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Abstract: Background: Staurosporine-dependent single and collective cell migration patterns of
breast carcinoma cells MDA-MB-231, MCF-7, and SK-BR-3 were analysed to characterise the presence
of drug-dependent migration promoting and inhibiting yin-yang effects. Methods: Migration
patterns of various breast cancer cells after staurosporine treatment were investigated using Western
blot, cell toxicity assays, single and collective cell migration assays, and video time-lapse. Statistical
analyses were performed with Kruskal-Wallis and Fligner—Killeen tests. Results: Application of
staurosporine induced the migration of single MCF-7 cells but inhibited collective cell migration.
With the exception of low-density SK-BR-3 cells, staurosporine induced the generation of immobile
flattened giant cells. Video time-lapse analysis revealed that within the borderline of cell collectives,
staurosporine reduced the velocity of individual MDA-MB-231 and SK-BR-3, but not of MCF-7 cells.
In individual MCF-7 cells, mainly the directionality of migration became disturbed, which led to an
increased migration rate parallel to the borderline, and hereby to an inhibition of the migration of the
cell collective as a total. Moreover, the application of staurosporine led to a transient activation of
ERK1/2 in all cell lines. Conclusion: Dependent on the context (single versus collective cells), a drug
may induce opposite effects in the same cell line.

Keywords: cell migration; breast carcinoma; invasion; staurosporine; yin-yang effect

1. Introduction

The aggressiveness of many tumour cells correlates with their potential to migrate
and, consequently, to evade from the primary tumour, which, further on, may enhance the
formation of metastasis. Epithelial to mesenchymal transition (EMT) has often been stated
as the preferential explanation for the conversion of tumour cells into a migratory pheno-
type, i.e., independent of additional genetic mutations, harbouring migratory and invasive
properties [1]. The relevance of EMT has mainly been regarded in the context of single
migrating tumour cells, as collective cell migration, the second major type of tumour cell
migration, seems to be relatively independent of features typical for EMT [1]. Nevertheless,
collective tumour cells can change their molecular and cellular properties with respect to
their single counterparts and, thereby, may increase their migratory potential [2]. In this
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context, we have previously demonstrated that collective migration of thyroid tumour cells
enables them to overcome unfavourable substrate areas [3].

Recently, it has been suggested that the different types or modes of migration, i.e., sin-
gle or collective, should not be seen as distinct entities present in a discrete on or off manner,
but instead—due to the integration of different signals raised, for example, by cell-to-cell
or cell-to-extracellular matrix (ECM) contacts—as continuous types of conversions [4].
Assuming such a model, the consequences of one and the same extracellular signal on the
migration behaviour could show considerable variations, depending on whether tumour
cells are present as single entities or within a cell collective.

Besides the already mentioned cell signalling events raised by cell-to-cell and cell-to-
ECM contacts, growth factor and cytokine signalling also contribute to the behaviour of
tumour cells, including their migration patterns [5]. Such phenomena can be investigated
in different experimental systems that may vary in their level of complexity. The small
kinase inhibitor staurosporine (SSP) is an alkaloid derived from the bacterium Streptomyces
staurosporeus. Amongst other small kinase inhibitors, SSP has relatively quickly lost clinical
interest, as it exhibited a too-broad inhibition profile based on the fact that its molecular
structure overlaps with the adenosine portion of ATP [6]. However, more recently, new
delivery technologies led to a kind of comeback of SSP in the context of cancer treatment [7].
In particular, application of SSP nanoparticles led to an almost complete growth inhibition
of multidrug-resistant breast tumours in animal models [8]. In a detailed study performed
by Karaman et al. [9], SSP has been shown to interact with KD values of less than 3 uM, with
253 out of 290 kinases tested, the latter one representing around 55% of the predicted human
kinome. On the cellular level, SSP inter-alia interferes with cell migration, proliferation,
differentiation, and survival in a multifaceted manner [10,11]. We recently have shown
that SSP mediates the conversion of small-cell lung carcinoma (SCLC) cells into a neuron-
like process-bearing phenotype [12], whereby the broad pattern of SSP-induced effects is
more restricted, with different SSP analogs that exhibit higher substrate specificity [13]. In
addition, SSP can also induce the reversible formation of resting giant cells, as demonstrated
by us for A549 non-SCLC cells [14].

Breast carcinoma, the leading cancer entity of women in most developed countries,
comprises many different biological entities. The 5-year survival rate strongly depends
on the absence or presence of a metastatic stage (99% versus 27%) [15]. As metastasis
formation in general strongly correlates with cell migratory events during early stages of
cancer formation, a detailed elucidation of cell migration processes in breast cancer should
help to increase treatment options [16]. Classical breast cancer classification distinguishes
between luminal A and B, HER2-overexpressing, and basal (triple-negative) tumours [17].
To gain more insight into the migratory potential and flexibility of breast carcinoma cells,
here, we have used three breast cancer cell lines that differ in their oestrogen receptor (ER),
progesterone receptor (PR), and epidermal growth factor receptor 2 (HER2) expression
pattern, as well as in their metastatic potential: Luminal-like MCF-7 breast cancer cells (ER-,
PR-positive, HER2-negative) harbour properties of a differentiated mammary epithelium
and express epithelial markers such as E-cadherin, 3-catenin, or cytokeratin 18, but are
negative for the mesenchymal markers vimentin and smooth-muscle actin. These cells
possess only a low migratory potential in vitro and do not induce metastasis in mice [18].
The cell lines MDA-MB-231 (ER-, PR-, HER2-negative) and SK-BR-3 (ER-, PR-negative,
HER?2-positive) are mesenchymal-like, highly invasive, and metastatic [19-21], although
the highly metastatic potential of SK-BR-3 cells has been questioned [22]. These three
cell lines are originally derived from metastatic sites and well-characterised with respect
to their pathological abnormalities in their expression pattern of potential therapeutic
genes [20,23]. They belong to the ten most cited cell lines in PubMed [23], indicating the
presence of considerable datasets that allow the integration of our results into desired
frameworks. However, it has to be mentioned that the categorisation of breast carcinoma
cell lines is still controversial [24].
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In the present study, single or collective breast carcinoma cells were treated with
SSP on different substrata. Dependent on the cell line and the starting conditions, such
treatments revealed a multifaceted reaction pattern. Our data highlight a multifaceted
drug-response of tumour cells in the context of cell-cell and cell-extracellular matrix
interactions that, in its extreme, can lead to an inverse response. Thus, the impact of
a drug should be investigated in parallel for different cellular parameters (such as cell
proliferation, migration, differentiation, or cell death) in order to exclude the presence of
opposite yin-yang effects [25].

2. Results

Single human breast carcinoma cells exhibit a complex migration pattern on different
substrata. Breast carcinoma cell lines MCF-7 (MCF), MDA-MB-231 (MDA), and SK-BR-3
(SKB) showed a diverse migration potency dependent on the cell line and the substratum,
when seeded at low density on cell culture plastic (PL), fibronectin (FN), or laminin (LN)
surfaces and analysed by video time-lapse for 24 h (Figure 1). In general, individual cells
exhibit a variable velocity within the cell population analysed, a fact that is reflected by
the high SD of the mean values. In more detail, MCF cells were almost immobile on PL
(1.0 £ 0.9 um/h) and FN (0.8 + 1.2 um/h), but mobile on LN (15.8 4+ 11.1 um/h). MDA
cells were mobile on all three substrata, i.e., 13.4 + 5.9 um/h on PL, 8.5 + 5.0 um/h on
FN, and 29.2 £ 9.8 um/h on LN. SKB cells were weakly mobile on PL (2.0 = 1.1 um/h),
but mobile on FN (6.1 + 3.1 um/h) and LN (20.4 + 5.5 um/h). Cells that were more
mobile often harboured processes or expressed an elongated shape. Thus, common breast
carcinoma cell lines possess a variable migration capacity on different substrata.

Immobile single human breast carcinoma cells gain a migratory potency when present
in a collective. We next analysed, in endpoint studies, breast carcinoma cells that were
allowed to migrate as a collective on a PL surface (Figure 2). Under these conditions, all
three cell lines were able to migrate. If we assume that individual cells migrate on a straight
line, we found a velocity of 10.4 £ 0.9 um/h for MCF, of 10.0 £ 1.5 um/h for MDA, and
of 8.8 = 1.5 pm/h for SKB cells (Figure 2A). These data demonstrate that MCF and SKB
cells retain a migratory potency when present in a collective on otherwise unfavourable
substrata for single-cell migration, such as cell culture plastic, a phenomenon we have
recently shown to be present in thyroid carcinoma cells [3]. Moreover, video time-lapse
analysis of MCF cells revealed that otherwise immobile single cells became mobile when
integrated into a cell collective (Figure 2B, right panel, small arrows), and that small clusters
of MCF-7 cells were immobile during the time period analysed (Figure 2B, right panel,
large arrows). These data point to the fact that, at least for MCF cells, the size of a collective
has to exceed a critical cell number, before migration takes place.
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Figure 1. Single-cell migration of breast carcinoma cells on plastic (PL), fibronectin (FN), or laminin
(LN) surfaces as revealed by video time-lapse analysis. Histogram shows the velocity of breast
carcinoma cells that were analysed for 24 h (given in pm per h + SD). Tracing of the migratory paths
was accomplished with the software “Image ]” and “CellTracker”. Per cell line and substratum,
at least 20 cells were analysed. Selected micrographs show breast carcinoma cells that had been
cultivated for 24 h on a plastic (PL), a fibronectin (FN), or a laminin (LN) substratum. Micrographs
of identical sections at the beginning (T0) and after 24 h (T24) of the culture period are shown (bar,
50 um). Notice that in some combinations, such as MCE-7 or SK-BR-3 cells cultivated on PL, almost
identical positions of immobile but proliferating cells are present, whereas considerable but variable
cell movements occur in other combinations, such as MCF-7 or MDA-MB-231 cells cultivated on LN
(also reflected by the large SD values in the histogram).
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Figure 2. Collective cell migration of breast carcinoma cells cultivated on plastic surfaces. (A)
Histogram shows the increase in the diameter (given in pm per h + SD) of circular areas covered with
a confluent layer of breast carcinoma cells after three days in culture (for MCE-7 cells, see subfigure
(B)). At least twelve circular areas were measured per experiment and at least three independent
experiments per cell line were performed. (B) Low-magnification micrographs of representative
circular areas covered with a confluent layer of breast carcinoma cells at the onset of the experiment
(TO) and three days later (T72) (bar, 200 um). (C) High-magnification micrographs of the borderline
of circular areas covered with confluent layers of breast carcinoma cells at the beginning of the
experiment and one day later (T24) (bar, 60 um). For MCF-7 cells, big arrows mark the changing
position of a single cell that becomes integrated in the cell collective. Small arrows mark the constant
position of a small cell cluster outside the cell collective.

Immobile single human breast carcinoma cells show complex changes in their be-
haviour and morphology when cultivated in the presence of SSP. We have recently shown
that SSP induces dramatic changes in cell morphology, such as the induction of neurite-like
processes [12] or the formation of polyploid giant cells [14]. Therefore, we decided to
cultivate single breast carcinoma cells in the presence of 50 nM of SSP (Figure 3), the
highest concentration that was still non-toxic (as tested with the LDH assay, see the Ma-
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terials and Methods Section) for all three cell lines when cultivated on PL. Under these
conditions, MCEF cells cultivated on PL or FN became mobile (PL: 14.6 + 7.4 um/h; FN:
11.5 £ 8.0 um/h), whereas the velocity on LN was slightly decreased in comparison to
untreated cells (15.8 & 11.1 um/h versus 12.1 & 6.1 um/h). The migratory potency of
MDA cells on PL was not influenced by SSP (13.4 £ 5.9 pm/h versus 14.9 £ 4.9 pum/h).
Unexpectedly, MDA cells cultivated on FN did not survive in the presence of SSP. When
cultivated on LN, MDA cells started to flatten during the 24 h incubation period, whereby
cell velocity was considerably reduced (29.2 £ 9.8 um/h versus 3.9 =+ 3.4 um/h). The ap-
pearance of such cells resembled that of immobile giant cells that we have already observed
for SSP-treated A549 cells [14]. SKB cells cultivated on PL remained weakly immobile in
the presence of SSP (2.0 & 1.1 um/h) but showed extensive cell flattening that was also
observed for cells cultivated on FN or LN, whereby cell movement was strongly inhibited
(FN: 1.4 £ 0.8 um/h; LN: 3.3 + 2.0 um/h).
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Figure 3. Single-cell migration of breast carcinoma cells on plastic (PL), fibronectin (FN), or laminin
(LN) surfaces in the absence or presence of 50 nM of SSP, as revealed by video time-lapse analysis.
(A) Histogram shows the velocity of breast carcinoma cells that were analysed for 24 h (given in um
per h + SD). With the exception of MCF-7 cells on LN and MDA-MB-231 cells on PL, the differences
between untreated and SSP-treated cells are statistically significant, as determined by Student’s ¢-test.
&4 : MDA-MB-231 cells on FN did not survive SSP treatment. (B) Selected micrographs of breast
carcinoma cells that had been cultivated for 24 h in the presence of 50 nM of SSP on a PL, FN, or LN
substratum. Micrographs of identical sections at the onset of the experiment (T0) and 24 h later (T24)
are shown. Notice the changed positions of cells of MCF-7 cells cultivated on PL or FN. In each case,
the position of two cells is indicated by small or large arrows (bar, 40 um). Notice the presence of
immobile flattened MDA-MB-231 and SK-BR-3 cells cultivated on LN.

The exposure of single breast carcinoma cells to SSP is accompanied by a transient
activation of the canonical MAPK/ERK1/2 pathway, which could be abolished in the
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presence of the MEK inhibitor U0126 (Figure 4). This activation seems to be independent
of the outcome at the cellular level, i.e., induction of migration or appearance of immobile
giant cells, suggesting a diversification in more downstream activation/signalling events.
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Figure 4. Western blot analysis of ERK1/2 activation in breast carcinoma cells. (A) Breast carcinoma
cells were cultured in DMEM, 10% FCS, and directly solubilised (0 h) or solubilised after incubation
with 50 nM of SSP for the indicated time spans. (B) Breast carcinoma cells were directly solubilised
(control) or, before solubilisation, treated for the indicated time spans with the MEK inhibitor U0126
(20 uM) or for 3 h with 50 nM of SSP either in the absence or presence of 20 uM of U0126. «-Tubulin
was used as a loading control. Numbers show fold change compared to controls (set as “1.0”).

Bulk migration of collective human breast carcinoma cells is inhibited in the presence
of SSP. We then analysed breast carcinoma cells that were allowed to migrate as a collective
in the presence of 50 nM of SSP on a PL surface (Figure 5). In endpoint studies, the overall
migration was reduced in the range of 40% for all cell lines (Figure 5A), a result which is in
partial contrast to the data revealed for single cells, in particular for SSP-treated MCF cells
(see Figure 3). As shown in Figure 5B, the borderline of collective MCF cells became clearly
altered in the presence of SSP, whereby cells became smaller, exhibited reduced cell-to-cell
interactions, and produced processes. Moreover, occasionally but reproducibly, individual
cells left the collective and migrated as single entities.

SSP-mediated inhibition of bulk migration is provoked by inhibition of cell velocity
and reduced directed migration. To obtain a more detailed inspection, video time-lapse
analyses were performed. The recorded data were analysed for two main parameters: (1)
cell velocity and (2) migration directionality. Whereas the first parameter can be simply
calculated, for the second one, we had to establish specific scripts generated with the help
of the statistical program “R”. Such R-scripts allow: (1) to embed the randomly located
coordinates of individual cells within the surface of a cell culture dish at the beginning
of the experiment (T0) into the intercept (0, 0) of a 2D coordinate system, and (2) the
performance of statistical tests as well as graphical plots and, thus, the calculation of the
angle spectrum within which a defined part of the whole cell population migrates (enabled
by the fact that the migration of all cells can be located at the same starting point in an
artificial coordinate system; see also the Materials and Methods Section). This angle would
be zero degrees if all cells migrate in the main direction, i.e., the x-axis, and 180 degrees
if the cells migrate perpendicular, i.e., along the y-axis. Thus, the degree of directional
migration can be calculated.
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% migration rate

MCF-7

MDA-MB-231

SK-BR-3

- SSP + SSP

Figure 5. Collective cell migration of breast carcinoma cells cultivated on plastic surfaces in the
absence or presence of 50 nM of SSP. (A) Histogram shows the relative SSP-provoked inhibition
of the migration rate (given in %), i.e., the change in the diameter of a circular area covered with
a confluent layer of breast carcinoma cells after three days of culture (for MCF cells, see subfigure
(B)). Per experiment, at least twelve circular areas were measured and at least three independent
experiments per cell line were performed. The dashed line represents the migration rate of untreated
cells that was artificially set as 100%. (B) Micrographs show the borderline of a circular area covered
with a confluent layer of breast carcinoma cells after a cultivation period of 24 h in the absence or
presence of 50 nM of SSP (bar, 60 um). Dashed lines mark the position of the border at the beginning
of the experiment.

When we first calculated the mean velocity of individual border cells after 24 h,
we obtained for untreated MCF cells mean values of 2.4 + 3.1 um/h, for MDA cells
6.0 = 7.5 um/h, and for SKB cells 2.5 &= 3.4 um/h. In the presence of SSP, the velocity was
increased by 29% to 3.1 £ 3.5 um/h for MCF cells, and decreased by 43% to 3.4 & 5.0 um/h
for MDA cells and by 44% to 1.4 £ 2.3 um/h for SKB cells. These values are considerably
lower in comparison to the data obtained in endpoint studies after three days of culture
(see Figure 2A), which hints at the presence of higher velocities after longer time periods.
This interpretation is supported by video time-lapse analyses for such time periods. Unfor-
tunately, based on technical reasons, long-time experiments could not be undertaken in a
sufficient number.

When migrating collective breast carcinoma cells were examined after 24 h, according
to this scheme, it turned out that in SSP-treated MCF as well as in SKB cells, but not
in MDA cells, the portion of the paths that cells migrated in the y-dimension increased,
reflected by the presence of wider angles (Figure 6). Based on a box plot analysis, the angle
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defined by the lower and upper whisker (based on the y-coordinates) was considerably
increased in SSP-treated MCF cells, from 85.12 to 145.07 degrees, remained constant in
MDA cells (164.50 versus 165.47 degrees), and was slightly increased in SK-BR-3 cells
(100.37 versus 118.15 degrees). Comparable values were obtained for the narrower Q25 to
Q75 quartile angle: for MCF cells, 27.40 versus 80.08 degrees, for MDA cells, 128.12 versus
124.10 degrees, and for SKB cells, 40.34 versus 55.05 degrees.
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Figure 6. Two-dimensional analysis of the migration pattern of collective border breast carcinoma
cells. Collective breast carcinoma cells were allowed to migrate for 24 h in the absence (-SSP) or
presence (+SSP) of 50 nM of SSP. The paths of at least 40 carcinoma cells derived from two independent
experiments were recorded and integrated into a 2D coordinate as a series of coordinates. With the
help of especially designed R-scripts, the different starting points of all cells at TO were superimposed
in the intercept of the “zero” lines in all subfigures, and then the corresponding paths (shown in
light grey) were integrated into the 2D coordinate system. Thereby, the paths were reoriented such
that the main direction of migration on the abscissa was oriented to the right (see Figure 5B as a
comparison). Each black curved line represents a “summarised path” which was calculated for each
time point for the position of all individual cells analysed at a certain time point (total time span 24 h,
divided from TO to T72 in 20 min intervals). The individual coordinates of the “summarised path”
are based on box and whisker plots for each time point. Hereby, on the X-coordinate, the medians of
all 20 min intervals for all cells are presented, whereas on the Y-coordinate, the corresponding lower
and upper whisker values or the lower Q25 and upper Q75 quartile values are provided. This set
of individual coordinates represented by the summarised paths allows the generation of regression
lines. The raise of such regression lines can vary between 0 and 90 degrees, or 0 and —90 degrees,
respectively. The angles which can thereby be generated express borders defined by either the lower
and upper whiskers (wider angles) and encompass the majority of all path segments, or the lower
Q25 and upper Q75 quartile (narrower angles) and encompass 50% of all path segments. Numbers at
the X- and Y-axes represent pum.



Int. . Mol. Sci. 2021, 22, 11961 10 of 17

A three-dimensional presentation of the migration pattern of individual collective
cells as shown in Figure 7 documents the “raw data” used for Figure 6, whereby the given
representative individual cells are located at their original and, thus, different positions
inside the borderline of the cell collective.

- SSP + SSP

MDA-MB
-231

m)

Figure 7. Three-dimensional migration pattern of selected collective borderline breast carcinoma cells. Collective breast
carcinoma cells were allowed to migrate for 24 h in the absence (-SSP) or presence (+SSP) of 50 nM of SSP. The main
direction of migration is oriented to the right. The time-dependent (z-axis) paths of three representative carcinoma cells
(located in the borderline of the cell collective) per cell line and treatment are shown. For all paths, the endpoint on the z-axis
is located at the 24 h position. Thus, the total length of the individual lines may differ, based on a variation of the curvature
of the paths. Processing of the primary data was performed with the program “CellTracker” that allows the documentation
only in pixel format. One pixel was then converted to 1.25 um. Numbers at the top of the paths were automatically set by
the program.

As the data shown in Figure 6 do not allow a discrimination of proportional changes
present in the X- as well as in the Y-axis, as it is the case for MDA cells, we have also
summarised the data in the form of vector diagrams (Figure 8).
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Figure 8. Vector diagrams of cell velocities from individual collective border breast carcinoma cells.
Data were summarised from cells that were analysed as shown in Figure 6. The X-axis is oriented
to the main direction and represents the changes of the mean velocity given by the x-coordinates
(um per h) oriented into the main direction of the overall migration of the collective (see text for
details and Figure 5 for orientation). The Y-axis represents the changes of the mean velocity given by
the y-coordinates (um per h). The diagonal, D, represents the sum of the vectors X and Y with the
vector’s magnitude defined by | ID| | = (sqrt(X? + Y2)) in um per h. For details, see text.

The horizontal (X) and vertical (Y) arrows represent the mean velocity values for
each dimension (see the Materials and Methods Section for details) for all cells anal-
ysed. The diagonal arrow, D, represents the vector’s sum, with its magnitude defined by
[IDII = sqr’c(X2 + Yz). In comparison to the control situation, in SSP-treated MCF cells,
the length of D is elevated by 27%, whereby the X-value remains almost constant (+6%),
whereas the Y-value is increased by 75%, i.e., the SSP-induced inhibition of migration in the
main X-direction is mainly due to an increased migration rate in the Y-direction, but not
to a decreased cell velocity. Consequently, the X to Y ratio is decreased from 1.7 to 1.0. In
SSP-treated MDA as well as SKB cells, the length of the D, X, and Y values is considerably
decreased, i.e., the SSP-induced inhibition of migration in the main X-direction is mainly
due to a decreased velocity, but not to an altered direction of individual migrating cells.
Thus, the X to Y ratio also remains almost unchanged.
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3. Discussion

We have described here the migration pattern of single and collective breast carcinoma
cells in the absence or presence of SSP. Our main findings were (for a quantitative summary,
also see Table 1):

Table 1. Single and collective migration pattern of breast carcinoma cells on PL, EN, or LN substrata in the absence or

presence of SSP after 24 h.

Collective Cell Migration

Single-Cell Migration (Individual Border Cells)

Substratum PL FN LN PL
sSSP no yes no yes no yes no yes
Cell line
MCE-7 - ++ - ++ ++ + + +
MDA-MB-231 ++ ++ ++ %2 ++ +/- ++ +
SK-BR-3 +/- +/- ++ +/- ++ + + +/-

-: velocity < 1.5 um/h; +/-: velocity > 1.5 < 2.0 um/h; +: velocity > 2.0 um/h < 5.0 um/h; ++: velocity > 5.0 pm/h; . cell death.

(i) Breast carcinoma cells can gain a migratory potential on otherwise unfavourable
substrates, when present within a collective (MCF and SKB cells on a PL substratum), a
phenomenon we have already shown to occur in thyroid carcinoma cells [3].

(i) SSP-dependent promotion of single-cell migration is cell-line dependent. Whereas
SSP promotes migration of MCF cells on PL and FN but does not alter the migration pattern
on LN, it clearly inhibits the potent migration of MDA and SKB cells on a LN substratum
via the induction of a giant cell polyploid phenotype. Such a phenotype in general seems
to possess a restricted migration potency [14].

(iii) SSP induces migration in single but inhibits overall migration in collectives of
MCEF cells via a perturbation of the directional migration in individual cells.

Recently, we have provided evidence that drugs inhibiting the MEK/ERK1/2 module
can simultaneously induce the activation of one cellular response (migration) and the
suppression of another (proliferation) in one and the same cell line (i.e., Cal-62 thyroid
carcinoma cells), a phenomenon that we have designated as the yin-yang effect [25]. In the
present study, we showed that in MCF cells, a specific drug can provoke another kind of
yin-yang effect characterised by the induction or suppression of a comparable response
(single versus collective cell migration) in one and the same cell line.

Zambrano and co-workers [26] have recently shown that SSP suppresses cell viability
of Her2 /neu-positive breast cancer cells (human JMT-1 cells, SMF (MMTV-neu) murine-
derived mammary tumour cells) in the lower nM range. In our study, Her2 /neu-positive
SK-BR3 cells (see http:/ /www.merckmillipore.com/DE/de/product/fordocumentation,
accessed on 30 July 2021) tolerated SSP concentrations in the higher nM range, at least
for several days without significant signs of cell death, indicating a higher variability in
SSP-sensitivity in different Her2 /neu-positive human breast cancer cells.

In general, a yin-yang effect can be defined as an impact of a physical and /or molecular
nature that leads to opposite outcomes, such as potentiation or inhibition, of molecular
or cellular parameters in a defined biological system, such as well-characterised primary
cells or cell lines. Yin-yang effects of repressive versus repressive or adhesive versus
repulsive nature have been described during neural development and disease [27,28].
With respect to cancer biology, yin-yang effects have been described inter-alia for the
action of signalling molecules and transcription factors [29]. In 1991, a transcription factor
ubiquitously expressed in mammalian cells was named yin-yang 1, according to its context-
dependent activation or repression of transcription [30]. Additionally, in cancers, yin-yang
1 exhibits the opposite function, thereby activating or repressing tumour cell proliferation
and growth [30]. Irritatingly, the term “yin-yang” is not consistently used in the literature.
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With respect to cancer biology, it is also used to distinguish between genes or pathways that
promote (yin type) or those that repress cancer, or at least promote a normal cellular state
(yang type) [31]. Moreover, in the context of tumour therapy, desired tumour-targeting
effects of therapy have been described as yin effects, whereas counteracting reactive host
responses have been designated as yang effects [32].

The verification of a yin-yang effect that is present within different contexts of cell
migration was only possible via the introduction of specific R-scripts into analysis software,
as described above. To our knowledge, a video time-lapse-based quantitative analysis
concerning the directionality of collective cell migration on the single-cell level has not
been performed yet. Especially for MCF cells, it became thereby evident that although the
velocity of individual collective border cells was slightly increased by 29% in the presence
of SSP (2.4 £ 3.1 um/h versus 3.0 & 3.5 um/h), the overall migration of the complete
collective (as indicated by the size of a big collective cell cluster, see Figures 2 and 5) was
considerably decreased. We believe that such scripts could be helpful for comparable
questions, where the directed migration patterns of individual cells within a collective need
to be quantified.

Although the migration pattern of individual SSP-treated MCF cells within a collective
is less oriented in comparison to their untreated counterparts, it is not completely random.
Indeed, if a random migration scenario of completely independent cells would be the
case, an area of initially collective cells would “thin out” in the presence of SSP, which
is initiated by the random emigration of individual cells. As this is predominantly not
the case, SSP treatment only partially reduces but not completely abolishes intercellular
communication processes. As already described in the Results Section, it is important to
recognise that rarely but reproducibly, individual cells leave the collective, a phenomenon
that has to be seen with respect to invasion and metastasis formation. Thus, although the
cell collective as a whole is inhibited in its net migration, some individual cells are able to
conquer tumour-free areas. It is likely that collective cell migration is present at a higher
level of complexity than that of individual cells and exhibits supracellular features [33].
Hereby, the degree of supra-cellularity can vary [33], whereby phenomena as described by
us have, to our knowledge, so far not been documented.

At present, the analysis of yin-yang effects in the context of cell migration has not
received special adequate attention in the scientific literature. Opposite effects of one and
the same intrinsic protein or drug have been described for hepatocellular carcinoma cell
lines. Whereas in one cell line, overexpression of the cellular senescence-inhibited gene
(CSIG) promoted cell migration and ERK-activation, in another cell line, opposite effects
were detected [34]. We have described somehow similar effects in a thyroid carcinoma
cell line, where inhibition of MEK/ERK1/2 signalling inhibits proliferation, but promotes
migration, an effect that can be prevented by a parallel inhibition of the PI3/Akt path-
way [26]. Thus, our study is the first example that describes the relevance of yin-yang
effects in context-dependent (single versus collective) tumour cell migration.

In breast cancer, collective cell migration seems to represent the predominant invasion
mode, whereby the composition of intercellular contacts varies between invasive ductal
carcinoma (adherens junctions) and invasive lobular carcinoma (CD44-mediated) [35].
These authors have also provided evidence that multicellular groups in primary breast
cancer tissue retain epithelial characteristics without a complete EMT conversion, whereby
cell individualisation is higher in ILC than in IDC [35].

At a first glance, the impact of a drug is predominantly dependent on the cell type or
cell line: SSP can induce process formation (in SCLC cells), a polyploid giant phenotype
(A549-, MDA-, or SKB cells), or a migratory phenotype (MCF cells). At a second glance, the
impact of a drug in one and the same cell line can be considerably modified via cell—cell
and cell-extracellular matrix interactions. Thus, it seems necessary to catalogue the various
effects of a drug not only according the respective cell types or cell lines, but also according
to the respective cellular contexts. Only then can a satisfying impact profile be established
for drugs.



Int. J. Mol. Sci. 2021, 22, 11961

14 of 17

4. Materials and Methods

Cell lines and culture conditions: The human breast carcinoma cell lines MCF-7,
MDA-MB-231 (both from DSMZ, Braunschweig, Germany), and SK-BR-3 (CLS, Eppelheim,
Germany) were maintained in DMEM, supplemented with 10% foetal calf serum (FCS),
100 U/mL penicillin-streptomycin, and 2 mM L-glutamine [36]. Cell lines were routinely
tested for the presence of mycoplasm.

Western blot analysis: Total extracts of breast carcinoma cells from cultures of 70%
to 80% confluency (which should mimic the conditions of video time-lapse studies) were
lysed for 10 min on ice in RIPA (Radio-Immunoprecipitation Assay) buffer (50 mM
Tris/Cl- pH 8.0, 150 mM NaCl, 1% Igepal CA-630, 0.5% sodium desoxycholate, 0.1%
SDS) containing protease inhibitors (0.5 mM PMSE, Roche complete Mini ULTRA mix) and
phosphatase inhibitors (10 mM sodium fluoride, 1 mM sodium orthovanadate, 10 mM
2-glycerophosphate). The extract was centrifuged at 4 °C for 10 min (15,000 ¢) and
the supernatant was used for further analysis, as described in [37]. Antibodies towards
phospho-ERK1/2 and total ERK1/2 were from Cell Signalling and antibodies towards 3-
tubulin were from Santa Cruz.

Cell toxicity assay: Cytotoxicity was analysed with the “LDH Cytotoxicity Assay Kit”
from Roche based on the release of cytosolic lactate dehydrogenase (LDH) into the cell
culture supernatant by damaged cells. Briefly, 10,000 cells (in 100 pL culture medium)
were seeded per well in 96-well plates, and 24 h later, cells were exposed to different
concentrations of SSP for 24 h. After treatment, LDH activity was determined in the cell
culture supernatants. In parallel, cells that had been treated identically were lysed in order
to determine total LDH activity.

Single-cell migration assay: 4000 cells in 500 pL of culture medium were applied to 24-
well plates (kept untreated or precoated with bovine fibronectin or murine EHS laminin at
a concentration of 20 ug/mL) and allowed to adhere overnight. Two to three hours prior to
time-lapse analysis, compounds or DMSO (both diluted in 500 ul of culture medium) were
added per well. Video time-lapse microscopy and analysis were performed as described
in [38]. Briefly, plates were transferred to a heated (37 °C), gassed (5% CO,/air), and
humidified chamber fitted onto an inverted microscope (Nikon Ti-E) with a motorised
cross-stage. Images were recorded every 20 min for 24 h. Cell movement and densitometry
were tracked and analysed with the Image] plugin MTrack] (www.imagescience.org/
meijering /software/mtrackj/) and the software Cell Tracker (http://celltracker.website/
index.html, accessed on 30 July 2021). The latter was also used as a plugin for MatLab
(https:/ /mathworks.com/products/matlab.html, accessed on 30 July 2021).

Collective cell migration assay: Cell suspensions (5000 cells/pL) in a total volume of
3 uL were seeded on defined regions in Petri dishes and allowed to adhere for 2 to 4 h.
After floating the dishes with culture medium, the adherent and confluent cells occupied a
circular area. The diameters of the areas (12 per dish) were determined microscopically after
floating (T0) and a second time after a after a culture period of 72 h (T1), with or without
experimental compounds. Video time-lapse analysis of collective cells, micrographs, and
analyses were performed as described above for the single-cell migration assay.

Analysis of the migration pattern of breast carcinoma cells: The program “CellTracker”
v. 1.1 upgraded with the program “MatLab R2018b"” to accelerate the workflow was used to
track randomly chosen cells at the borderline of circular confluent cell spots. The cell paths,
i.e., series of two-dimensional (2D) coordinates obtained in 20 min intervals, were analysed
with modified scripts developed with the statistical program “R”, that was designated
here as “R-scripts” (Frank A. H. Meyer et al., manuscript in preparation). Beside the
execution of statistical tests, R-scripts allow the separate analysis of split 2D cell path
intervals (provided in a vector format) for each dimension. Hereby, the cell path intervals,
i.e., vectors, were rotated such that their main direction of cell migration was oriented from
left to right inside the X-axis. Consequently, a corresponding perpendicular vector was
oriented in the Y-axis. Moreover, all the vectors were shifted with respect to the intercept
of an artificial 2D coordinate system, whereby consequently, the starting point of each cell
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path at TO was set at the coordinates (0, 0). At first, it was tested whether individual border
cells in treated and untreated cell collectives differ by comparing their medians and other
ranks of their migration rate within the x-coordinate (Kruskal-Wallis test). Second, it was
tested whether such border cells behave differently with respect to their migration rate
within the y-dimension. In case such an effect occurs in treated cells, the variances of their
y-coordinates should differ with respect to untreated cells (Fligner—Killeen test). Highly
significant differences were present, when HO, i.e., the null hypothesis, could be rejected
for p-values below 1%. For the graphical presentation of the data, box plots were used as a
standard and their main values were transferred into angle spectra (details are outlined in
the Results Section and the corresponding figure legends).

5. Conclusions

The drug-induced inhibition of collective cell migration can result from two differ-
ent mechanisms: (i) an inhibition of the migration of single cells independent of their
orientation within the collective, and (ii) an inhibition of the directed migration of single
cells dependent of their orientation within the collective (with respect to the borderline).
Whereas the first mechanism is strictly accompanied by a decrease in the net migration
path length of single cells, for the second mechanism, the path length may remain un-
changed. Obviously, such opposite yin-yang effects could interfere with the therapeutic
efficiency of drugs. Moreover, these effects are context- (single versus collective migra-
tion) and cell line-dependent, and thus document the need for individual patient-based
treatment strategies.
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