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Abstract: MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by en-
dogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional
gene expression. Ubiquitination and deubiquitination are common post-translational modifications
in eukaryotic cells and important pathways in regulating protein degradation and signal transduc-
tion, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and
ubiquitination are involved in the regulation of most biological processes, including autophagy.
Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or
deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination
system has been proved to play key regulatory roles in a variety of diseases. In this review, we
summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin
ligases or deubiquitinases.
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1. Introduction

A living cell is a complex dynamic system which can respond and adapt to environ-
mental changes and stress all of the time. Among living cells, proteins play a key role in all
physiological and pathological cellular functions. Therefore, it is of great significance to
understand the synthesis, degradation, modification, and related regulation of proteins.

Ubiquitin proteasome system (UPS) is one of the main pathways regulating protein
degradation in eukaryotic cells and is also a key regulatory mechanism in a variety of
biological processes [1]. Ubiquitination is a reversible post-translational modification
that occurs under the continuous action of E1 ubiquitin activating enzyme, E2 ubiquitin
coupling enzyme, and E3 ubiquitin ligase [2,3]. Proteins labeled with ubiquitin are bro-
ken down by proteasome into smaller peptides, amino acids, and ubiquitin that can be
reused [4]. In addition, ubiquitination can also serve as a marker to activate certain signals,
such as autophagy and immune response [5].

MicroRNA (miRNA) is an evolutionarily conserved small non-coding RNA that is
involved in the regulation of gene expression during the translation phase and is considered
to be abnormally expressed in a variety of human diseases [6–9]. MiRNA can inhibit the
expression of target genes at the translation level or directly lead to the degradation of
mRNA through complementary binding with target mRNA [10–12].

Both ubiquitination and miRNAs are key regulators of protein and related signaling
involved in most biological processes such as cell cycle differentiation and apoptosis, and
autophagy is no exception given its central role in cellular stress and survival responses.
Genes and proteins involved in autophagy pathways are also controlled by a variety of
miRNAs and UPS. Moreover, autophagy related regulatory abnormalities are associated
with various kinds of diseases, including cancer, neurodegeneration, and cardiovascular
disease. In addition, there is crosstalk between ubiquitin ligases, deubiquitinases, and
miRNAs. In this review, we will briefly describe the mutual regulation between miRNA
and UPS and focus on how their crosstalk affects autophagy and forms cellular outcomes.
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2. Overview of miRNA

In the eukaryotic genome, only a small number of genes encode proteins, and about
97% of the transcribed products are non-coding RNAs [13]. MicroRNAs (miRNAs) are
~22 nt small noncoding RNAs that are known to play an important role in the post-
transcriptional regulation of messenger RNA (mRNA) [14,15]. It is estimated that more than
60% of human genes are regulated by miRNAs [16]. At the same time, studies have shown
that the sequence and structure of miRNAs are highly evolutionarily conserved among
different species, suggesting that miRNAs have a critical regulatory function [11,17,18].

MiRNAs are usually transcribed in the nucleus by RNA polymerase II (polII), and the
initial product is a large primary miRNAs (pri-miRNA) with a 5′ 7-methyl guanosine cap
and a 3′ poly adenosine tail [14]. Pri-miRNA was originally processed by Drosha in the
nucleus to form a precursor miRNA (pre-miRNA) of ~70 nt that forms a hairpin, which
was exported to the cytoplasm via nuclear transport receptor exportin-5 and the cofactor
Ran-GTP [19]. It is then cleaved by the RNase III enzyme Dicer into a double stranded
RNA of ~22 nt [20]. Under the action of the Argonaute (AGO) proteins, one strand of this
duplex is selected as a mature miRNA and is then incorporated into the miRNA-induced
silencing complex (miRISC) [21,22].

MiRISC directs the miRNA to binding sites in the target mRNAs, which usually leads
to gene repression [22]. If the miRNA is completely complementary to the target site, the
binding of these miRNAs often leads to degradation of the target mRNA. MiRNAs that
are not completely complementary to the target mRNA usually inhibit the expression
of the target gene at the protein translation level without affecting the mRNA stability
(Figure 1) [10,23].
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Figure 1. The biogenesis of microRNA (miRNA). MiRNA is transcribed by RNA polymerase II
(pol II) in the nucleus as a pre-miRNA, processed by Drosha to a pre-miRNA. Pre-miRNA is then
exported from the nucleus to the cytoplasm by exportin 5 (XPO5). In the cytoplasm, Dicer cleaves
pre-miRNA to produce the miRNA duplex, and one strand of the resulting duplex is loaded onto
the Argonaute (AGO) protein to form a miRNA-induced silencing complex (miRISC), which targets
mRNAs for regulation. MiRNAs that form perfect duplexes with their targets direct degradation and
those that support partial duplexes inhibit protein expression.

A miRNA can have multiple target genes, and several miRNAs can jointly regulate
the same gene [15,23]. Therefore, the wide variety of biological functions of miRNAs
is not surprising. Although the important roles of miRNAs have been demonstrated in
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several studies, the research on miRNAs is still in its infancy and only a small part of their
biological functions has been elucidated [9,24–27].

3. Overview of Ubiquitin-Proteasome System (UPS)

Ubiquitin (Ub) is a 76-amino-acid protein highly conserved among all eukaryotes. It
covalently binds to the lysine residues of the substrate protein and acts as a signal molecule
to mediate its degradation or regulate its biological functions [2]. Ubiquitin contains seven
lysine residues (K6, K11, K27, K29, K33, K48, and K63) and one N-terminal methionine
residue, each of which can be attached to another ubiquitin moiety [3]. As a consequence,
the modification of ubiquitin can form ubiquitin chains of different lengths and linkage
types. The lysine binding sites of ubiquitin determine different cellular functions and
protein fates, including degradation, signal transduction, and altered subcellular localiza-
tion [5]. Among them, K48- and K11-linked chains mediate the recognition and degradation
of ubiquitinated substrate proteins by 26S proteasome, whereas other linked sites, such as
K63, do not lead to degradation but regulate other cellular processes, such as DNA repair,
mitochondrial genetics or NF-κB signaling pathways [28]. The physiological functions of
other atypical ubiquitination modifications (K6, K27, K29, and K33) are unknown but have
been of interest to researchers.

Ubiquitin binding is a multistep reaction that requires the sequential action of three
enzymes (E1 Ub-activating enzyme, the E2 Ub-conjugating enzyme, and the E3 ubiquitin
ligase) [1]. In the presence of ATP, E1 activates Ub and transfers it to E2, whose active
site cysteine forms a thioester bond with the C-terminal carboxyl group of Ub. The
E3 enzyme mediates the last step of Ub transfer through simultaneous interaction with
a Ub-loaded E2 enzyme and a specific substrate, and finally forms the ubiquitinated
substrate (Figure 2) [4,29]. Given the substrate recognition and substrate specificity of
E3 ligase, its role in ubiquitin modification is particularly critical. There are more than
600 known E3 ligases in human, and they can be grouped into three categories according
to their conserved domains: HECT E3 (homologous to the E6-associated protein carboxyl
terminus) [30], RING finger E3s [31], and RBR (RING between RING) type E3s [32].
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Figure 2. The overview of the ubiquitin-proteasome system. Ubiquitin is activated and bound to
E1 in an ATP-dependent manner. Then, the activated ubiquitin is transferred to the E2, while the
substrate protein to be degraded is specifically targeted by E3 ubiquitin ligase, and ubiquitin is
ligated to the substrate. Ubiquitinated substrate proteins are recognized by the 26S proteasome and
degraded into small peptides and amino acids. In contrast, DUB reverses ubiquitination by removing
the polyubiquitin chains of proteins and maintains intracellular ubiquitin levels. In addition, some
ubiquitination modifications that do not lead to degradation induce related biological effects through
signal recognition, such as kinase activation, localization changes.

Ubiquitination is a reversible process that can be reversed by a specific group of
enzymes called deubiquitinases (DUBs) [33]. There are about 100 DUBs encoded by
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the human genome, which are mainly divided into six classes: ubiquitin-specific Pro-
teases (USPs); ubiquitin carboxy-terminal hydrolases (UCHs); ovarian-tumor proteases
(OTUs); Machado-joseph disease Protein Domain Proteases (MJDs), JAMM/MPN domain-
associated metallopeptidases and monocyte chemotactic protein-induced protein (MCPIP).
The most abundant sub-family of DUBs is the USPs with over 50 members [34,35].

4. Overview of Autophagy System

Autophagy is a stress-responsive catabolic process that degrades intracellular com-
ponents through lysosomal enzymes [36]. In normal physiological state, only a small
amount of autophagy occurs in cells to maintain homeostasis. When cells are stimulated
by intracellular and extracellular factors such as starvation, hypoxia, pathogen invasion,
etc. [37], a large number of autophagy can be induced through the transduction of cell
signaling pathways [38]. Thus, autophagy is a pivotal actor in development, immune
response, as well as metabolic regulation and has been shown to be associated with cellular
modifications related to senescence, with most studies now suggesting that a reduced
autophagic potential is one of the factors of cell senescence [36,39,40]. Autophagy not only
removes protein aggregates, but also damages organelles and plays a role in quality control
of the cytoplasm such as mitophagy [41]. In the case of damaged mitochondria, mitophagy
removes malfunctioning mitochondria to maintain the population at an optimal state. In
recent years, mitophagy has received increasing attention since mitochondrial dysfunction
is at the foundation of numerous diseases and a growing number of studies also suggested
mitophagy as a therapeutic target [42,43].

Autophagy is composed of several closely related steps including autophagy initiation,
autophagosome maturation, and autophagolysosome fusion, which involves many impor-
tant autophagy-related proteins and complexes [44]. These core autophagy proteins include
the following parts: (1) the ATG1/ULK1 complex, including ATG1, ATG11, ATG13, ATG17,
ATG29, and ATG31, is the only core protein complex with serine/threonine kinase activity
in autophagy signaling pathway. The ULK1 complex acts as a bridge connecting upstream
energy receptors mTOR and AMPK with downstream autophagosomes in vivo [45,46],
and plays an important role in autophagy initiation [47,48]; (2) the PI3K complex, including
Vps34, Vps15, ATG6/Beclin1, and ATG14, catalyze the conversion of the lipid molecule PI
to PI3P, thereby recruiting the protein that binds to PI3P [49]. Vps34 is the class III PI3K
in mammals. Vps34 is activated by binding to Vps15 and further binds to Beclin1 to form
the Vps34-Vps15-Beclin1 complex. During autophagy, Vps34-Vps15-Beclin1 binds to a
variety of autophagy-related proteins. For example, ATG14 is combined with to Vps34-
Vps15-Beclin1 to form ATG14-Vps34-Vps15-Beclin1, which is involved in the formation of
autophagic vesicles [50]; the (3) ATG9 and WIPI/ATG2-ATG18 complex. ATG9 is a trans-
membrane protein with six transmembrane domains, which may play a role in regulating
autophagy by affecting vesicular transport [51]. ATG9 circulates in autophagic vesicles and
cytoplasm, depending on ATG17 or ATG11 complex to locate PAS, and ATG2-ATG18 com-
plex to leave PAS [52,53]. In mammals, specific silence of mATG9 gene can inhibit the
formation of autophagic vesicles and protein degradation, and inhibit the occurrence of
autophagy; and (4) ubiquitin-like systems ATG12-ATG5 and ATG8/LC3. There are two
ubiquitin-like binding pathways involved in autophagosome formation. Both ATG8 and
ATG12 are ubiquitin-like proteins, ATG12 can covalently bind with ATG5, and ATG8 can
covalently bind with the lipid molecule phosphatidylethanolamine PE [54,55]. Similar to
the ubiquitin system, ATG12 is transmitted by ATG7 to ATG10, which eventually binds to
the lysine side chain of ATG5 and forms a complex with ATG16, promoting the exposure of
membrane-binding sites on ATG5. Similarly, ATG7 transfers ATG8 to ATG3 [56]. With the
help of ATG12-ATG5-ATG16, LC3 conjugates to lipid molecule phosphatidylethanolamine
(PE), promoting isolation membrane expansion and autophagic vesicle completion [57].
These key proteins in the complex autophagy regulatory network are regulated by a variety
of molecular signals, including ubiquitin ligases, deubiquitinases and miRNAs [58].
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5. MiRNAs Are Involved in Autophagy via Regulation of E3 Ubiquitin Ligases

E3 ubiquitin ligase specifically recognizes substrates and induces substrate protein
degradation, and most of the key proteins involved in autophagy are regulated by ubiquitin
ligase. Therefore, it is of great significance to understand the ubiquitination mechanism in
autophagy. At the same time, miRNA often acts as an upstream regulator of E3 ubiquitin
ligase, co-regulating autophagy with ubiquitin ligase (Table 1).

Table 1. MiRNAs and E3 ligases involved in autophagy.

MiRNA/E3 Target Function References

Mir-30a MARCH5 MARCH5 mRNA acts as ceRNA of ATG5 [59]
Mir-200a MARCH7 MARCH7 mRNA acts as ceRNA of ATG7 [60]
Mir-233 TRIM37 Promotes autophagy by inhibiting MTORC1 [61]

Mir-34a-5p SYVN1 Induces autophagy [62]
Mir-146a TRAF6 Inhibits autophagy via ULK1 protein [63]

Mir-27 NEDD4 Attenuates autophagy through Notch1 [64]
TRIM65 Mir-138-5P Upregulates ATG7 by inhibiting miRISC [65]

5.1. MARCH5 Regulates Autophagy in a Mir-30a-Dependent Manner

The membrane-associated RING-CH (MARCH) protein belongs to the RING Finger
protein family of E3 ubiquitin ligases and consists of 11 members [66]. Among them,
MARCH5 is an integral mitochondrial outer membrane protein with four transmembrane
segments [67]. MARCH5 participates in the control of mitochondrial morphology and
plays a key role in the growth of cells and tissues [68,69]. In addition, studies have shown
that MARCH5 can promote mitophagy through its ubiquitination [70,71]. In addition,
MARCH5 also participates in the regulation of apoptosis [72,73] and maintains the stemness
of mouse embryonic stem cells [74,75].

Recent studies have shown that the expression of MARCH5 in epithelial ovarian cancer
tissue is higher than that in normal ovarian tissue, and the up-regulated MARCH5 promotes
autophagy in epithelial ovarian cancer cells, which is beneficial to cancer progression. In-
terestingly, MARCH5 regulates autophagy in a mir-30a-dependent manner. MARCH5 has
been shown to be the target gene of mir-30a, and ATG5 and SMAD2, which are involved
in autophagy signaling, have also been identified as target genes of mir-30a [59,76,77].
At this point, MARCH5 mRNA can serve as a competing endogenous RNA (ceRNA) to
regulate the expression of SMAD2 and ATG5 by competing mir-30a, and once mir-30a is
inhibited, the regulatory effects of MARCH5 on ATG5 and SMAD2 will also be eliminated
(Figure 3a) [59]. Therefore, MARCH5 serves as the target of mir-30a, and together with
mir-30a regulates the autophagy through ATG5 and SMAD2.

5.2. MARCH7 and Mir-200a Jointly Regulate Autophagy

The E3 ubiquitin ligase MARCH7, a member of the MARCH family, plays an important
role in T cell proliferation and neuronal development [78,79]. MARCH7 is highly expressed
in ovarian cancer cells and promotes ovarian cancer cell proliferation [80].

Recent studies have found that the expression level of ATG7 in ovarian cancer tis-
sues is well correlated with MARCH7. Mir-200a is believed to be the miRNA shared by
MARCH7 and ATG7, and their direct binding to mir-200a was also confirmed by luciferase
assay. ATG7 expression was more pronounced in tumor tissue than in normal ovarian
tissue. On one hand, MARCH7 silencing down-regulated ATG7 expression. However, this
regulation was abolished when mir-200a was silenced [60]. MARCH7 mRNA may function
as a competing endogenous RNA (ceRNA) to regulate the expression of ATG7 by competing
with mir-200a (Figure 3b). On the other hand, MARCH7 overexpression promoted TGF-β
induced autophagy through regulating TGF-β-smad2/3 pathway [60,81,82]. Therefore,
mir-200a inhibits TGF-β induced autophagy of SKOV3 cells by targeting MARCH7.
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Figure 3. MiRNAs regulates autophagy by targeting E3 ubiquitin ligases or DUBs. Once receiving
autophagy induction signals, ULK1 complex mediates the initiation of autophagy, and PI3KC3 com-
plex participates in the nucleation of phagophore. Under the action of two ubiquitin-like systems,
phagophore is continuously extended to form autophagosome, which eventually fused with lysosome
to form autolysosome and the contents of the autolysosome are then degraded and exported back
into the cytoplasm for reuse by the cell. (a) Mir-30a targets both MARCH5 and ATG5, MARCH5 RNA
serves as a competing endogenous RNA (ceRNA) to regulate the expression of ATG5 by compet-
ing with ATG5 for mir-30a. (b) ATG7 and MARCH7 mRNA, as ceRNAs, regulate each other by
competing for mir-200a. (c) Mir-233 increases autophagy by negatively targeting TRIM37, which
promotes the mTORC1 pathway. (d) As a ubiquitin ligase of TNRC6, a component of miRISC,
TRIM65 blocks the function of miRISC to achieve the effect of inhibiting mir-138-5p. However,
ATG7 was upregulated by TRIM65 as a target of mir-138-5p. (e) Mir-34a-5p promotes autophagy
by directly targeting SYVN1. (f) Mir-146a inhibits E3 ubiquitin ligase TRAF6, which has a positive
regulatory effect on ULK1 protein through K63-linked ubiquitination. (g) Mir-27 targets NEDD4,
the E3 ubiquitin ligase of Notch1, increasing Notch1 protein expression and decreasing autophagy.
(h) Mir-6825-5p, mir-6845-5p, mir-6886-3p and mir-29c can directly target USP22, the DUB of Sirt1,
and ultimately suppress Sirt1-mediated autophagy. (i) Mir-26b negatively targets USP9X, a DUB of
p53, and affects autophagy by inducing p53 degradation. (j) Mir-26a negatively targets USP15, which
inhibits autophagy.

5.3. Mir-233 Induces Autophagy by Inhibiting TRIM37

TRIpartite Motif (TRIM) proteins are part of the largest subfamily of E3 ligases, con-
sisting of a RING domain, B-box motif, and a core-coil region [83]. TRIM37 is one of the
TRIM members and is characterized by the presence of a unique MATH domain in the
C-terminal portion. TRIM37 is often overexpressed in a variety of cancer cells [84–86],
and it has been confirmed that overexpression of TRIM37 induces cell proliferation [87].
Perplexingly, however, mutations in the TRIM37 gene cause Mulibrey nanism, an inherited
growth disorder [88,89]. This may indicate that the expression of TRIM37 in normal cells
requires an optimal balance.

Current studies show that the regulation of TRIM37 on disease may be related to
autophagy, for example, TRIM37 depletion increases the basal autophagy flux through
the MTORC1 pathway [90]. Consistent with this, TRIM37 knockdown can increase the
expression of LC3II and promote autophagy in chondrocytes, while overexpression of
TRIM37 can inhibit autophagy [61]. In addition, recent studies have found that mir-223,
a regulatory factor upstream of TRIM37, specifically binds to 3′-UTR binding site of the
TRIM37 mRNA in a complementary way to regulate its expression (Figure 3c) [61].
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Under the overexpression condition (mimic mir-223), the expression of TRIM37 de-
creased by approximately one-third [61], indicating that other factors are probably involved
in the regulation of TRIM37, since it is well known that the UTR of mammalian mRNA is
usually targeted by more than one miRNA. In conclusion, autophagy plays a critical role in
the development and viability of chondrocytes during endochondral ossification, and mir-
223 can inhibit the key gene TRIM37, thereby regulating autophagy and cell proliferation.
However, how TRIM37 affects the autophagy pathway needs further study. The crosstalk
between mir-233 and TRIM37 may provide us a clue for the treatment of related disease.

5.4. TRIM65 Affects Autophagy through Mir-138-5p/ATG7

Autophagy has been identified as one of the key mechanisms of chemotherapeutic
resistance, and regulation of autophagy has become a promising strategy to overcome
chemotherapeutic resistance in cancer therapy [91,92]. TRIM proteins are involved in the
regulation of carcinogenesis, autophagy and chemoresistance [93], for instance, TRIM32 in
breast cancer [94], and TRIM14 in gliomas [95]. TRIM65 is often overexpressed in cancer
tissues and is considered to be an oncogenic protein [96–99]. It has been reported that
TRIM65 is an E3 ubiquitin ligase for trinucleotide repeat containing six (TNRC6) proteins,
which is a component of RNA-induced silencing complex (RISC), and participates in
miRNA-induced gene silencing [100]. Therefore, TRIM65 can relieve miRNA-driven
suppression of mRNA expression through ubiquitination and subsequent degradation of
TNRC6 (Figure 3d).

Recent studies have shown that TRIM65 is involved in the regulation of autophagy
and chemical resistance. Knockdown of TRIM65 can significantly down-regulate the ex-
pression of ATG7, an important autophagy mediator, to inhibit autophagy in A549/DDP
cells. Meanwhile, the expression of mir-138-5p in NSCLC tissues was negatively correlated
with TRIM65 mRNA, and mir-138-5p was significantly increased after TRIM65 knock-
down [65]. Importantly, ATG7 was identified as a target gene of mir-138-5p, which affects
autophagy by down-regulating ATG7 expression [101]. Moreover, mir-138-5p inhibitor
significantly eliminated the effects of TRIM65 knockdown on cisplatin-induced autophagy
and apoptosis, which further proved that the down-regulation of TRIM65 on ATG7 was
mediated by mir-138-5p [65]. In other words, TRIM65 induces ubiquitination and degrada-
tion of TNRC6A, leading to inhibition of mir-138-5p expression, thus affecting ATG7 and
autophagy and TRIM65 may be a potential therapeutic target due to its new functions of
miRNA-mediated autophagy and cisplatin resistance.

5.5. Mir-34a-5p Targets SYVN1 to Induce Autophagy

Mir-34a-5p has been reported to be closely associated with the occurrence and devel-
opment of many diseases [102–104], including the regulation of autophagy. For example,
mir-34a-5p overexpression activates Beclin1 by inhibiting Bcl-2 and participates in au-
tophagy induction [105]. Recent study has identified SYVN1 as a target of mir-34a-5p,
which directly targets SYVN1 in 293T cells and inhibits the expression of SYVN1 mRNA
and protein (Figure 3e) [62].

SYVN1 expression was decreased in osteoarthritis tissues. Transfection of anti-mir-
34a-5p significantly induced SYVN1 expression, inhibited cell apoptosis and autophagy,
and promoted cell proliferation. Meanwhile, SYVN1 knockdown impaired the effect on cell
proliferation, apoptosis and autophagy caused by anti-mir-34a-5p [62]. SYVN1 is involved
in endoplasmic reticulum stress, chronic inflammation, immunity, tumor regulation and
other aspects [106–110]. Currently, the specific mode of SYVN1 regulation of autophagy is
not clear, which may need further investigation in autophagy regulation.

5.6. Role of TRAF6 as a Target of mir-146a in Autophagy

TRAF6 (TNF receptor-associated factor 6) is a well-known ubiquitin ligase containing
a ring finger domain and five zinc finger domains at the N-terminus and a TRAF domain at
the C-terminus [111,112]. TRAF6 can integrate with multiple kinases to regulate signaling
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pathway by functioning as an E3 ubiquitin ligase, which is closely related to malignant
tumors [113], immune inflammation [114] and nervous system diseases [115].

Nucleophosmin (NPM1) mutations are considered as one of the most common genetic
alteration in acute myeloid leukemia (AML) [116], and aberrant cytoplasm-dislocated
NPM1 mutant is a distinct biological characterization of this disease [117,118]. It has been
reported that increased autophagy activity and autophagy activation of NPM1 mutants con-
tribute to the survival of leukemia cells [119]. The core autophagic protein ULK1 plays an
indispensable role in autophagosome formation [120] and is highly expressed in NPM1 mu-
tated AML. K63-linked ubiquitination mediated by the E3 ubiquitin ligase TRAF6 is a
crucial posttranslational modification for ULK1 protein. Unlike K48 linkage, K63-linked
ubiquitination has a positive effect on protein stability of ULK1 and its participation in
autophagosome formation [63].

Tang et al. found that NPM1 mutations promote TRAF6-dependent K63 ubiquiti-
nation through mir-146a and further maintain the stability and kinase activity of ULK1
(Figure 3f). NPM1 mutations inhibited mir-146a and upregulated TRAF6 expression, as a
direct target of mir-146a, increased K63 ubiquitination of ULK. Subsequently, high expres-
sion of ULK1 mediates autophagy activation and promotes leukemia cell proliferation. In
contrast, in Dengue disease, mir-146a inhibits autophagy by targeting TRAF6, leading to
ubiquitination of IFN-β rather than through ubiquitination of ULK1 [121,122]. In chondro-
cytes, hypoxia induces up-regulation of mir-146a and inhibits its target TRAF6, possibly
regulating autophagy through the NF-κB signaling pathway [123]. This suggests that there
may be different modes of action in different diseases.

5.7. Mir-27 Targets NEDD4 to Reduce Autophagy

Mir-27 has been described as a carcinogen and is frequently overexpressed in a
number of human tumors, including osteosarcoma [124], gastric cancer [125] and thyroid
cancers [126]. In multiple myeloma, high expression of mir-27 was observed to predict
a poor prognosis and increase cancer progression in humans [127]. Autophagy has been
shown to contribute to chemotherapy sensitivity in a number of studies, but the autophagy
level of multiple myeloma tumor cells is significantly lower than that of normal myeloid
plasma cells [64]. Recent studies have reported the regulatory mechanism of mir-27 on
autophagy in multiple myeloma.

Mir-27 negatively targets the ubiquitin ligase NEDD4, which specifically binds Notch1
to increase the ubiquitination of Notch1 in multiple myeloma cells (Figure 3g). mir-27 or
Notch1 overexpression or NEDD4 silencing diminished autophagy but enhanced prolif-
eration and invasion of multiple myeloma cells. Collectively, mir-27 elevated Notch1 ex-
pression by targeting NEDD4 and promoted the development of multiple myeloma by
inhibiting cell autophagy, thus providing a scientific basis for innovative treatment of
multiple myeloma [64].

6. MiRNAs Are Involved in Autophagy via DUBs Regulation

As part of the ubiquitin-proteasome system, the role of deubiquitinases is equally
important. Deubiquitinases stabilize substrate proteins and participate in the regulation of
autophagy related signaling pathways by removing ubiquitin chains of substrates. There
was also an interesting crosstalk between MiRNA and deubiquitinases (Table 2).

Table 2. MiRNAs and DUBs involved in autophagy.

MiRNA/E3 Target Function References

Mir-29c USP22 Inhibits autophagy [128]
Mir-6825-5p

USP22Mir-6845-5p Inhibits SIRT1-mediated autophagy [129]
Mir-6886-3p

Mir-26b USP9X Suppresses Autophagy by inhibiting p53 [130]
Mir-26a USP15 Activates autophagy [131]
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6.1. MiRNAs Regulate Autophagy via USP22

Ubiquitin specific proteases (USPs) are the largest family of ubiquitination enzymes,
which play an important role in the ubiquitination system by specific depolymerization of
ubiquitin from ubiquitinated substrates [132]. USP22 is expressed in most normal human
tissues but is overexpressed in malignancies, such as colorectal, liver, breast, stomach
and lung cancers, and has been shown to be associated with tumor progression [133–137].
USP22 is considered to be a target for cancer therapy, and is involved in a variety of
cancer regulatory pathways, such as C-Myc, p53 and WNT pathway [138–140]. The role
of USP22 in autophagy has also attracted attention and the activation of ERK1/2 was
identified to be one of the mechanisms underlying the promotion of LC3 processing by
USP22 [141].

At present, several miRNAs have been shown to bind USP22 mRNA and inhibit its
protein expression. In pancreatic cancer cells, mir-29c directly targets and down-regulates
USP22, increasing chemotherapy sensitivity and inducing apoptosis by inhibiting USP22-
mediated autophagy [128]. In hepatocellular carcinoma cells, three miRNAs (mir-6825-5p,
mir-6845-5p, and mir-6886-3p) can directly target USP22, the deubiquitination enzyme of
SIRT1, and ultimately affect autophagy (Figure 3h) [129]. It is well known that SIRT1 in-
duces autophagy by regulating many key autophagy components, such as ATG5, ATG7,
ATG8, Beclin1, p53 [142]. Down-regulation of mir-6825-5p, mir-6845-5p, and mir-6886-3p
stabilize SIRT1 by enhancing the deubiquitination effect of USP22, and play a key role in
SIRT1-mediated autophagy.

6.2. Mir-26b Affects Autophagy via USP9X/p53 Ubiquitination Degradation Pathway

MirRNA-26 is involved in the occurrence and progression of a variety of diseases [143–145],
among which mir-26b has been shown to be a tumor suppressor in most studies and has been
proved to be related to the sensitivity of cancer chemotherapy in several studies, such as
improving the sensitivity of colon cancer cells to 5-FU [146], inhibiting the resistance of
gastric cancer cells to paclitaxel [147], and enhancing the potency of cisplatin in lung cancer
cells [148]. Chemotherapy resistance is often associated with autophagy. In fact, inhibition
of autophagy has been shown to overcome chemoresistance in many tumor cells [149–151].
Previously, mir-26a/b has been reported to enhance apoptosis and sensitivity of HCC cells
via inhibiting ULK1 [151]. Mir-26 inhibits autophagy in non-small cell lung cancer cells via
inhibiting the TGF-β1-JNK signaling pathway [152].

Mir-26b is encoded at 9P21.3, a vulnerable site in the genome, which has been reported
to be missing in many HCC tumors and down-regulated in HCC cells [153]. In addition,
upregulation of mir-26b can slow cell proliferation and migration in HCC cells and enhance
sensitivity to adriamycin by inhibiting autophagy in HCC cells [151,154]. Chen et al.
showed that the expression of mir-26b was down-regulated after adriamycin treatment in
human HCC cells. While mir-26b mimic inhibited autophagy and enhanced the sensitivity
of HCC cells to adriamycin. Interestingly, this effect disappeared in p53 deficiency of Hep3B
cells. However, mir-26b mimic did not directly affect the expression of p53, suggesting that
the regulation of p53 by mir-26b requires the mediations of other molecules [130].

Previous studies have reported that WP1130 enhances the sensitivity of HCC cells
to adriamycin by USP9X-dependent p53 degradation [155]. Therefore, luciferase assay
confirmed that mir-26b could directly bind USP9X, which is a member of the USP family.
Mir-26b targets USP9X, the deubiquitination enzyme of p53, and induces the degradation
of p53, thereby affecting autophagy and HCC cell drug resistance (Figure 3i). Mean-
while, MG132, as a proteasome inhibitor, reversed the inhibition of p53 expression by
mir-26b in HCC cells under the action of adriamycin, which further confirmed that the
down-regulation of p53 was achieved through proteasome-dependent degradation via
p53 ubiquitination [130]. Mir-26b/USP9X/p53 ubiquitination degradation pathway may
represent a potential gene-targeting approach for HCC treatment in the future.
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6.3. Mir-26a Targets USP15 to Activate Autophagy

Autophagy is known to be widely involved in the development of various diseases,
and in addition to cancer, autophagy also plays an important role in cardiovascular diseases.
A large number of studies have found that autophagy is regarded as a protective factor
against ischemic injury in cardiomyocytes and is involved in cardiac cell death associated
with acute myocardial infarction (AMI) [156–158].

Recent studies have shown that mir-26a is a highly conserved miRNA that is dysregu-
lated in a number of cardiovascular diseases [159,160]. In a mouse model of myocardial
infarction, inhibition of mir-26a leads to cardiac injury in vitro and in vivo, whereas mir-26a
overexpression attenuated ischemic stress-induced cell death by activating autophagy. The
signaling mechanism of mir-26a’s cardiac protective effect is mediated by inhibition of
USP15 [131].

USP15 can inhibit autophagy, and in previous studies, USP15 inhibits PARKIN-
mediated mitophagy through its deubiquitination enzyme activity [161,162]. In another
study, mir-26a was found to directly target USP15 and activate autophagy, thereby alleviat-
ing ischemic stress-induced cardiac injury (Figure 3j). However, the specific mechanism
of USP15 inhibited autophagy in cardiomyocytes remains unclear. Inhibition of mir-26a
leads to a decline in cell viability that could be rescued by USP15 knockdown. Silencing
USP15 also attenuated the inhibitory effect of mir-26a inhibition on autophagosome and au-
tolysosome formation, suggesting that mir-26a regulates the autophagy of cardiomyocytes
by targeting USP15 [131].

7. Discussion

The biological events that occur in cells are extremely complex and variable. MiRNAs
are central regulators of biological events. And ubiquitin–proteasome systems are also in-
volved in almost all cell signaling regulation such as cell cycle, cell proliferation, apoptosis,
and autophagy [163–165]. Here, we illustrate the important impact of crosstalk between
miRNA and UPS in autophagy regulation due to the increasingly important impact status
of autophagy in malignant diseases such as tumors today. It is also highlighted how the dys-
regulation of autophagy jointly mediated by miRNA and UPS is associated with a number
of human diseases and the potential of targeting these pathways for disease intervention.

Regarding the crosstalk between miRNAs and the UPS, the effects of miRNAs on the
UPS are more common and easily understood, usually relying on the specific targeting of
miRNAs to produce inhibition of E3 ubiquitin ligases or DUBs. Interestingly, the UPS has
also been shown to exert an effect on miRNA expression that is usually indirectly regulated
by acting on functional proteins involved in the maturation process of miRNAs. In addi-
tion, miRNA degradation mechanisms widely control miRNA levels in mammalian cells.
MiRNA degradation mechanisms are still unclear, and some studies suggest that E3 ubiq-
uitin ligases may be involved in part of the miRNA degradation mechanism [166,167].
Whether eradicating problematic miRNAs from cells or retaining beneficial miRNAs, this
may represent a new gene regulation-based solution to disease.

A large number of studies have shown that autophagy is involved in the occurrence
and development of most diseases, and autophagy regulation is also being considered
for the treatment of diseases, especially in cancer. Autophagy abnormalities in these
diseases are often associated with expression dysregulation of ubiquitin ligases, DUBs,
and miRNAs. The initiation and nucleation steps of autophagosome formation are mostly
regulated by ubiquitination, which means that ubiquitination controls the initiation of
autophagy under various stress conditions. However, upstream regulatory mechanism of
ubiquitination is still very intricate, and miRNAs can act as upstream regulatory factors
of E3 ubiquitin ligases and DUBs. Moreover, crosstalk between miRNAs and ubiquitin
system may provide new ideas for autophagy signal regulation network. At the same
time, ubiquitination may also be a regulatory factor of miRNAs, generally through the
ubiquitin modification of some key miRISC proteins. In addition, it is also feasible to study



Int. J. Mol. Sci. 2021, 22, 11912 11 of 18

the upstream regulatory pathways of miRNA, such as circular RNA (circRNA) and long
non-coding RNA (lncRNA).

MiRNAs regulate autophagy in a variety of cell types under different physiological
conditions and in response to various stress stimuli by directly or indirectly modifying
the expression of autophagy-related proteins and pathways. Based on the characteristics
of miRNAs in previous studies, some miRNAs often have multiple targets and regulate
autophagy through diversified signaling pathways, which may be due to different cell
types or various stimulating signals caused by diseases. Similarly, different miRNAs
have also been reported to control the same key protein. Therefore, the role of miRNA
in autophagy regulation network is extremely complex. In order to apply miRNA and
autophagy regulatory network to the treatment of diseases, it is necessary to conduct in-
depth analysis of relevant targets and specific cellular environment. In the future, a further
comprehensive understanding of how ubiquitination and miRNA mediate autophagy
regulation will help to elucidate the pathology of human disease and develop less toxic
and more specific drugs.
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DUBs Deubiquitinases
UPS Ubiquitin proteasome system
mRNA Messenger RNA
Pri-miRNA Primary miRNA
Pre-miRNA Precursor miRNA
polII polymerase II
XPO5 Exportin 5
AGO Argonaute
TNRC6 Trinucleotide Repeat Containing Adaptor 6
miRISC miRNA-induced silencing complex
3′-UTR 3′-Untranslated Region
RAN-GTP RAs-related nuclear protein-GTP
NF-κB Nuclear factor of kappa light polypeptide gene enhancer in B cells
ceRNA Competing endogenous RNA
ULK1 Unc-51 like autophagy activating kinase 1
mTOR mammalian target of rapamycin
AMPK Adenosine 5′-monophosphate (AMP)-activated protein kinase
PI3K Phosphatidylinositol 3-kinase
PI3P Phosphatidylinositol 3-phosphate
WIPI WD repeat domain, phosphoinositide interacting
LC3 Microtubule-associated protein 1 light chain 3
PAS Preautophagosomal structure
SMAD2 SMAD family member 2
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TGF-β Transforming growth factor-β
NPM1 Nucleophosmin 1
AML Acute Myeloid Leukemia
C-Myc Transcriptional regulator Myc-like
JNK C-Jun NH2-terminal kinase
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