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Abstract: Mammalian reproductive health affects the entire reproductive cycle starting with the
ovarian function through implantation and fetal growth. Various environmental and physiological
factors contribute to disturbed reproductive health status leading to infertility problems in mam-
malian species. In the last couple of decades a significant number of studies have been conducted
to investigate the transcriptome of reproductive tissues and organs in relation to the various repro-
ductive health issues including endometritis, polycystic ovarian syndrome (PCOS), intrauterine
growth restriction (IUGR), preeclampsia, and various age-associated reproductive disorders. Among
others, the post-transcriptional regulation of genes by small noncoding miRNAs contributes to the
observed transcriptome dysregulation associated with reproductive pathophysiological conditions.
MicroRNAs as a class of non-coding RNAs are also known to be involved in various pathophysio-
logical conditions either in cellular cytoplasm or they can be released to the extracellular fluid via
membrane-bounded extracellular vesicles and proteins. The present review summarizes the cellular
and extracellular miRNAs and their association with the etiology of major reproductive pathologies
including PCOS, endometritis, IUGR and age-associated disorders in various mammalian species.

Keywords: miRNAs; endometritis; PCOS; ageing; fertility

1. Introduction

Micro RNAs (miRNAs) are short noncoding RNA molecules and comprise 1–5% of
animal genes [1]. While a typical miRNA could regulate the expression of hundreds of
genes, a single target gene can be regulated by multiple miRNA [2]. Altogether they
regulate 30% of the active human genes [3]. Changes in the expression of even a single
miRNA found to have a profound effect on the outcome of diverse cellular functions.
Advancements in library preparation and deep sequencing technologies have enabled the
identification of several thousands of miRNAs in various mammalian species, as deposited
in the public database, namely miRbase (http://www.mirbase.org). The importance
of miRNAs in female fertility has been evidenced by conditional knockout of various
miRNA-processing machinery genes using mouse models [4,5]. Accordingly, miRNAs
were found to regulate various reproductive processes including germ cells proliferation
and differentiation, oocyte growth and maturation, preimplantation embryo development
and fetal growth and development. Moreover, miRNA mediated posttranscriptional
regulation of epigenetic modifications including DNA methylation, RNA modification,
and histone modifications has been reported [6].
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Infertility is becoming a global health issue affecting 10–15% of women worldwide.
Among the factors contributing to this phenomenon, lifestyle factors and reproductive
health issues contribute significantly to infertility problems in humans. Polycystic ovary
syndrome (PCOS) is one of the multifactorial reproductive and metabolic health issues that
affects up to 5–10% of women in reproductive age and accounts for 75% of anovulatory
infertility [7–10]. PCOS is characterized by follicle growth arrest, reduced granulosa cell
proliferation, elevated levels of luteinizing hormone, reduced levels of follicle-stimulating
hormone (FSH), and hyperandrogenemia [7]. These endocrine and metabolic imbalances
due to inappropriate regulation of the hypothalamus–pituitary–gonadal axis commonly
lead to ovulatory disorders in mammals. Different animal models have been used to un-
derstand the etiology of PCOS with translation potential to humans [11]. Recent molecular
analysis using ovarian cortex, granulosa, and theca cells and follicular fluid has identified
complex genetic pathways contributing to the etiology of PCOS.

Bacterial infection in the uterus is known to cause clinical or subclinical endometritis
in 15–20% of cows postpartum with a significant impact on fertility. In the post-partum
period since cows have multiple confounding conditions, the direct link between reduced
fertility and endometritis is practically difficult. However, several in vitro or in vivo con-
trolled experiments have been conducted to investigate the uterine infection-mediated
changes in molecular signals in the endometrium and another reproductive tract with a
significant impact on ovarian function and embryo implantation [12]. Despite the evidence
of involvement of several classes of microorganisms ranging from Gram-negative (E. coli)
or Gram-positive (T. pyogenes) bacteria and several anaerobes in endometritis, there are
still controversial results from various model studies involving various pathogens. How-
ever, several studies have evidenced the dysregulation of various molecular signals in
mammalian endometrium and in circulation, which mediate the negative impact of en-
dometritis on oocyte and embryo growth. Moreover, intrauterine growth restriction (IUGR)
as pregnancy-associated disorder remains a major problem in various farm animals and
humans resulting in impaired fetal growth. Even though several maternal and fetal factors
contribute to the development of IUGR, impaired placental function and growth is the
main contributing factor. In addition to the gene transcripts, several classes of noncoding
regulatory miRNA have been associated with this abnormality with a significant impact
on fetal development and offspring health.

It is a well-established fact that increasing age incurred a pathophysiological condition
to a growing human oocyte, which is mostly associated with aneuploidy [13,14]. This has
led research on reproductive aging to focus on the importance of chromosomal abnormali-
ties in reducing the developmental potential of female gametes. The biological reactions
underlying aging are believed to occur spontaneously to give rise to cellular injuries with
certain universality [15]. The most widely recognized biological reaction leading the modi-
fication of molecules during ovarian and oocyte aging is caused by oxidative stress [16].
The possible increase in the accumulation of reactive oxygen species (ROS) with aging in
the ovarian environment can be attributed to reduced enzymatic antioxidant defense mech-
anisms [17]. Several studies have been conducted to investigate the mechanisms behind
the age-associated oxidative stress damage and potential of antioxidant supplementation
to avert those damages.

The non-coding miRNAs, which are active either in the cell or those released into
the extracellular environment coupled with extracellular vesicles or proteins, have been
evidenced to play a significant role in reproductive health. In this review data on the
identification, characterization, and functional analysis of cellular and extracellular miR-
NAs in mammalian reproductive health associated with PCOS, endometritis, IUGR, and
age-related disorders are presented.

2. MiRNAs and Polycystic Ovary Syndrome (PCOS)

Polycystic ovary syndrome (PCOS) is found to affect the ovarian follicular growth,
granulosa cell proliferation and endocrine homeostasis [7,18]. Symptoms of PCOS include
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oligomenorrhea or amenorrhea, obstetrical complications, obesity, excess body and facial
hair (hirsutism), acne, pelvic pain, low fertility, pregnant failure, and patches of thick and
darker skin [18,19]. It is associated not only with infertility but also with increased risk
of metabolic and other disorders including but not limited to insulin resistance, diabetes,
obesity, mood disorders, obstructive sleep apnea, endometrial cancer, and cardiovascular
diseases [7]. Complex genetic factors either heritable or non-heritable, which are evident at
the onset of puberty, epigenetic, or/and environmental factors such as unhealthy diet and
a lack of physical activity are known to contribute to the pathogenesis of PCOS [20]. Recent
molecular genetic analyses including sequencing, expression profiling, and genome-wide
association studies revealed the involvement of numerous miRNAs in the etiology of
PCOS [21–23].

2.1. Expression and Regulation of Cellular miRNA in PCOS Ovary

Different animal models have been used to investigate the role of miRNAs in PCOS. A
rat PCOS model has been established through the induction of dihydrotestosterone (DHT)
to examine the expression of PCOS-associated ovarian miRNA [22]. The expression of
miRNAs has also been examined in another study using the ovary of letrozole-induced
PCOS rat through deep sequencing [21]. Compared to control rats, 129 and 44 miRNAs
were found to be up- and downregulated in the ovary of PCOS rats, respectively. Wang et al.
used a mouse model to study the role of miRNAs in the ovary with PCOS and increased
expression of miR-27a-3p in the ovaries of mice with PCOS was observed [24]. Later on,
using in vitro culture of primary mouse granulosa cells (mGCs) and the mouse granulosa-
like tumor cell line it was found that miR-27a-3p represses CYP19A1 via targeting cyclic
AMP response element (CRE)-binding protein 1 (Creb1) in granulosa cells from the PCOS
mouse model [24]. The studies on miRNAs in the PCOS of the animal model mentioned
above are mostly analysis of expression of miRNAs and no in depth functional study has
been conducted yet. Moreover the results on the expression of miRNAs in the animal
model with PCOS are not well matched to the findings (discussed below) from the studies
in humans.

Expression of miRNAs in ovarian cortexes with PCOS was measured in a study
using qRT-PCR and upregulation of miR-93 was observed [25]. The target gene of miR-93,
CDKN1A was found to be downregulated in the ovary. Variation in the results of miRNAs
expression profile among different studies might be due to the use of different models and
methods, age of the animal, or women or inclusion criteria for the studies but could also
exemplify the heterogeneous nature of PCOS itself.

Altered expression of ovarian miRNAs due to PCOS may have consequences on
processes determining the fate of granulosa cells (proliferation, differentiation, and apop-
tosis). Ovarian granulosa and theca cells are the vital somatic cells that support follicular
development; by producing and maintaining steroid, and sharing paracrine factors to favor
oocyte growth and development. Extensive studies of miRNAs in granulosa cells both
from normal ovaries [26–28] and ovaries with PCOS have been performed compared to that
in other ovarian cell types. Expression and regulation of miRNAs in ovarian granulosa cell
proliferation and apoptosis in various mammalian species are summarized in Table 1. A
study on the expression of selected miRNAs in the granulosa cells of PCOS ovary by Cirillo
et al. has identified the upregulation of MiR-146a, miR-155, miR-486, and downregulation
of miR-320 and miR-370 in granulosa cells from PCOS patients [29]. Significantly increased
expression of miR-200b was observed in the granulosa cells of PCOS patients compared to
the controls revealed inhibition of cell proliferation through targeting PTEN [30].
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Table 1. Expression and regulation of miRNAs in the granulosa cells with known target genes in relation to PCOS.

miRNAs Species Target
Gene/Pathway Biological Role Expression in PCOS Reference

miR-9 Human IL8, SYT1, IRS2 Hinders testosterone
release. Up [31]

miR-18b Human IL8, SYT1, IRS2

Promotes progesterone
release,

inhibitstestosterone and
estradiol release

Up [31]

miR-21 Human, Mouse, Rat LATS1 Reduce apoptosis.
Progression of PCOS Up [31–34]

miR-29a-5p Human Klotho-associated
signaling

Involved in cell
apoptosis Down [35]

miR-30c Human Induced by FSH
exposure Up [34]

miR-93 Human CDKN1A Promotes cell
proliferation Up [25]

miR-126-5p Human Klotho-associated
signaling

Involved in cell
apoptosis Down [35]

miR-129 Human HMGB1 Proliferation, apoptosis
of granulosa cells Up [36]

miR-132
Human
Mouse

Rat
HMGA2, Ctbp1

Promotes estradiol
secretion, reduces
progesterone and

testosterone release

Down [31,37]

miR-135a Human IL8, SYT1, IRS2 Reduces progesterone
and testosterone release Up [31]

miR-145 Human IRS1 Inhibits cell proliferation Down [38]

miR-155 Human PDCD4

Prevents testosterone
release, promotes cell

proliferation and
migration

Up [34,39,40]

miR-222 Human
Rat Estrogen receptor 1

Positively correlated
with serum insulin;

increases
estradiol secretion

Up [22,41]

miR-224 Human
Mouse PTX3, Smad4

Induces GCs
proliferation, increases

estrogen release

Differentially
expressed [34,42,43]

miR-320 Human
Mouse RAB5B, E2F1, SF-1

Increased in insulin
resistance, Slow down
cell proliferation and
estradiol production

Down in serum, Up
in granulosa cells [44–46]

miR-320a Human RUNX2 Related to the
steroidogenesis Down [47]

miR-383 Human
Mouse RBMS1 Enhances the release of

estradiol Up [46,48]

miR-483-5p Human Notch3, MAPK3,
IGF1

Related to cell
proliferation and

apoptosis
Down [23,49,50]

miR-509-3p Human MAP3K8 Induces oestradiol (E2)
secretion Up [51]
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Differential miRNA expression profiles of cumulus granulosa cells between the ovary
of women with and without PCOS by next-generation sequencing revealed the upregula-
tion of 21 and downregulation of 38 miRNAs [23]. In addition, through pathway analysis,
it has been shown that Notch signaling pathway and the molecular pathways involved in
regulation of hormones, and energy metabolism are targeted by the differentially expressed
miRNAs. Both Notch3 and MAPK3, as members of Notch signaling and ERK-MAPK path-
way, were demonstrated to be regulated by miR-483-5p. Downregulation of miR-483–5p
and miR-486–5p was observed in the cumulus granulosa cells surrounding metaphase II
oocytes of women with PCOS and the former was shown to be involved in the proliferation
of granulosa cells of PCOS through induction of the PI3K/Akt pathway [49]. Similar to the
granulosa cells, expression and regulation of miRNAs has been shown to be important in
theca cells for the biosynthesis of androgen in ovaries. However, due to the difficulty to
collect the theca cells from the PCOS ovary, studies on miRNAs in theca cells are limited
compared to the granulosa cells. In situ hybridization of miRNAs in the ovary of a rat PCOS
model revealed differential localization of miRNAs in the ovary undergoing or became
cystic. Notably, miR-96, miR-31, and miR-222 were exclusively localized in the theca of
cystic follicles [22]. Predominant localization of differentially expressed miRNAs in theca
cells of the cystic ovary indicates their possible involvement in the abnormal androgenesis
and hence might be important for the pathophysiology of PCOS.

2.2. Extracellular miRNAs in the PCOS Ovary

Follicular fluid is the result of secretory and metabolic activity of the oocyte, granu-
losa, and theca cells and the transfer of blood plasma components. This specialized fluid
provides an appropriate intrafollicular environment that plays a pivotal role in the growth
and development of oocyte [52]. Changes of the content of follicular fluid have been used
as predictive factors or biomarkers of oocytes and even embryo quality and PCOS develop-
ment [53]. Follicular fluid is also used in determining the relationship between abnormal
miRNA expression and PCOS development [45]. In addition, the presence of numerous
miRNAs as extracellular nucleotide and changes of their expression in the follicular fluid
from different species signifies the potential role of miRNAs in steroidogenesis and PCOS.

Quantification of miRNAs through TaqMan miRNA assays revealed a significantly
lower expression of miR-132 in the follicular fluid of PCOS patients compared to healthy
controls [45]. In another study, analysis of miRNAs of human follicular fluid revealed
significant increased expression of five miRNAs (miR-32, miR-34c, miR-135a, miR-18b, and
miR-9) in the PCOS group compared to the healthy control. Three potential target genes
of these miRNAs were found to be significantly downregulated in the PCOS group and
pathway analysis implicated their association with carbohydrate metabolism, beta-cell
function, and steroid synthesis [42]. Significant downregulation of let-7b and miR-140 and
upregulation of miR-30a was found in PCOS follicular fluid [53]. In the same study, the
FOX-2 has been identified as a target of miR-30a and the disruption of miR-30a revealed
excessive androgen production by theca cells and PCOS related morphological changes of
granulosa cells. Further studies are needed to determine whether extracellular miRNAs
play a role in the etiology of PCOS or if they are downstream effects of other PCOS risk
factors [54].

The expression of miR-320 and miR-383 was upregulated in the follicular fluid of
PCOS patients and the expression of E2F1 and SF-1 as a target gene of those miRNAs were
found to be downregulated in granulosa cells [46]. These results suggest that miR-320
suppresses the granulosa cells proliferation and steroid production by targeting E2F1 and
SF-1, which might be associated with hyperandrogenemia in PCOS. The miRNA profile
in PCOS follicular fluid found to be varied among different studies due to differences in
the methods employed, inclusion criteria used, type of PCOS diagnostic criteria, control
groups set up, and heterogenic morphology and physiological conditions of PCOS [55].

Similar to the miRNAs in the follicular fluid, circulating serum miRNAs can also
be promising and non-invasive biomarkers for different diseases. Changes in cellular
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homeostasis lead to the modulation of the molecular function of cells and deregulated
miRNAs bound with protein component AGO2 or encapsulated with a microvesicle may
be released from cells and frequently circulate in extracellular body fluids [56]. Extracellular
vesicles released from most cell types into the extracellular space including serum can
be taken up by the neighboring or distant cells to facilitate genetic exchange between
cells [57,58]. Several studies have been conducted to identify miRNAs in serum from PCOS
patients as a potential molecular signature. Investigation on the expression of circulating
miRNAs in PCOS during clinical diagnosis revealed the upregulation of let-7i-3p, miR-
5706, miR-4463, miR-3665, and miR-638 and downregulation of miR-124-3p, miR-128,
miR-29a-3p, and let-7c in PCOS patients. Further analysis showed that the predicted target
genes of these miRNAs are involved in various disorders, including diabetes and celiac
diseases [59]. It has been demonstrated that the downregulation of miR-592 is associated
with a high level of luteinizing hormone/chorionic gonadotropin receptor (LHCGR), an
important factor for hyperandrogenemia in PCOS [60,61]. MiR-146a as a suppressor of
steroid secretion was shown to be a negative regulator of serum testosterone in PCOS [44].
The same study identified that miR-222 is positively associated with serum insulin from
PCOS patients. In addition, miR-222 combined with miR-146a and miR-30c suggested to be
used to distinguish women with PCOS from the healthy ones [44]. Similar to the miR-146a,
miR-23a in PCOS serum was reported to be negatively correlated with the testosterone
level and the likelihood of PCOS [62].

3. Involvement of Cellular and Extracellular microRNAs in Endometritis

During early postpartum stages, the uterine environment of dairy cows is suscep-
tible to various uterine disorders [63], which reduces the reproductive and productive
performance. Based on clinical signs, the nature and composition of uterine discharges
and uterine cytology, uterine infections can be categorized as puerperal metritis, clinical
metritis, clinical endometritis, and subclinical endometritis [64–66]. Endometritis is one of
the leading uterine infections reported to impair the fertility of cows [67]. Endometritis is a
phenomenon of endometrium inflammation without the manifestation of clear clinical signs.
Multiple bacterial species including E. coli, A. pyogenes, F. necrophorum, and B. melaninogenicus
are associated with endometritis, either individually or synergistically [68–70]. In bovine
endometritis, the E. coli is one of the major pathogens that affect the uterine environment
by producing a lipopolysaccharide (LPS) [71]. The initial defense mechanism against the
pathogen invasion is through the activation of the animal’s innate immune system [72]. Fol-
lowing the activation of the innate immune system, the endometrial cells secrete cytokines
and chemokines, which recruit neutrophils and macrophages to act on the pathogens [73].
In reaction to the pathogenic invasion, the neutrophils serve as the first line of defense and
the number of the polynuclear neutrophils (PMN) is reported to increase in the uterine
lumen [74]. As opposed to the clinical endometritis, the subclinical endometritis is charac-
terized by inflammation of the uterus without visible clinical signs and an elevated number
of PMN at a threshold of 5% and above [75].

Several studies have reported transcriptional changes resulting from uterine inflamma-
tion. The expression of inflammatory cytokines like the tumor necrosis factor-α (TNF-α),
Toll-like receptor (TLR) 4, interleukins (IL), insulin-like growth factor-1 (IGF-1), and IGF-
binding protein-2 (IGF-BP-2) were reported to be differentially expressed in the uterine
of cows affected with endometritis [76,77]. In addition to the candidate genes screening
approach, global transcriptome analysis in uterine cells obtained from cows with clinical and
subclinical endometritis has been reported recently [78]. In that study about 203 and 28 genes
were differentially expressed in cows with clinical and subclinical endometritis, respectively.
This implies that the severity of infection significantly enhances the number of transcripts
altered in the endometrial cells. Interestingly, these genes are involved in pathways related
to the immune process, G-protein coupled receptor signaling, and chemotaxis.

MicroRNAs are thought to be involved in various uterine disorders [78–80]. Neverthe-
less, there are few in vivo experiments with respect to the expression profile of miRNAs in
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clinical and subclinical endometritis. Endometrial cytobrush samples derived from day 30
and 35 postpartum lactating cows with subclinical endometritis revealed 23 miRNAs to be
differentially expressed in subclinical endometritis cows compared to the healthy cows [81].
In the same study, using an in vitro assay on epithelial and stromal cells, it was reported
that the expression miR-24, miR-98, miR-223, miR-27, miR-196b, miR-503, miR-21, and
miR-16 were upregulated in both epithelial and stromal cells treated with LPS. Moreover,
the expression of miR-619, miR-215, and miR-643 was downregulated in response to LPS
treatment. In another study, the miRNA expression of endometrial cytobrush derived
from cows with clinical and subclinical endometritis at 40–60 days postpartum showed
massive deregulation of miRNAs in both clinical and subclinical animals compared to the
healthy counterparts [78]. As opposed to the less pronounced transcriptional deregulation
impacts, the numbers of differentially regulated miRNAs were more pronounced in the
subclinical groups than the clinical endometritis. This could be justified due to the negative
transcriptional and posttranscriptional regulatory correlation between the miRNAs and
the gene transcripts. Interestingly, 7 members of the let-7 family (let-7a, let-7c, let-7d,
let-7d *, let-7e, let-7f, and let-7i) were among the highly abundant miRNAs preferentially
enriched in the endometrial cells of the subclinical groups. Some miRNAs including let-
7e, miR-92b, miR-337-3p, let-7f, and miR-145 were equally affected in both levels of the
infection severity [78]. In addition to the genome-wide expression profiling of miRNAs
associated with endometrial infection, understanding the functional implication of selected
miRNAs during and post-infection could shed light to our understanding in the molecular
mechanisms associated with etiology of the disease and development of diagnostic tools.

Other important miRNAs involved in establishment and progression of endometritis
is miR-148a [78], which is also implicated in inflammatory disease [82]. Bovine endometrial
epithelial cells treated with LPS to induce an inflammatory response revealed a significant
downregulation of both the miR-148a and the associated proinflammatory cytokines, IL-1ß
and the TNF-α. Moreover, overexpression of miR-148a suppresses the activation of the NF-
κBp56 pathway by targeted suppression of TLR-mediated pathway [83]. In the same study,
it was shown that overexpression of miR-148a alleviated the uterine inflammation, making
the miR-148a a potential therapeutic molecule for uterine inflammation and endometritis.
MiR-223 is another miRNA reported to be abundantly enriched in cows with subclinical
endometritis and in endometrial cells treated with LPS [81]. Consistent with this finding,
using an in vitro cell culture model of bovine endometrial epithelial cells treated with LPS,
the transcription of miR-223 was elevated, which was promoted through the activation
of the NF-κB and inhibition of the NLRP3, which in turn mediated the production of
the cytokine IL-1ß [84]. This signifies the role of miR-223 in attenuating inflammatory
conditions in the uterine environment. MiR-19a, which is a member of the miR-19-72
cluster, regulates the expression of TBK1 by negatively regulating the NF-κB pathway in
LPS-induced endometritis [85]. These findings suggest that the proinflammatory pathways
are negatively regulated by miRNAs expressed in endometrial epithelial cells.

The biggest challenge in the diagnosis and treatment of uterine infections is the absence
of non-invasive, reliable, and early diagnostic tools that can be used for early detection
of the disease. Thus, the use of circulating miRNAs in animals could be an alternative
approach. To address this, a pilot experiment on the clinical endometritis cow model was
performed to determine the unique circulatory miRNAs associated with uterine infection.
Briefly, lactating dairy cows were subjected to vaginal infusion of E. coli and T. pyogenes. The
induction of uterine infection was verified according to previously described criteria [86]
and the blood samples were collected and processed at days 2, 6, 9, 14, and 21 post-
infection. The genome-wide miRNAs expression profile was assessed and compared with
the preinfection status of the cows. Interestingly, no measurable differences were observed
in the circulatory miRNA profile of cows until day 14 post-infection. However, starting
day 14, the miRNA expression was more divergent, showing the sustained and severe
endometrial infection (Figure 1). This was further verified by the hierarchical clustering
analysis, where the number of upregulated miRNAs tends to be progressively increased
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starting day 14 towards day 21 post-infection (Figure 2). Taken together, the progression
of endometrial infection can be diagnosed by measuring circulatory miRNAs as early
as two weeks post infection. In a separate experiment, the serum circulatory miRNA
profile in cows with underlying metritis and with no apparent uterine abnormality derived
1 week postpartum was performed. It was reported that bta-miR-15b, bta-miR-17-3p,
bta-miR-16b, bta-miR-148a, bta-miR-26b, bta-miR-101, and bta-miR-29b were upregulated
whereas bta-miR-148b, bta-miR-199a-3p, bta-miR-122, bta-miR-200b, and bta-miR-10a were
downregulated in the serum of cows with metritis compared to healthy cows [87].
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Extracellular vesicles (EVs) are involved in immune activities affecting both the innate
and adaptive immune responses [88], which are also mediated by miRNAs encapsulated
in the EVs [89,90]. Recently, the correlation of between exosome-coupled miRNAs derived
from serum of patients with endometritis and healthy counterparts revealed 24 miRNAs
differentially expressed, of which the miR-320a and miR-22-3p, were significantly up-
regulated in exosomes of patients with endometritis and can be potential biomarkers of
endometritis [91]. EV-derived miRNAs from the uterine fluid of cows had a negative
impact on the blastocyst development when added to the embryo culture media [92].
Contrary to this, supplementation of embryos with EVs derived from conditioned embryo
culture media and uterine fluid of healthy cows improved the cleavage rate and blastocyst
formation [93,94]. It was also shown that miR-218 was one of the differentially expressed
miRNAs and involved in the pathogenesis of bovine endometritis and bovine endometrial
cells are reported to use the EVs to encapsulate and release the miR-218 into the uterine
environment, which acts as an inhibitor of immune factors like the IL-6, IL-1b, and TNFα
and inflammatory genes [95]. This signifies the fact that EV-coupled miRNAs could be one
of the mechanisms for delivering immune regulating molecules in the uterus.

In conclusion, the current advancements in the EVs research and high-throughput
sequencing technologies have provided the promising tools for the discovery and screening
of clinical and subclinical endometritis with better precision and as early as possible, which
could improve the fertility and welfare of animals. Moreover, the possibility of enrichment,
loading, and delivering a bioactive molecule of our interest including miRNAs and proteins
into cells could be a possible approach to understand the mechanistic molecular roles of
selected miRNAs or proteins in endometrial health.
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4. MicroRNAs in Intrauterine Growth Restriction

Intrauterine growth restriction (IUGR) is a pregnancy-related disorder in which a
fetus cannot reach its maximum growth potential and the weight of the fetus is less than
the 10th percentile of an appropriate weight for gestational age and fetal sex. Although
different maternal and fetal factors can contribute to the development of IUGR, impaired
placental development and function is the most common cause [96]. In recent years,
miRNAs have emerged as major players in the pathogenesis of IUGR. miRNAs can be
easily measured in tissue biopsies, blood, and other biological samples, making them
potential biomarkers for early detection of various pathologies including IUGR [97–99].
Trophoblast proliferation and invasion is critical for placental health, therefore most of
the miRNAs linked to trophoblast proliferation are also involved in the pathogenesis of
IUGR [100].

Some unique species of miRNAs are exclusively expressed in human trophoblast cells
and are called “trophomiRs” [101]. The majority of trophomiRs are expressed from chromo-
some 19 miRNA cluster (C19MC) [102]. C19MC locus generates 59 mature miRNAs, most of
which are primarily expressed in the placenta [103,104]. Hromadnikova et al. demonstrated
a correlation between C19MC miRNAs and pathogenesis of pregnancy complications by
measuring the expression of 15 C19MC miRNAs in placental tissue from pregnancies
complicated by preeclampsia (PE), IUGR, and gestational hypertension (GH) [105]. They
reported that downregulation of six C19MC miRNAs (miR-517-5p, miR-518f-5p, miR-519a,
miR-519d, miR-520a-5p, and miR-525) is associated with IUGR. Additionally, reduced
expression of miR-517-5p, miR-519d, miR-520a-5p, and miR-525 is a common finding in
PE, IUGR, and GH, whereas downregulation of miR-518f-5p and miR-519a is a common
finding in preeclampsia and IUGR [105]. In contrast, according to Hromadnikova et al.
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increased circulating levels of C19MC miRNAs (miR-517-5p, miR-518b, and miR-520h)
during the first trimester indicate increased risk of PE, but no circulating C19MC miRNAs
can be used as biomarkers to predict IUGR [106]. Chromosome 14 miRNA cluster (C14MC)
produces 63 mature miRNAs in humans, which are highly expressed in the placenta [107].
C14MC miRNAs play a critical role in placental development by regulating the expression
of different genes involved in trophoblast proliferation, invasion, and migration [108,109].
From the first trimester to the third trimester of pregnancy in humans, the concentration
of C19MC miRNAs increases whereas the concentration of C14MC miRNAs decreases
in the placenta and maternal circulation [110–112]. Wommack et al. measured different
miRNA clusters in maternal plasma and showed that increased expression of several
C14MC miRNAs (miR-3373p, miR-4315p, miR-1363p, miR-1365p, miR-3803p, miR-323a3p,
and miR-543) can be used as a marker for birth weight and gestation length [112].

Circulating placenta-specific miRNAs including miR-520a, miR-520h, miR-525, miR-
526a, miR-516-5p, miR-517, and miR-518b in maternal plasma from IUGR pregnancies
are significantly increased at week 12-16 of gestation, which later comes back to normal
levels [110]. The temporary increase in these miRNAs can cause trophoblast apoptosis
resulting in placental insufficiency and IUGR. Increased maternal plasma concentration of
miR-206 can be used to predict IUGR [113]. miR-206 targets vascular endothelial growth
factor (VEGF), which is critical for placental development. In a study conducted using
820 pregnant women (74 IUGR and 746 non-IUGR pregnancies), Li and Liu measured
miR-206 and VEGF concentrations in maternal plasma at different stages of pregnancies.
miR-206 was significantly increased whereas VEGF was significantly reduced in maternal
blood at early, middle, and late gestation [113]. These findings suggest that miR-206 can
lead to IUGR by targeting VEGF and its higher levels in maternal blood can be used to
predict IUGR at the early stages of pregnancy.

miR-141 targets proliferation-associated genes and is downregulated in different types
of cancers [114]. Tang et al. showed that miR-141 is associated with IUGR and its expression
in placental tissue from IUGR pregnancies is higher compared to control pregnancies [115].
Moreover, expression of miR-141 target genes including E2F transcription factor 3 (E2F3)
and pleiomorphic adenoma gene 1 (PLAG1) is significantly reduced in IUGR placen-
tas [115]. E2F3 and PLAG1 are involved in cell proliferation and reduced expression of
these genes can cause impaired trophoblast proliferation and contribute to the pathogenesis
of IUGR [115]. According to Mouillet et al. the concentration of trophoblastic-hypoxia
induced miRNAs (miR-27a-1, miR-30d, miR-93, miR-141, miR-200c, miR-205, miR-224,
miR-335, mir-424, miR-451, and miR-491) is increased in maternal circulation with IUGR
pregnancies compared to normal pregnancies [116]. Huang et al. also reported the role
of miR-424 in the pathogenesis of IUGR by demonstrating that miR-424 is significantly
increased and its target genes, mitogen-activated protein kinase 1 (MEK1) and fibrob-
last growth factor receptor 1 (FGFR1), are significantly reduced in placentas from IUGR
pregnancies [117].

Using small RNA next-generation sequencing in fetal and maternal placental tissues,
Rutkowska et al. demonstrated that 48 fetal and 22 maternal miRNAs are differentially
expressed in IUGR pregnancies compared to normal pregnancies [118]. The change in
miRNAs with a predicted role in fetal growth and development (miR-29a, miR-92b, miR-
125b, miR-7641, miR-4321, miR-let-7g, and miR-2895) was also confirmed by RT-PCR [118].
The maximum change was witnessed in miR-4321, which was 4-fold higher in fetal placenta
from IUGR pregnancies compared to control pregnancies [118]. An important miR-4321
target gene involved in placental and fetal growth is prostaglandin E receptor 3 (PTGER3),
which has high expression in human trophoblast cells and plays a role in trophoblast
invasion [118,119]. However, the concentration of miR-4321 in maternal circulation has
never been studied, making it hard to use it as a potential biomarker for noninvasive
diagnosis of IUGR.

The let-7 family of miRNAs (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, and
miR-98), also referred to as differentiation-inducing miRNAs, play a profound role in tro-
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phoblast proliferation [120]. The expression of let-7 miRNAs is suppressed by oncoprotein
LIN28, which has two paralogs LIN28A and LINB [121,122]. In 2019, Ali et al. demon-
strated that the term human placentas from IUGR pregnancies have reduced expression of
LIN28A and LIN28B and higher expression of let-7 miRNAs (let-7a, let-7b, let-7c, let-7d, let-
7e, let-7f, let-7g, and let-7i), indicating a correlation between IUGR and let-7 miRNAs [120].
In trophoblast cells, let-7 miRNAs target several genes involved in cell proliferation, cell
invasion, and angiogenesis including AT-hook 1 (HMGA1), MYC protooncogene (c-MYC),
vascular endothelial growth factor A (VEGF-A), Wnt family member 1 (WNT1), AT-rich
interaction domain (ARID)3A, and ARID3B [100,120,123]. CRISPR-Cas9 based LIN28
knockout in human trophoblast cells leads to increased expression of let-7 miRNAs and
reduces cell proliferation [120]. Trophectoderm-specific knockdown of LIN28A or LIN28B
in sheep increases let-7 miRNAs and reduces trophoblast cell proliferation and conceptus
elongation in vivo [123]. Reduced conceptus elongation in domestic ruminants has been
linked to IUGR and early pregnancy loss. Collectively, these findings indicate that a higher
level of let-7 miRNAs in trophoblast cells can contribute to the pathogenesis of IUGR
primarily by causing impaired placental development.

Awamleh et al. measured miRNAs and gene expression in human chorionic villi from
pregnancies complicated by PE, IUGR, or PE+IUGR using next-generation sequencing.
They showed that 11 miRNAs were upregulated in PE placenta samples, 25 miRNAs
were upregulated, 12 miRNAs were downregulated in IUGR placentas, and 9 miRNAs
were upregulated PE + IUGR placentas [124]. Similarly, 275 genes were differentially
expressed in PE placentas, 155 genes were differentially expressed in IUGR placentas, and
556 genes were differentially expressed in PE + IUGR placentas. Six differentially expressed
miRNAs (miR-193b-5p, miR-193b-3p, miR-210-3p, miR-365a-3p, miR-365b-3p, and miR-
520a-3p) were common in all groups [124]. Hromadnikova et al. examined the expression
of 32 miRNAs in placentas from pregnancies complicated with PR and IUGR that needed
to be terminated before week 34 of gestation. They showed that 11 miRNAs (miR-16-
5p, miR-100-5p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-143-3p, miR-195-5p, miR-
199a-5p, miR-221-3p, miR-342-3p, and miR-574-3p) were downregulated in pregnancies
complicated by IUGR without PE [125]. Together these findings provide a set of miRNAs
that are dysregulated in pregnancies complicated by just IUGR and can be used as potential
biomarkers for the diagnosis of IUGR.

5. Potential of miRNAs in Aging and Related Disorders

The reproductive organ of the mammalian female exhibits a rate of aging that is
much faster than any other organs in the body system. It has been speculated that the
premature aging of the ovary, when compared with the somatic organs, might result
from increased demand of energy for the maintenance and repair processes in the soma
compartment during aging [126]. Based on the human biologic clock, the loss in female
fertility becomes dramatic after the age of 35 years and results in menopause at 50–51 years
of age [127]. The ovarian functional decline due to aging is related to the gradual loss
of resting follicles and decreased biological competence of those surviving age-related
atresia [128]. Throughout the life of female, follicles leave the resting pool of primordial
stage to the growing pool on a regular basis and pass through various stages under the
influence of stage-specific intraovarian regulators and endocrine factors [129,130]. This
oocyte and follicle pool decline with increasing age, with a marked increase in the rate of
disappearance from the age of 37 to 38 onwards. At the stage of menopause the follicle
reserve decline to a number insufficient to sustain the cyclic hormonal process necessary
for menstruation [131]. Moreover, in addition to the reduction in the follicular reserve, the
phenomenon of ooplasm aging has been reported to be associated with various structural
and morphological abnormalities including chromosome decondensation, chromosomal
misalignment associated with anomalies in meiotic spindle, and highly compromised
cellular machinery [132,133]. The proportion of poor quality oocytes increases with age,
ranging from 50% at 20 years of age to 95% at 35 years of age [134]. All in all, decreased
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female fertility with advanced maternal age is well documented and it is widely recognized
that the decline in oocyte quality is a key factor to explain age-associated infertility problems
and related high risk of birth defects, genetic disorders and miscarriage [135,136]. Gene
expression studies in oocytes showed that the presence and activity of gene products
involved in cell cycle regulation, spindle formation, and organelle integrity may be altered
in oocytes from older individuals from several species. Transcriptome analysis of human
MII oocytes in relation to aging and ovarian reserve demonstrated that there is differential
expression of coding and noncoding transcripts between young and old women [137].
Moreover, analysis of global gene expression profiles of MII oocytes from young (<35 years)
and older (>37 years) women identified differential expression of genes associated with cell
cycle regulation, cytoskeletal and chromosomal structure, energy pathways, transcription
control, and stress response [138,139]. The differential expression of protein coding mRNA
was found to be accompanied by the expression of noncoding regulatory RNA, including
lncRNA, piRNA, and precursor miRNAs in oocytes between young and old women [137].
Similarly, transcriptome analysis of GV stage oocytes from young and aged mice showed
differential expression of 160 endogenous small-interfering RNAs and 10 miRNAs [140].

Appropriate storage and utilization of maternal transcripts in oocytes are needed for
maturation and early embryo development. A study by [141] showed that human MII
stage oocytes obtained from women of advanced reproductive age showed altered ex-
pression of miRNAs regulating gene expression, pluripotency, chromatin remodeling,
and early embryo development. In the same study evolutionary conserved miRNA
(miR-29a-3p, miR-203a-3p, and miR-494-3p), which were found to be upregulated in aged
mouse oocytes, to be correlated with downregulation of DNMT3a, DNMT3b, phosphatase
and tensin homolog (PTEN), and mitochondrial transcription factor A (TFAM).

Cellular senescence is the biological consequence of aging, implicated in a variety of
age-associated diseases. The increased vulnerability of oocytes to age-induced oxidative
stress is associated with the attenuation of the efficacy of DNA double-strand break (DSB)
repair mechanisms in aged oocytes [142]. Some studies have been conducted to correlate
follicular fluid extracellular miRNA with advanced women age. MicroRNA expression
profile of follicular fluid from younger (<31 years) and older (>38 years) women revealed
a set of miRNAs involved in heparan-sulfate biosynthesis, extracellular matrix–receptor
interaction, carbohydrate digestion, and absorption, p53 signaling, and cytokine–cytokine–
receptor interaction [143]. With increased sample size and reduced age gap, the study
by [144] revealed a differential expression of a single miRNA (hsa-mir-424). Differen-
tial plasma expression of miRNAs have been identified in cattle in an age- and genetic-
dependent manner [145]. Using the PCR array platform, 306 plasma miRNA were assessed
between calf and mature cows, and 26 miRNAs including miR-192, miR205, and miR-215,
were enriched in mature animals.

Cellular senescence, which imposes permanent proliferative arrest in cells in response
to stressors, is considered as a hallmark of aging and a major risk factor for the development
of most common age-related diseases (ARDs) and it is an attractive target for therapeutic
applications [146]. Senescence cells are characterized by a significantly reduced replicative
potential and by the acquisition of a proinflammatory senescence-associated secretory
phenotype (SASP) [147]. Considerable efforts have been devoted to distinguishing the
effects of several epigenetic mechanisms namely: DNA methylation, and long and small
non-coding RNA on the transcriptional and posttranscriptional programming leading to
cellular senescence. Senescence modulation by microRNAs is a major senescence-associated
epigenetic mechanism. This has been suggested by cellular miRNA signatures and by the
release of extracellular vesicles, which contain different species and a number of miRNAs
and proteins. The EVs population and type seem to reflect the molecular characteristics
of their cells of origin and modulate the phenotype of recipient cells [148]. A recent study
conducted to unravel the relative contribution of EVs released from senescence cells in
spreading prosenescence signals to proliferating cells via their miRNA cargo [149]. In the
same study it has been shown that senescence human umbilical endothelial cells release
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a greater number of EVs compared to their control counterparts. Among the 22 miRNAs
differentially expressed, miR-21-5p and miR-217 were found to be enriched both in cells
and EVs of senescence cells and are found to target DNMT1 and SIRT1 genes. Coculture of
EVs from senescence with control cells resulted in induction of the senescence phenotype as
evidenced by modulation of DNMT1 and SIRT1 genes, apoptosis, and cellular proliferation.

Considering mares as the best model to study reproductive aging in humans, a
study on the identification of extracellular vesicles coupled miRNAs in relation to aging
would provide knowledge on the mechanisms behind age-related fertility problems [150].
To investigate the effect of mare age on exosomal miRNA expression during follicular
development, follicular fluid exosomes isolated from the normal follicle at deviation, mid-
oestrus, and preovulatory stage of young (3–12 years) and old (20–26 years) were subjected
to miRNA analysis [151]. In that study, exosomal miRNA expression differences were
observed both across the developmental stages and between age groups. The abundance
of miR-513a-3p, miR-181A, and miR-375 was higher in exosomes derived from follicular
fluid of old compared to young mares. Among these, miR-181A was found to negatively
regulate mouse granulosa cell proliferation by targeting ACVR2A [152].

Postovulatory oocyte aging in vitro or in vivo demonstrated that those aged oocytes
frequently showed lower fertilization rate, polyspermy, chromosomal abnormalities, and
abnormal embryo development [153]. These abnormalities in early embryo development
result in decreased litter size, lower pregnancy rates, and an increase in the number of spon-
taneous miscarriages in humans [154]. In vitro and in vivo postovulatory aging oocytes
are known to exhibit various cellular and molecular changes associated with intracellular
signaling. These include morphological and organelle changes, reduction in the intracy-
toplasmic level of antioxidant GSH, elevated reactive oxygen species (ROS), reduction in
the intracytoplasmic level of adenosine triphosphate (ATP), decrease in the expression of
antiapoptotic factor Bcl-2, increased apoptosis, and abnormal Ca2+ regulation (reviewed
by [155]). As a consequence of the progressive increase in ROS accumulation and the
concomitant decline in antioxidant protection, the postovulatory aged oocytes experienced
the state of oxidative stress. It has been long thought that the oxidative stress may act
as a trigger for a cascade of factors that orchestrate postovulatory aging. Several in vitro
studies have demonstrated that supplementation of antioxidants attenuates the process
of postovulatory aging, however, there is a great variation between various antioxidants
applied. This may be associated with the specificity of various antioxidants in scavenging
the different types of reactive oxygen species. Considering the fact that cells exposed to var-
ious environmental stressors are known to release vesicles enriched with antioxidants [148],
there is a great potential of supplementing such vesicles during in vitro oocyte maturation,
which could lead to prevention of postovulatory oocyte aging phenotypes.

6. Conclusions

Reproductive disorders are a major cause of fetal and maternal morbidity and mor-
tality in humans and cause huge economic losses to the cattle and sheep industry. Early
diagnosis of these disorders can help in better management and treatment. Although
several environmental and physiological factors can contribute to the pathophysiology of
reproductive disorders, microRNAs have emerged as major players in the reproductive
health of animals. One miRNA can target hundreds of different genes and hence several
molecular pathways involved in reproductive health and efficiency of mammals are also
regulated by miRNAs. In this review we summarized the miRNAs, which are differen-
tially expressed in various reproductive disorders, suggesting the role of these miRNAs
in pathogenesis of different reproductive disorders. Although the exact cause of miRNA
dysregulation is unclear, epigenetic modifications, random genetic mutations, adverse
uterine environment, oxidative stress, and malnutrition are some of the possible factors,
which can cause dysregulation of miRNAs. MiRNAs are secreted by different cells and
tissues in the extracellular environment either directly or via vesicles. MiRNAs can be
detected and readily measured in different biological samples including peripheral blood,
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tissue biopsies, saliva, cerebrospinal fluid, and urine. Due to this reason, dysregulation of
specific miRNAs can be used as a biomarker for early diagnosis of different reproductive
disorders. As described in this review, dysregulation of more than one miRNA have been
linked to various reproductive disorders. Therefore, using miRNAs as a biomarker for early
diagnosis of different health conditions can be challenging and further studies are needed
to identify the miRNAs that can be used as reliable biomarkers for each health condition.
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