/L = 1/1/100. The synergy factor, SF, is calculated
according to:

SF = L(P1 + P2)/[L(P1) + L(P2)]. (1)

Here, L(P1) is the leakage of peptide 1 alone, L(P2) is the leakage of peptide 2 alone,
and L(P1 + P2) is the leakage for the mixture of the peptides. An additive effect gives a
synergy factor of 1, whereas a synergy factor of 2 or more would indicate synergy. Peptides
were mixed in the buffer before vesicles were added. The experiments were repeated at least
three times using different batches of vesicles and peptide solution. The SF was determined
separately for each batch of samples, and then the individual SF values were averaged.

4.4. Circular Dichroism Spectroscopy

Small unilamellar vesicles (SUVs) for the CD measurements were prepared as fol-
lows. Weighed amounts of the lipid powders (DMPC, DMPG) were dissolved in chlo-
roform/methanol 1/1 (v/v) to obtain 5 mg/mL stock solutions. For obtaining mixed
DMPC/DMPG liposomes (7/3 molar ratio), the appropriate aliquots of these stock solu-
tions were pipetted in a glass vial and thoroughly vortexed. The organic solvents were
removed under a gentle stream of nitrogen gas, followed by 3 h of vacuum pumping in an
exsiccator at a reduced pressure of 3-4 mbars to remove solvent residuals from the lipid
film that had formed in the vial. The lipid film was dispersed by the addition of 10 mM
phosphate buffer (PB) pH 7.0 and homogenized by vigorously vortexing for 10 × 1 min
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and 10 freeze–thaw cycles. SUVs were formed by sonication of the obtained multilamellar
vesicles for 16 min in a strong ultrasonic bath (UTR 200, Hielscher, Germany). The temper-
ature of the water in the ultrasonic bath was adjusted to 35 ◦C by circulating it through
a thermostat to avoid overheating the samples. A weighed amount of the corresponding
peptide was dissolved in water resulting in stock solutions with a peptide concentra-
tion of 0.5 mg/mL. For the final CD samples, each peptide stock solution was diluted to
29.3 µM and the corresponding lipid dispersion to 1.47 mM in 10 mM PB, resulting in a
peptide-to-lipid (P/L) ratio of 1/50.

CD spectra of the latarcins in membrane-mimicking DMPG / DMPC 7/3 liposomes
were recorded on a J-815 spectropolarimeter (JASCO, Groß-Umstadt, Germany). The
samples were measured in a 1-millimeter path length quartz glass cell (Suprasil, Hellma
Müllheim, Germany) between 260 and 185 nm at 0.5 nm intervals. Spectra of the liposome
samples were recorded at 30 ◦C, i.e., well above the phase transition temperature of the
lipids, using a water-thermostated rectangular cell holder. Three repeat scans at a scan rate
of 10 nm min−1, 8 s response time, and 1 nm bandwidth were averaged for each sample,
and the baseline spectrum of the respective peptide-free sample was subtracted from the
sample spectrum. CD spectra were smoothened by a Savitzky-Golay filter (convolution
width of 15 data points), which is implemented in the Jasco Spectra Analysis software. The
molar concentration of each latarcin peptide stock solution was determined based on the
weight of the added peptide and the volume of the solution. The peptide concentration
in the final liposome CD samples was calculated from the respective dilution factors and
used for conversion to mean residue ellipticity units.

4.5. Oriented Circular Dichroism Spectroscopy

To prepare oriented CD (OCD) samples, latarcins depending on their solubility were
dissolved either in pure MeOH or CHCl3/MeOH 1/1 (v/v) and thoroughly mixed with
appropriate aliquots of DMPC/DMPG solutions (7/3 molar ratio) in the same solvent.
Each co-dissolved mixture with a peptide-to-lipid molar ratio of 1/100 was deposited on
a quartz glass plate using a gas-tight syringe. To achieve a spot size of 12.5 mm on the
20 mm diameter plates (Suprasil QS, Hellma Optik GmbH, Jena, Germany), a volume of
~55–60 µL was used. The organic solvents were evaporated in a gentle stream of air until
the sample appeared dry. The amounts of deposited lipid and peptide on the plate were
always 0.29 µmole and 2.9 nmole, respectively. The peptide-lipid-film was further dried
under reduced pressure for at least 3 h. Afterwards, each plate with the dried sample
was fixed and sealed by a polymer O-ring in a cylindrical sample holder. The plate with
the sample and a second window plate without the sample formed a compartment for
controlled hydration. The holder was assembled in a custom-built hydration cell. In
the inner compartment of the sample holder, the peptide-lipid film was hydrated for
about 15 h at 30 ◦C and 97% relative humidity via the gas phase by a saturated K2SO4
solution contained in an adjacent cavity of the hydration cell. During hydration, the lipids
spontaneously align as lipid bilayers that are macroscopically oriented perpendicular to the
glass surface. For the measurement, the holder was transferred to an OCD sample cell that
had been developed and built in-house [20]. It is computer-controlled and can be integrated
into a Jasco spectropolarimeter as an accessory. The optical path runs along the cylindrical
axis of the cell, i.e., normal to the quartz glass plate surface carrying the oriented lipid film.
To reduce possible spectral artifacts caused by linear dichroism (LD) or linear birefringence
(LB) due to imperfections in the sample, strain in the quartz glass or imperfect alignment of
the windows, the OCD spectra were recorded in steps of 45◦ by rotation of the cell around
the beam axis [19,20]. At each angle, two scans were recorded from 260–185 nm as an
average, using a scan rate of 20 nm min−1, 4 s response time, and 1 nm bandwidth. The
same parameters were chosen for the baseline of the respective peptide-free sample. The
eight rotational spectra were subsequently averaged, and the baseline spectrum of lipid
bilayers without peptide was subtracted. For a better comparison of spectral features, the
OCD spectra of the different latarcins were normalized to an arbitrary ellipticity value of
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−10 mdeg at the corresponding long-wavelength negative peak maximum and the spectra
in Figure 6 are shown in arbitrary units (a.u.).

4.6. Solid-State 15N-NMR

Macroscopically oriented NMR samples were prepared by co-dissolving appropriate
amounts of peptides and lipids (in 300 µL methanol, 100 µL CHCl3, and 10–20 µL Milli-Q
water) and spreading them onto 23 thin glass plates of dimensions 9 mm × 7.5 mm × 0.08 mm
(Marienfeld Laboratory Glassware, Lauda-Königshofen, Germany). The peptide-to-lipid
ratio (P/L) is given in mol/mol. The plates were dried in air for 1 h, followed by drying
under vacuum overnight. The plates were stacked and placed into a hydration chamber
with 96% relative humidity at 48 ◦C for 18–24 h before wrapping the stack in parafilm and
plastic foil for the NMR measurements. All solid-state NMR measurements were carried
out on a Bruker Avance 500 MHz spectrometer (Bruker Biospin, Karlsruhe, Germany) at
308 K, as previously reported [23,24,37,38]. The oriented membrane samples were placed
in the flat-coil probe such that the lipid bilayer normal was aligned parallel to the magnetic
field. 31P-NMR was used to check the quality of the lipid orientation in the samples, using
a Hahn echo sequence with phase cycling [39]. The 90◦ pulse length was 3.9 µs, the echo
time was 30 µs, and 17 kHz 1H SPINAL64 decoupling was used. 1H-15N cross-polarization
experiments using a CP-MOIST pulse sequence [40] were performed using a double-tuned
probe with a low-E flat-coil resonator (3 mm × 9 mm cross-section), employing a 1H and
15N radiofrequency field strength of 65 kHz during the cross-polarization and 25 kHz 1H
SPINAL16 [41] decoupling during acquisition. A mixing time of 500 µs was used, and
10,000 to 30,000 scans were accumulated. The acquisition time was 10 ms, and the recycle
time was 3 s. The 15N chemical shift was referenced using the 1H-NMR signal of water in
the sample.

4.7. Minimum Inhibitory Concentration

The minimum inhibitory concentration (MIC) was determined as previously re-
ported [35,42]. For each latarcin, MIC was determined against two Gram-positive strains,
namely Bacillus subtilis subsp. spizizenii (DSM 347) and Staphylococcus xylosus (DSM 20267),
and two Gram-negative strains: Escherichia coli (DSM 1116) and Acinetobacter sp. (DSM
586). Bacterial cultures were grown in Müller-Hinton medium (MHM) as described pre-
viously [42], and peptides were dissolved in sterile water containing 10% DMSO. The
stock solution of peptides with 1024 µg/mL was prepared such that serial dilutions of
peptides (from 256 µg/mL to 2 µg/mL) in MHM were prepared in 96-well plates with the
penultimate column without peptide to act as positive control (no peptide) and the final
column as negative control (no bacteria). Bacterial stock suspension was made with an OD
of 0.2 units at 550 nm. This stock solution was further diluted (1:1000 for Gram-negative
bacteria and 1:100 for Gram-positive bacteria), and subsequently, 50 µL of the resulting
bacterial suspension was added to the wells except the final well to give a final concentra-
tion of 106 colony-forming units per mL. Afterwards, the 96-well plates were incubated at
37 ◦C for 20 h, and cellular respiration was detected by adding 20 µL of resazurin solution
(200 µg/mL) for an additional 2 h at the same temperature. The MIC value was determined
by detecting a distinct color change from blue to pink at the lowest concentration of the
peptide, which successfully inhibited bacterial growth.

4.8. Hemolysis Assay

The influence of latarcins on human erythrocytes was determined by using a hemolysis
assay modified from previously published methods [35]. Blood was obtained from the
blood bank of the local hospital in Karlsruhe and stabilized with citrate phosphate dextrose
buffer. Erythrocyte suspension (5 mL) was taken up in Tris buffer (45 mL, 172 mM, pH 7.6)
at room temperature, gently mixed, and centrifuged (1500 rpm, 10 min). The supernatant
solution was removed, and Tris wash was repeated twice with 45 mL as above. The washed
erythrocytes (1 mL) were suspended in 9 mL Tris buffer to make the stock cell suspension,
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which was then further diluted to 0.25% (v/v) at 37 ◦C before use. Peptide stock solutions
were prepared with 1024 µg/mL in Tris buffer containing 10% DMSO, and serial dilutions
were prepared in the range of 512 µg/mL to 2 µg/mL as described previously [43]. For the
positive control, Triton X-100 (200 µL of 0.2% v/v) was used, and as the negative control,
Tris buffer (200 µL, 172 mM) was used. Erythrocyte stock cell suspension (200 µL) was
added to each of the samples and incubated for 30 min at 37 ◦C with gentle shaking before
determining the percentage of hemolysis as described previously [35,43].

5. Conclusions

In summary, we characterized the full set of latarcins in their membrane-bound state
using CD, OCD, and NMR experiments. This work adds new information on the secondary
state of peptides in the membrane, characterizes membrane alignment, and highlights
peptides that show a high aggregation tendency in the membrane. Our results show that
latarcins fold into α-helices upon membrane binding, as shown by solution CD experiments
(Figure 2). OCD and NMR data show that most of the helical peptides are surface-bound or
tilted in the membrane, which may further explain their mode of action (Figures 6 and 7).
The only exception is Ltc6a, which shows a low helix content in the presence of bulk water
but tends to aggregate in the membrane. Our work demonstrates how a given family of
peptides may act very differently depending on the target membrane (Figure 5). Ltc1, Ltc2a,
Ltc3a, Ltc4a, and Ltc5 are important peptides with high antimicrobial activity (Figure 3).
With the exception of Ltc2a, all show rather low hemolytic side effects or vesicle leakage and
are therefore promising candidates for further optimization (Figures 4 and 5). Furthermore,
low leakage and low membrane perturbation, as seen by the solid-state NMR of most
of the active latarcins, indicate that latarcins may have intracellular targets responsible
for bacterial killing. Given the rise in antimicrobial infections, such naturally optimized
peptides with fewer side effects may offer promising antibiotics in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms221810156/s1, Figure S1: Analytical HPLC chromatograms of the purified latarcins,
Figure S2: Circular dichroism spectra of latarcins in 10 mM phosphate buffer at a defined pH of 7 at
30 ◦C, Figure S3: Synergy of leakage for pairwise combinations of long latarcins, Table S1: Secondary
structure fractions (in %) of Latarcins.
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