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Abstract: Specific macromolecules are rapidly transported across the nuclear envelope via the
nuclear pore complex (NPC). The selective transport process is facilitated when nuclear transport
receptors (NTRs) weakly and transiently bind to intrinsically disordered constituents of the NPC,
FG Nups. These two types of proteins help maintain the selective NPC barrier. To interrogate
their binding interactions in vitro, we deployed an NPC barrier mimic. We created the stationary
phase by covalently attaching fragments of a yeast FG Nup called Nsp1 to glass coverslips. We
used a tunable mobile phase containing NTR, nuclear transport factor 2 (NTF2). In the stationary
phase, three main factors affected binding: the number of FG repeats, the charge of fragments, and
the fragment density. We also identified three main factors affecting binding in the mobile phase:
the avidity of the NTF2 variant for Nsp1, the presence of nonspecific proteins, and the presence
of additional NTRs. We used both experimentally determined binding parameters and molecular
dynamics simulations of Nsp1FG fragments to create an agent-based model. The results suggest that
NTF2 binding is negatively cooperative and dependent on the density of Nsp1FG molecules. Our
results demonstrate the strengths of combining experimental and physical modeling approaches to
study NPC-mediated transport.

Keywords: nuclear pore complex; FG Nups; nuclear transport receptors; NPC barrier mimic; agent-
based modeling; molecular dynamics; single molecule localization microscopy (SMLM)

1. Introduction

The nuclear pore complex (NPC) regulates selective and efficient transport of molecules
across the nuclear envelope [1]. The NPC is an 8-fold symmetric macromolecular com-
plex, which consists of multiple copies of approximately 30 proteins called nucleoporins
(Nups) [2–6]. Nups have different functions within the NPC. Whereas transmembrane
Nups anchor the NPC into the nuclear envelope, scaffold Nups create a passage through
the nuclear envelope. A third type of Nups, called FG Nups, are disordered and contain
repeated, hydrophobic phenylalanine and glycine (FG) motifs; they are grafted to the walls
of the NPC and help create a selective barrier [4,7–10]. To achieve transport events on
millisecond time scales [11–14], NPCs rely on many transient, weak interactions between
FG Nups and nuclear transport receptors (NTRs) which can carry cargo molecules [15–19].
Both hydrophobic and electrostatic interactions between FG Nups and NTRs appear to be
relevant for efficient transport [10,20–22].

The selective transport of macromolecules is essential for transcription, cellular sig-
naling, and other fundamental cellular processes [1,23]. Unsurprisingly, errors in selective

Int. J. Mol. Sci. 2021, 22, 10898. https://doi.org/10.3390/ijms221910898 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3043-331X
https://orcid.org/0000-0002-1605-3559
https://orcid.org/0000-0002-0914-0558
https://orcid.org/0000-0001-7004-4859
https://orcid.org/0000-0003-1928-4763
https://doi.org/10.3390/ijms221910898
https://doi.org/10.3390/ijms221910898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms221910898
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms221910898?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 10898 2 of 15

transport can lead to cellular dysregulation. Aberrant nucleocytoplasmic transport has
been implicated in aging, neurodegenerative disorders (e.g., amyotrophic lateral sclerosis,
Alzheimer’s disease, frontotemporal dementia, Huntington’s disease, Parkinson’s disease),
viral infections, autoimmune disorders, and cancer [24–27]. In pathological conditions,
Nups and/or NPC associated proteins can have missense mutations [28], protein alter-
ations (e.g., truncation, fusion) [29,30], and anomalous expressions [31,32]. Unfortunately,
efforts to fully understand the molecular mechanisms underlying NPC mediated transport
in physiological and pathological conditions have been impeded by several factors: (1) the
intrinsically disordered nature of FG Nups and their sequence heterogeneity; (2) the intri-
cacy of the spatial geometry of the NPC; and (3) the complexity of the environment within
the NPC. While important insight was obtained from studies in cellular models [11–14],
much of our understanding about NPC mediated transport comes from in vitro and in
silico (physics-based computational) studies assessing the roles of FG Nup assemblies,
NTR binding to FG Nups, effects of NTRs on NPC morphology, and the role of cellular
environment in effective transport [33–37]. Additionally, in vitro and in silico NPC (barrier)
mimics have been powerful tools for interrogating transport, probing interactions between
FG Nups and NTRs, and detailing NPC mediated transport [38–52].

One significant impediment to understanding the underlying mechanisms of NPC
mediated transport has been the challenge of describing individual binding interactions
between the FG domains and NTRs. This task is compounded by the cooperativity of the
multivalent interactions between FG Nups and NTRs. However, the impact of multivalent
interactions can become clearer when physical modeling approaches are used to interpret
experimentally derived data [35,37,53]. Here, we combined a two-dimensional in vitro NPC
barrier mimic with molecular dynamics and agent-based in silico models to investigate
binding between a yeast FG Nup called Nsp1 and an NTR called nuclear transport factor 2
(NTF2). Nsp1 is an essential NPC protein [54]. The constituent FG and FSFG repeats of
FG domain of Nsp1 are separated by hydrophilic linkers; this distribution of amino acids
contributes to repulsive/cohesive molecular interactions of FG Nups and can facilitate an
extended conformation for Nsp1 [20,48,55,56]. NTF2 is responsible for nuclear import of
Ras related nuclear protein in its inactive, GDP bound, form (RanGDP) and helps maintain
the directionality of nuclear transport [3,57]. NTF2 has two primary binding pockets
associated with FG binding; the W7AI64A mutant leads to largely abolished binding to
NPCs [58,59]. Together, these two proteins are an excellent model system to study the
kinetics of NPC transport [14,48,58,60].

When designing our in vitro assay, we considered the following features of the native
NPC: (1) in vivo, stationary FG Nups are closely packed within the NPC [10,61]; (2) nu-
cleocytoplasmic transport is affected by mobile NTRs, cargo carrying NTRs (transport
complexes), and nonspecific proteins (other cellular proteins within the NPC environment
that do not bind to FG Nups) [8,33,36,38,48,62]. To account for these features, we generated
a stationary phase of the NPC barrier mimic by covalently attaching a monolayer of yeast
Nsp1FG fragments [48,63] to glass surfaces in an oriented manner [64]. Fluorescently
labeled NTF2 was included in the mobile phase. Importantly, the mobile phase was a
tunable environment which could include both nonspecific proteins and specific NTRs.
Binding between Nsp1 and NTF2 was determined using fluorescence laser scanning. Fur-
thermore, we used our experimental data and molecular dynamics modeling of Nsp1FG
variants to guide our agent-based model (ABM). The combined approach allowed us to
assess individual interactions between NTF2 and Nsp1FG, delineate factors important for
efficient transport, and obtain new details on binding interactions between NTF2 and Nsp1.

2. Results
2.1. Characterizing the Stationary Phase of the NPC Barrier Mimic

Three His6-tagged Nsp1FG fragments with various numbers of FG repeats and dif-
ferent charges (Table S1A, Figure S1A) were purified. SDS gels of purified proteins are
shown in Figure S1B. We used diazo chemistry to attach His6-tagged protein monolayers
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to coverslips in an oriented manner. His6-tagged polyethylene glycol (PEG) was used
to saturate any remaining, unoccupied sites [64]. In our prior studies, we showed these
activated surfaces preferentially bound His6-tagged proteins; assembled surfaces had sat-
urated binding sites and were not perturbed by nonspecific proteins [64]. Additionally,
His6-PEG coated surfaces (control experiments) show minimal background and exhibit
non-fouling properties [64]. Importantly, the approach is compatible with quantitative
single molecule localization microscopy (qSMLM) and allows for robust molecular count-
ing [64]. Thus, we used qSMLM to determine the density of Nsp1FG fragments on the
surfaces. First, each of the Nsp1FG fragments was fluorescently labeled with Alexa Flour
647 (AF647); on average, we covalently attached one dye molecule per protein (degree
of labeling ~1). For each Nsp1FG fragment, a mixture of 1% labeled and 99% unlabeled
protein was covalently attached onto activated glass coverslips [64] at two incubating
concentrations: 3 µM and 30 µM. Subsequently, coverslips were imaged using qSMLM
(Figure 1A). Detected molecular densities were quantified following a previously described
method [64]. Low fluorescent protein content allowed us to detect sparse fluorophores
and attain robust signal counting. Our results indicated there was no significant difference
in detected surface densities between the Nsp1FG variants for the same incubating con-
centrations (Figure S1C). When averaged for three variants and adjusted for fluorescent
dilution, the obtained detected density of Nsp1FG was 689 Nsp1FG proteins/µm2 for
layers incubated with 3 µM proteins and 1380 Nsp1FG proteins/µm2 for layers incubated
with 30 µM proteins (Figure 1B). For corresponding detected densities, we simulated the
grafting distances of the Nsp1FG proteins (Figure S1D). For layers incubated with 3 µM
proteins, the grafting distance was 13.1 ± 0.9 nm. For layers incubated with 30 µM proteins,
grafting distance was 6.2 ± 0.2 nm, approaching that of the native NPC.
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Figure 1. Average detected surface density of Nsp1FGs. Activated glass coverslips were incubated (at 3 µM or 30 µM)
with one of three variants of Nsp1FG. (A) Representative ROIs showing localizations of Nsp1FG12-AF647. Scale bar, 5 µm.
(B) The average detected density for Nsp1FG surfaces at 3 µM incubating concentration (n = 30 ROIs, 6 independent
measurements for Nsp1FG5, Nsp1FG12, and Nsp1FG18) and at 30 µM incubating concentration (n = 30 ROIs, 6 independent
measurements for Nsp1FG12 and Nsp1FG18); * p ≤ 0.02. Error bars represent SEM.

2.2. Molecular Dynamic Simulations to Determine Radii of Gyration

To assess the molecular conformation of our surfaces, we determined the radius
of gyration for Nsp1FG5 and Nsp1FG12 fragments using a coarse-grained molecular
dynamics model. In these simulations, the initial conformation of Nsp1FG variants were
considered to be a straight line, perpendicular to the grafting surface. The obtained radii of
gyrations are shown in Table 1 while trajectories of these simulations and snapshots are
shown in the Supplementary Materials (Figure S2, Video S1). For simulated grafted polymer
chains, the radii of gyration were 4.3 nm for Nsp1FG5 and 6.7 nm for Nsp1FG12. This
represents the “mushroom” conformation of a single-grafted chain. The simulated grafting
distance in the less densely grafted Nsp1FGs (3 µM incubating Nsp1FG concentration,
Figure S1D) was larger than the simulated radii of gyration, suggesting a “mushroom”-
like conformation. On the other hand, the simulated grafting distance in the densely
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grafted Nsp1FGs (30 µM incubating Nsp1FG concentration, Figure S1D) was closer than
the dimension of an individual mushroom for Nsp1FG12, suggesting Nsp1FG12 and
Nsp1FG18 appear to adopt the conformation more consistent with the “brush” regime.

Table 1. Radii of gyration of Nsp1FG variants as determined from our molecular dynamics model.

Nsp1FG Variant Radius of Gyration (nm)

Nsp1FG5 4.3

Nsp1FG12 6.7

2.3. Binding of NTF2-YFP onto Nsp1FG Monolayers

We assessed binding between Nsp1FG fragments and NTF2 in two grafting regimes.
NTF2 tagged with yellow fluorescent protein (YFP) was purified with a two-step purifi-
cation method using HisPur Cobalt chromatography and size exclusion chromatography
(SDS gels of purified protein are shown in Figure S1B). Either wild type (WT) or W7AI64A
NTF2 mutant were used as NTRs in the mobile phase. Binding of NTF2-YFP to Nsp1FG
fragment monolayers was assessed under several conditions. Both the composition of the
mobile phase and grafting distance of the stationary phase were modulated. First, activated
glass coverslips were treated with either His6-PEG (at 50 µM incubating concentration)
or different Nsp1FG fragments (at 3 µM or 30 µM incubating concentrations followed by
His6-PEG at 50 µM incubating concentration). Using a hydrophobic pen, glass slides coated
with either Nsp1FG fragments or PEG (control) were divided into approximately 3 mm
× 5 mm areas and placed into a 10 cm dish with damp kimwipes to prevent evaporation.
Increasing concentrations of NTF2-YFP or NTF2W7AI64A-YFP (0–30 µM) were incubated
onto either Nsp1FG or PEG areas for 45 min at room temperature. Three conditions were
used in the mobile phase. (1) TBT buffer alone. (2) Nonspecific protein (10% bovine serum
albumin (BSA)) in TBT buffer. This BSA concentration was chosen to mimic protein density
within the cell [65]. (3) Nonspecific proteins and specific NTRs (10% Yeast Lysate (YL))
in TBT buffer. YL contains both nonspecific proteins, which do not bind to Nsp1, and
various NTRs (specific proteins) which can compete with NTF2 for binding to Nsp1. The
fluorescent intensity of YFP was detected using a Typhoon Imager (Figure 2).

Consistent with a number of previously reported in vitro assays that measured binding
between FG Nups and NTRs [33], the apparent Kd values for NTF2-YFP in TBT binding to
Nsp1FG surfaces for higher grafting density were in the nM range (Figure 3, black bars and
Table S1B). These values are too tight for efficient NPC transport. Due to a lower number of
FG domains, the apparent Bmax value for NTF2-YFP binding to Nsp1FG5 was significantly
lower than the apparent Bmax values for NTF2-YFP binding to Nsp1FG12 and Nsp1FG18
(Figure 3, black bars and Table S1C). When 10% BSA was included in the soluble phase, the
apparent Kd became much weaker for the binding of NTF2-YFP to all Nsp1FG fragments
(µM range), closer to values expected for efficient nucleocytoplasmic transport [11–14].
Additionally, the apparent Bmax values followed the same trend as with TBT buffer alone
(lowest value for Nsp1FG5). For all Nsp1FG fragments, the apparent Bmax values were
significantly lower when 10% BSA was included (Figure 3, black bars vs. dark purple
bars). This could be due to steric hinderance of some binding sites on Nsp1FGs at the
physiologically relevant concentration of nonspecific proteins. Furthermore, the apparent
Kd for NTF2W7AI64A-YFP (vs. WT NTF2-YFP, both in 10% BSA) decreased significantly
for the Nsp1FG5 surface, increased slightly but significantly for Nsp1FG12 surface, and
did not change for Nsp1FG18 surface. This effect could be due to the balance between the
number of available FG domains, Nsp1FG fragment charge, and the reduced ability of the
NTF2 double mutant to bind in the presence of nonspecific proteins. The apparent Bmax
for NTF2W7AI64A-YFP (vs. WT NTF2-YFP, both in 10% BSA) decreased significantly for
all 3 surfaces; Nsp1FG5 surfaces had the lowest Bmax value (Figure 3, dark purple bars vs.
light purple bars).
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Figure 2. NTF2-YFP and NTF2W7AI64A-YFP binding on Nsp1FG and PEG surfaces. (A) Left: Representative fluorescent
images and binding curves of NTF2-YFP; incubating [Nsp1FG variants] = 30 µM. Right: representative fluorescent images
and binding curves of NTF2W7AI64A-YFP; incubating [Nsp1FG variants] = 30 µM. Error bars represent SEM. n = 8 ROIs,
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variants] = 3 µM. Error bars represent SEM. In each case, n = 6 ROIs, 3 independent measurements.
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We next probed the binding of WT NTF2-YFP to Nsp1FG fragments in the buffer
containing 10% YL. Compared to 10% BSA condition (Figure 3, dark purple bars vs. dark
orange bars), the apparent Kd did not change appreciably (except for slightly tighter binding
on Nsp1FG12 surfaces). However, apparent Bmax values were significantly reduced for
all Nsp1FG fragments, likely due to binding of other available NTRs present in the YL.
There was no detectable binding of NTF2W7AI64A-YFP to Nsp1FG fragments in buffer
containing 10% YL (Figure 2A bottom right, Figure 3). NTRs present in YL are likely able
to outcompete NTF2W7AI64A. Thus, our assay could detect the effect of nonspecific and
specific proteins in the mobile phase. It was sensitive to both the composition of Nsp1FG
fragments and avidity of the NTF2 variant.

We next examined the binding of NTF2-YFP to Nsp1FG monolayers that were grafted
farther apart. Compared to WT NTF2-YFP in 10% BSA binding to densely grafted Nsp1FG
(30 µM incubating concentration), the apparent Kd for WT NTF2-YFP in 10% BSA binding
to less densely grafted Nsp1FGs (3 µM incubating concentration) decreased significantly for
Nsp1FG5, increased slightly but significantly for Nsp1FG12 surfaces, and did not change
for Nsp1FG18 surfaces. At the same time, the apparent Bmax values were substantially
reduced for Nsp1FG5 and Nsp1FG18. However, this decrease was much less pronounced
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for the Nsp1FG12 (Figure 3B, dark purple bars vs. dark teal bars). This result could be
partly attributed to the effects of electrostatic interactions at this grafting regime: the charge
at pH 7 is higher for Nsp1FG12 compared to Nsp1FG5 and Nsp1FG18 (Table S1). Binding
between NTF2W7AI64A-YFP (in 10% BSA) and less densely grafted Nsp1FGs (Figure 2B,
top right) was low for Nsp1FG12, barely detectable for Nsp1FG5, and not detectable for
Nsp1FG18 (apparent Bmax had an appreciable value only for Nsp1FG12). Compared to WT
NTF2-YFP in 10% BSA binding to less densely grafted Nsp1FGs, the apparent Kd values
were moderately reduced for Nsp1FG12 (Figure 3, dark teal bars vs. light teal bars). Thus,
the charge of Nsp1FG12 may contribute to interactions with mutant NTF2.

Finally, we probed the binding of NTF2 in buffer containing 10% YL to Nsp1FG
monolayers grafted farther apart. Binding to Nsp1FG5 was not detected, likely due to
the occupation of the few available binding sites by specific and nonspecific proteins at
this grafting regime. Compared to the binding of NTF2-YFP in 10% BSA, the apparent
Kd of NTF2-YFP in 10% YL did not change significantly and the apparent Bmax decreased
significantly for Nsp1FG12 (Figure 3, dark teal bars vs. dark yellow bars). Compared to
the binding of NTF2-YFP in 10% BSA, the apparent Kd of NTF2-YFP in 10% YL increased
significantly and the apparent Bmax did not change appreciably for Nsp1FG18 (Figure 3,
dark teal bars vs. dark yellow bars). We did not detect the binding between NTF2W7AI64A-
YFP (in 10% YL) and Nsp1FG fragments (Figure 2B bottom right, Figure 3).

2.4. Agent-Based Modeling Suggests Multivalent NTF2-Nsp1FG Interactions

To further characterize the interactions between Nsp1FG fragments and NTF2, the
in vitro NPC barrier mimic experiments were replicated using our ABM. Each ABM setup
was first simulated with single binding assumption between Nsp1FG fragments and
NTF2 (one NTF2 binds to one Nsp1). However, these simulations did not reproduce
experimentally obtained apparent Bmax values, which suggests that the single binding
assumption was incorrect. This observation is consistent with previous reports of complex
binding interactions between NTRs and FG Nups [47–49]. We next evaluated cooperative
binding events, assigning different probabilities of binding for each individual event.
We considered two cases: (1) a single NTF2 homodimer binds to multiple Nsp1FGs or
(2) multiple NTF2 homodimers bind to a single Nsp1FG. For our experimental conditions
(inclusion of nonspecific proteins), ABM results ruled out the first case (it would not provide
sufficient binding events to achieve apparent Kd and Bmax values from experiments) and
supported the second case (Kd and Bmax values that are in excellent agreement with
experimental results, Table 2). ABM data also indicated that initial binding event(s) were
much tighter compared to later binding event(s), indicating negatively cooperative binding
of NTF2 to Nsp1FGs. On the one hand, simulations of Nsp1FG5 suggest two binding
events at both grafting densities, but weaker binding on more densely grafted surfaces. On
the other hand, simulations for Nsp1FG12 suggest three binding events with less densely
grafted surfaces, but two binding events with more densely grafted surfaces. Thus, densely
grafted Nsp1FG12 fragments are not fully accessible to NTF2, likely due to their close
packing, consistent with the “brush” conformation.

Table 2. Obtained values for binding between NTF2-YFP and Nsp1FG fragments from the ABM simulations.

Input Kd1 Input Kd2 Input Kd3 Apparent Kd Apparent Bmax

Nsp1FG5 + BSA
3 µM surfaces 5.4 16.2 – 8.16 ± 0.26 24.15 ± 0.19

Nsp1FG5 + BSA
30 µM surfaces 10.2 38.25 – 15.16 ± 1.03 45.63 ± 1.90

Nsp1FG12 + BSA
3 µM surfaces 5.45 5.45 40 11.87 ± 0.35 50.59 ± 2.66

Nsp1FG12 + BSA
30 µM surfaces 2.2 4.89 – 4.35 ± 0.24 58.23 ± 3.81

All Kd values are µM and errors are SEM.
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3. Discussion

FG Nups are instrumental for maintaining rapid, bidirectional transport of macro-
molecules across the nuclear envelope and preventing translocation of nonspecific molecules.
Previous work has established that both FG Nups and NTRs are important components
of the selective barrier [34,38,46–49,66]. To determine the key factors that drive rapid,
selective transport within the complex NPC environment, interactions between NTRs and
FG Nups have been studied extensively [35,37]. Several studies have sought to elucidate
these interactions through FG Nup assemblies onto beads [33,67], nanopores [38,40], or
2D planar surfaces [46–48,50,52]. While experiments with stationary FG Nups need to
be interpreted carefully [51], they offer important insights into binding events. Here, we
used a fluorescence assay to assess the macroscopic binding of NTF2 to 2D planar FG Nup
surfaces. Since the experimental setup provides apparent Kd values and assessment of ap-
parent binding capacity (Bmax), we complemented experiments with molecular dynamics
simulation and ABM. The approach provided additional insight into the binding between
Nsp1FG and NTF2.

Our experimental setup employed diazo chemistry on glass surfaces [64] to covalently
attach His6-tagged FG Nup fragments in an oriented manner. We used FG Nup fragments
with different numbers of FG repeats and charge (Table S1). Because of its non-fouling
properties and minimal background in fluorescence assays, His6-PEG was included to
saturate unreacted sites. This assay is compatible with quantitative SMLM and allowed
us to determine detected surface densities of Nsp1FG fragments for two incubating con-
centrations: 3 µM and 30 µM proteins (Figure 1). Using simulations, we next determined
grafting distances for assembled protein monolayers (Figure S1D) and complemented
these data with radii of gyration obtained with molecular dynamics simulations in GRO-
MACS (Table 1). Our results indicate that for 3 µM Nsp1FG incubating concentrations, we
achieved a “mushroom” regime. In contrast, for 30 µM Nsp1FG incubating concentrations,
grafting distances approached those in the native NPC and data was more consistent
with the “brush” regime. This is in line with previous data on the average layer height
of Nsp1FG fragments [48] and our ABM results. Our assembled surfaces allowed us to
investigate binding between labeled NTRs and FG Nups using fluorescence scanning.

The binding constants between NTRs and FG Nups reported in in vitro studies are
frequently too tight to account for the rapid transport seen in vivo [11–14]. In agreement
with published reports [33], we found equilibrium binding of NTF2-YFP to Nsp1FGs
to be in the nM range in TBT buffer (Figures 2 and 3). In the presence of physiological
concentrations of nonspecific proteins (10% BSA), binding was in the µM range. Several
important conclusions stand out. (1) Higher apparent binding capacity was observed on
more densely grafted surfaces; this is consistent with a higher number of available Nsp1FG
molecules. (2) Increased grafting distance led to significant changes in the apparent Kd
for shorter Nsp1FG variants; however, the apparent Kd was not significantly affected for
Nsp1FG18. This effect could be due to the ratio between grafting distance and radius
of gyration for different fragments and/or the larger number of available binding sites
on Nsp1FG18. (3) When considering binding of NTF2 to Nsp1FGs, both the number of
FG repeats and fragment charge play an important role. In future studies, the details
associated with charge effects could be investigated using mutations on Nsp1FG fragments.
(4) WT NTF2-YFP binds with higher apparent binding capacity to Nsp1FGs compared to
mutant NTF2W7AI64A-YFP. On less densely grafted surfaces, NTF2W7AI64A-YFP binds
appreciably only to Nsp1FG12. In this grafting density regime and in the presence of non-
specific proteins, charge interactions appear to dominate when hydrophobic interactions
are reduced.

We investigated the effect of both specific and nonspecific proteins present in the
mobile phase using YL. For NTF2-YFP, no significant difference in binding was observed
for Nsp1FG18 surfaces at either grafting density; slightly weaker binding was observed on
Nsp1FG12 surfaces for the lower grafting density; and there was no binding to Nsp1FG5
surfaces for the lower grafting density. For NTF2W7AI64A-YFP no binding to Nsp1FG
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fragments was detected in all cases. NTRs from YL appear to fully displace mutant NTF2.
This is consistent with previous reports in cells [59]. Altogether, our experimental data
suggest that both the stationary phase and mobile phase play important roles in creating
an effective selective barrier.

To further investigate the interaction between Nsp1FG fragments and NTF2 molecules,
we developed an ABM of our experiments (mobile phase: WT NTF2-YFP with 10% BSA
in TBT). ABM results suggest that multiple NTF2 homodimers could bind to a single
Nsp1FG. However, it should be noted that in native NPCs, complex binding scenarios
could be envisioned: (1) a single NTF2 homodimer could bind to multiple Nsp1FGs or
multiple FG domains on a single Nsp1FG; (2) multiple NTF2 homodimers could bind to
a single Nsp1FG or to multiple Nsp1FGs; (3) a combination of interaction could occur.
While our ABM simulations did not directly test these cases, we speculate that, in native
NPCs, when many NTRs are present, NTF2 dimers could bind to a pool of accessible (and
entropically affordable) FG binding sites. The initial binding events had lower Kd values
and subsequent events had higher Kd values, which is consistent with reported negative
cooperativity of NTR binding to FG Nups [47–49]. For example, after the first and/or
second binding events, Nsp1FG binding regions could be less accessible to NTF2 dimers
due to molecular crowding or structural rearrangements. In the complex environment
of the NPC, prebound NTRs likely modulate binding of incoming NTRs. Altogether,
by combining experimental and physical modeling approaches, we identified important
factors that affect binding between NTRs and FG Nups and provided insight on binding
interactions and binding stoichiometry.

4. Materials and Methods

Materials. PEG-His6 was synthesized using Standard solid-phase N-αFmoc chemistry
on a CS136XT peptide synthesizer (C S BIO, Menlo Park, CA) at the City of Hope Peptide
Synthesis Core as previously described [64].

Proteins. His-tagged Nsp1FG5 (residues 262–359) and Nsp1FG12 (residues 262–492)
in pET30ATEV, and Nsp1FG18 (residues 262–603) in pET30A plasmids were kindly pro-
vided by Dr. M. Stewart [58]. Nsp1FG variants were transformed into BL21DE3 cells (New
England Biolabs, Ipswich, MA, USA). Cells grown in LB medium with kanamycin selection
were induced with 1mM IPTG at optical density (OD) 0.7 and harvested after 16 h at 25 ◦C.
Cells were resuspended in buffer A (50 mM sodium phosphate pH 8.0, 300 mM NaCl,
50 µM EDTA, 5 mg/mL 6-Aminohexanoic acid (Alfa Aesar, Ward Hill, MA, USA), protease
inhibitor cocktail tablet (Sigma, St. Louis, MO, USA: AEBSF 2 mM, Phosphoramidon 1 mM,
Bestatin 130 mM, E-64 14 mM, Leupeptin 1 mM, Aprotinin 0.2 mM, Pepstatin A 10 mM),
and lysed with a French press. Cell debris was removed with a 45-min spin at 45,000 RPM
in a Ti-70 rotor (Beckman, Brea, CA, USA). Nsp1FG variants were purified using HisPur
Cobalt resin (Thermo Scientific, Waltham, MA, USA) and buffer was exchanged to PBS.

For measurements of surface density, Nsp1FG variants were labeled with Alexa Fluor
647 NHS ester (Invitrogen, Waltham, MA, USA). A volume of 100 µL of 1 mg/mL protein in
PBS supplemented with 2 mM of sodium bicarbonate containing buffer was incubated with
3 times molar excess of dye (30 min at room temperature). After quenching with 150 mM
hydroxylamine HCl pH 8.5, unbound dye molecules were removed using Micro bio-spin
6 gel filtration columns (Bio-Rad, Hercules, CA, USA) equilibrated with PBS, and any
remaining aggregates were removed with Nanosep 300kD filers (PALL, Port Washington,
NY, USA). The degree of labeling for Nsp1FG-AF647 was determined using a Nanodrop;
the values ranged between 0.8 and 1.2 dye per protein.

His-tagged NTF2-YFP and NTF2W7AI64A-YFP in pET21b [38] were transformed into
BL21DE3 cells (New England Biolabs, Ipswich, MA, USA). Cells grown in LB medium with
ampicillin selection were induced with 0.1 mM IPTG at OD 0.65 and harvested after 16 h at
25 ◦C. Cell were resuspended in buffer B (50 mM sodium phosphate pH 7.5, 300 NaCl, 0.5%
Tween-20, protease inhibitor cocktail tablet (Sigma, St. Louis, MO, USA), and lysed with a
French Press. Cell debris was removed with a 45 min spin at 45,000 RPM in a Ti-70 rotor
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(Beckman, Brea, CA, USA). His-tagged NTF2 variants were purified in two steps using
HisPur Cobalt Superflow resin (Thermo Scientific, Waltham, MA, USA) and a Superose
6 Increase 10/300 or Superdex 200 Increase 10/300 column (GE Healthcare, Chicago, IL,
USA) equilibrated with TBT (20 mM HEPES pH 7.4, 110 mM potassium acetate, 2 mM
MgCl2, 10 µM ZnCl2, 10 µM CaCl2, 0.1% Tween-20).

Preparation of coverslips for measurement of Nsp1FG surface density. 25-mm #1.5
coverslips (Warner Instruments, Hamden, CT, USA) were cleaned [68], flame dried, and
stored in a dry place away from light. Coverslips were activated as described previ-
ously [64]. Briefly, cleaned coverslips were incubated with concentrated (12N) HCl for
3 min, followed by several rinses with distilled water and absolute ethanol. Then coverslips
were incubated with 9.4 mM ATMS (Gelest, Morrisville, PA, USA) in absolute ethanol for
30 min at room temperature, rinsed with absolute ethanol, air dried, and incubated with
freshly prepared 260 mM HCl and 5.2 mM NaNO2, in distilled water, for 30 min at 4 ◦C.
Coverslips were washed 3 times with ice cold sodium acetate, twice with water, and twice
with PBS. A volume of 150 µL of either 3 µM or 30 µM Nsp1FG fragments (1% Nsp1FG-
AF647 and 99% unlabeled Nsp1FG in PBS) were placed on the top of activated coverslips.
After a 30 min incubation at room temperature, coverslips were washed twice with PBS
followed by incubation with 50 µM PEG-His6 in PBS for 30 min at room temperature to
fill unreacted sites. Surfaces were imaged immediately after preparation in Attofluor cell
chambers (Life Technologies, Carlsbad, CA, USA) in 50 mM Tris (pH 8.0), 10 mM NaCl, and
10% glucose imaging buffer containing mercaptoethylamine (MEA, 100 mM) and GLOX
(10% v/v).

dSTORM imaging. Measurements were performed on a 3D N-STORM super-resolution
microscope (Nikon, Melville, NY, USA). The N-STORM system is a fully automatic Ti-E
inverted microscope with a piezo stage on a vibration isolation table. This system includes a
100× 1.49 NA TIRF objective (Apo), N-STORM lens, λ/4 plate, and Quad cube C-NSTORM
(97355 Chroma). The microscope has a Perfect Focus Motor, to maintain imaging at the
appropriate focal plane. An MLC-MBP-ND laser launch included 405, 488, 561, and 647 nm
lasers (Agilent, Santa Clara, CA, USA). Images were captured with an EM-CCD camera
iXon DU897-Ultra (Andor Technology, South Windsor, CT, USA). Data was acquired using
NIS-Elements 4.3 Software (Nikon, Melville, NY, USA). dSTORM images of 41 × 41 µm
were collected with an exposure time of 10 ms. 10,000 frames were acquired for each field of
view. For imaging AF647, the 647 nm laser power was ~120 mW. Fluorophore localizations
(above 700 photons) were extracted from raw image data using NIS-Elements and drift
correction was performed. The number of localizations were analyzed to determine the
average number of fluorophore appearances (localizations) per molecule and average
surface density using a custom MATLAB code [64].

Charge for Nsp1FGfragments. Nsp1FG variants were assessed for charge at pH
7.0 given the amino acid sequence using the Protein Calculator v3.4 (http://protcalc.
sourceforge.net/, accessed on 14 August 2021) through C. Putnam, The Scripps Research
Institute, USA. The pKa values used for the individual amino acids in these calculations
are provided from Stryer Biochemistry, 3rd edition.

NPC barrier mimic assay. Individual His-tagged Nsp1FG variants were attached
to standard microscopy slides (AmScope, 7101, Irvine, CA, USA) using ATMS/diazo
chemistry as described above. Briefly, cleaned slides were activated with 1 mL of 9.4 mM
ATMS, rinsed, air dried, and incubated with 1 mL of freshly prepared NaNO2. Slides were
washed 3 times with ice cold sodium acetate, twice with water, and twice with PBS. After
washing, the backs of the slides were dried with kimwipes and excess liquid was tapped
off. Slides were incubated with 1 mL of Nsp1FG variants diluted in PBS (either 3 µM or
30 µM final concentration) or 1 mL of PBS alone (for PEG-His6 controls). After 30 min,
slides were washed twice with PBS followed by covalent attachment of 50 µM PEG-His6 in
PBS. Slides were rinsed 3 times with PBS and excess liquid was tapped onto a kimwipe.
Slides were then divided into roughly 3 mm by 5 mm rectangles (a 4 by 8 grid) using an
ImmEdge Hydrophobic Barrier PAP pen (Vector Labs, Burlingame, CA, USA).

http://protcalc.sourceforge.net/
http://protcalc.sourceforge.net/
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Increasing concentrations of NTF2-YFP or NTF2W7AI64A-YFP in TBT were prepared
and 3 µL was added to each rectangle. Where indicated, the mobile phase was supple-
mented with either 10% (w/v) filter sterilized BSA (Sigma, St. Louis, MO, USA) or 10%
YL (w/v). YL was prepared from the BCY123 yeast strain kindly provided, as clarified
lysate, by Dr. G. Pineda. Slides were incubated in humidified chambers for 30 min at
37 ◦C, rinsed with TBT 3 times, and bound YFP labeled protein was detected on a Typhoon
Laser Imager (Amersham Biosciences, Amersham, United Kingdom). To detect YFP signal
on glass coverslips, fluorescence acquisition mode was used with the 526 SP emission
filter, 400 PMT with the Green Laser (532), and normal sensitivity. Images were collected
with a 10-micron pixel size. Following imaging, custom code in MATLAB was used to
select regions of interest (ROI) for each condition, within each 3 mm by 5 mm rectangle,
and average intensity values were extracted. Average intensity values for each condition
were fit using a Langmuir isotherm in Prism to produce the binding curves shown in
Figure 2 and assess the binding of NTF2-YFP or NTF2W7AI64A-YFP to Nsp1FG variants.
A two-site Langmuir isotherm was tested. However, this did not provide a good fit to the
data collected in this experimental setup.

Grafting distance simulations. Using experimentally derived protein densities, syn-
thetic localization data was prepared in MATLAB to estimate Nsp1FG grafting distances.
Individual localizations representing Nsp1FG were randomly distributed (MATLAB rand
function) within a 1 µm2 area. The total number of localizations were varied using the
MATLAB normrnd function to reproduce average densities of 689 and 1379 proteins/µm2,
corresponding to results from Nsp1FG surfaces incubated with 3 µM and 30 µM Nsp1FGs,
respectively (Figure 1). The associated standard error for each concentration was also
used as input for the MATLAB normrnd function to provide more realistic variation in
the simulated densities. To prepare simulated localization data for FG Nups in the native
NPC, an average density of 14,000 proteins/µm2 was used, along with a random number,
generated from an inverse Gaussian distribution, to supply a small amount of variation
in the average number of localizations. This distribution was prepared by collecting the
frequency of spatial differences between FG Nups, as reported in Tagliazucchi et al. [22],
and applying a fit to the data. With localization data in place, inter-point distances were
then calculated using a modified version of the MATLAB function pdist2. This approach
accommodated the standard metric for taking the Euclidean distance for each localization
and its nearest neighbor, while subdividing the data into manageable batches to assist with
computation and matrix size limits. Additional checks were provided to exclude duplicate
overlapping localizations and ensure the smallest pairwise distance was collected. This
process of randomly placing localizations within a defined area and calculating pairwise
distances was iterated 15 times. Final simulated grafting distance averages are reported in
Figure S1D.

Coarse-grained molecular dynamics simulations. One-bead-per-amino-acid coarse-
grained molecular dynamics was used to simulate the behavior of Nsp1 molecules. This
coarse-grained model is specifically designed to explore the behavior of intrinsically disor-
dered proteins. Amino acids are modeled as spherical beads with a mass of 120 Da and
distance of 0.38 nm. The force-field of this model, was developed by Ghavami et al. [69].
This force-field takes into account bending and torsion potentials between neighboring
beads, implicit solvent, ion screening effect, and hydrophobic and electrostatic interac-
tions [10,69]. Langevin dynamics simulations were done using GROMACS molecular
dynamics simulation software [70]. In the simulations, the system was minimized first,
equilibrated for 50 ns and then run for 1µs with a time-step of 0.02 ps. Visualizations were
done using VMD 1.9.3 [71]. Radius of gyration of the Nsp1 molecules was measured using
“gmx gyrate” function in GROMACS.

Agent-based modeling simulations. ABM is a bottom-up complex systems approach
for simulating the interactions between multiple independent entities, termed “agents”.
The objective is to assess individual effect of diffusing and reacting agents on the overall
system and predicting subsequent emergent phenomena [43,72]. The in vitro experiments
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were replicated using our ABM platform that was previously used for various applications
regarding nucleocytoplasmic transport [73–75]. In our ABM, each agent, representing
a single molecule or a homodimer, is characterized by its location and volume and is
assigned probabilities representing its diffusion as well as potential binding/unbinding
events [43,74]. A 3D environment of ~1 µm × 1 µm × 100 nm was simulated for each
setup. Nsp1FG agents were immobilized and attached to the surface. NTF2 agents were
free to move. Average grafting distance was used to randomly distribute Nsp1FG agents
on the surface. NTF2 agents were added to the system with varied concentrations of 1, 2, 3,
5, 10, 30 µM. Size of Nsp1FG fragments was calculated through coarse-grained molecular
dynamics simulations. Each simulation was run for three million steps to ensure that the
system has reached equilibrium and the last 100 steps were used to count bound and free
NTF2 molecules. Experimentally-derived Kd was used as the input to determine binding
and unbinding probabilities between Nsp1FG fragments and NTF2. We have previously
formulated how binding and unbinding constants (kon and koff) could be converted into
ABM probabilities (Pon and Poff) [43]. We used a probability of 0.005 as Pon and, considering
that Kd = koff/kon, calculated the respective Poff. A sensitivity analysis was conducted,
demonstrating that change in the initial assumed value for Pon does not significantly affect
the overall outcome and that the Poff/Pon ratio is the primary factor determining the
overall apparent Kd and Bmax. Number of possible binding events and binding strength
was varied in a systematic trial and error process until the obtained overall Kd and Bmax
from simulations are representative of the values obtained from experiments. Woolf-Hanes
plot was used to calculate overall Kd and Bmax. Simulations of the final simulated setups
were repeated three times and average and standard deviation values were reported.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221910898/s1.
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