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Abstract: Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from
the differentiation of stem cells. The growing interest in the use of organoids arises from their ability
to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent
promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative
medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling.
Although 2D cell cultures have been used for more than 50 years, even for their simplicity and
low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model
systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an
organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication
of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical,
and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue.
Lineage-specific self-organizing organoids have now been generated for many organs. Currently,
growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells
remains an open challenge due to the complexity of the spreading, differentiation, and migration
of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model
systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of
cardioids based on the currently available laboratory technologies and outline their high potential
for cardiovascular research.

Keywords: organoid; pluripotent stem cell; adult stem cell; cardiac stem cell; cardioid; heart regeneration

1. Defining an Organoid

The term “organoid” refers to mini clusters of growing cells able to self-organize
in vitro and differentiate into functional cell types, resembling an organ 3D structure
and function. The word “organoid” is mainly used to describe such structure derived
from stem cells. In multicellular organisms, stem cells are undifferentiated or partially
committed cells that can differentiate into various types of cells and proliferate indefinitely
to produce more of the same stem cell (the so-called self-renewal). Stem cells are present in
both embryonic and adult organisms, but they have slightly different properties in each.
In general, they can generate all tissues of the developing embryo and maintain tissue
homeostasis in adults. In the past decade, these prototypical stem cell features have been
exploited to develop the organoids in vitro. Organoids are therefore stem cell-derived and
self-organizing 3D cultures that phenocopy cell-type composition, architecture, and, to a
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certain extent, functionality of different tissues [1]. The developmental potential of the
initiating stem cells influences how complex the organoid can be. The organoids resemble
specific features of organs in vivo: an organoid must indeed contain more than one cell
type of the organ it models; it should exhibit some function related to that organ; and the
cells should be organized similarly to the tissue of the organ. Additionally, organoids’
formation recapitulates characteristic processes of self-organization during development [2].
However, although most organoid cultures develop functional tissue units, they lack
elements such as mesenchymal, stromal, immune, and neural cells that populate tissue
in vivo. Failing to recapitulate the complexity of native organs, the (partial) absence of
a mesenchymal compartment, vascularization, and microbiome represents therefore a
limit of organoid technology. Yet, recent studies are dealing with trying to overcome this
limitation through obtaining a tridimensional structure that more closely reproduces the
whole cellular diversity of the tissue microenvironment [3].

Although still imperfect, organoids represent an attractive model for studying hu-
man biology and disease, carrying the potential to answer several unresolved questions.
Organoids rely on artificial extracellular matrices (ECM) to facilitate their self-organization
into structures that resemble native tissue. ECM components such as laminin, fibronectin
and collagen engage the integrin receptors and support to maintain cell identity and
function. Organoids are similar to primary tissue in their composition and architecture,
harboring small populations of genomically stable, self-renewing stem cells that give rise
to fully differentiated progeny comprising all major cell lineages. Among the advantages
of their use, organoids can be expanded indefinitely, cryopreserved as biobanks, and easily
manipulated using techniques such as those established for traditional 2D monolayer
culture. The study of organoid formation can provide valuable information about the
mechanisms underlying development and organ regeneration, underscoring their value
for basic biological research in addition to their potential application in drug testing and
molecular medicine. The potential of organoids to complement existing model systems
and extend basic research and drug discovery is becoming more widely appreciated [4,5].

In this review, we discuss the evolution of biological model systems tracing the main
methodologies that led us from 2D- to the 3D-cell cultures and organoids’ generation.
In particular, we thoroughly assess the current methodologies used to generate cardiac
spheroids and 3D-cell structures derived from stem cells, and highlight the potential
of cardiac organoids (“cardioids”) as a model system for the understanding of heart
development and for the study of human cardiac regeneration in a dish. Furthermore, we
argue that cardioids are ideal human preclinical models, useful to simulate pathological
processes as well as to test drug toxicity, highlighting their current limitations that remain
to be addressed.

2. A Brief Historical Perspective of Organoid Development

The first effort in describing in vitro self-organization and differentiation goes back in
time to the beginning of the 20th century, when Wilson showed that dissociated sponge
cells, when kept under appropriate conditions, degenerate, resulting in small masses of
undifferentiated tissue able to grow and differentiate into complete sponges [6] (Figure 1).
Some decades later, Holtfreter performed dissociation–reaggregation experiments with dis-
sociated amphibian pro-nephrons [7] (Figure 1). In 1960, Weiss and Taylor conducted the
same experiments with different organs from chicken embryos [8], and shortly later, Pierce
and Verney described the differentiation of embryoid bodies (EBs) in vitro [9] (Figure 1).
At the same time, Steinberg proposed a differential adhesion hypothesis according to which
thermodynamic effects regulate the cell sorting and rearrangement in surface adhesion [10]
(Figure 1). Stem cell research flourished when different groups isolated pluripotent stem
cells from mouse embryos [11,12] (Figure 1). Subsequently, other groups focused on im-
proving cell culture protocols to mimic the in vivo environment conditions. Li et al. showed
that breast epithelium organizes into 3D ducts and increases milk protein secretion when
grown in a tumor extracellular matrix [13] (Figure 1). Jennings et al. demonstrated similar
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structures in alveolar type II epithelial cells [14] (Figure 1). An important event in this
field occurred in 1998 when Thompson et al. isolated and cultured the first embryonic
stem cell line from human blastocysts [15] (Figure 1). The watershed from 2D to spheroid
and organoid culture (3D) occurred with the generation of 3D cerebral cortex tissue from
pluripotent stem cells by Eiraku et al. [16] (Figure 1). Successively, intestinal 3D struc-
tures were generated from adult intestinal stem cells in Matrigel [17], kicking off various
works in other systems, including stomach, liver, pancreas, lungs, kidney, brain, and
retina [18–24] (Figure 1). Moreover, in the recent severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) pandemic, to elucidate how the virus can damage lungs, liver,
and kidney tissues, causing some of the severe complications seen in patients with coro-
navirus disease—2019 (COVID-19), several researchers have focused on organoids that
could also facilitate screening for potential new drugs. Bronchial organoids with four
distinct cell types, made from frozen cells from the bronchi’s epithelium—the outer cell
layer—have been developed [25] (Figure 1). By infecting these organoids with SARS-CoV-2,
it was established that the virus primarily targets stem cells, or basal cells, that supply the
epithelium. At the same time, it does not easily penetrate the protective secretory cells,
the Clara cells [26]. Human blood vessel organoids have been recently derived from hu-
man pluripotent stem cells (hPSCs) for modeling and identifying the regulators of diabetic
vasculopathy [27] (Figure 1). Finally, very recently, a small three-dimensional model of
the heart was obtained from stem cells in vitro. Heart organoids can reproduce specific
functions of a heart chamber and of pathological conditions such as congenital heart defects
and tissue damage after a heart attack [28] (Figure 1).
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Figure 1. Milestones timeline of the methodologies for 3D cell cultures and organoids’ generation. Since the beginning of
the 20th century, several different methodological breakthroughs have been established in biology and clinical translation
leading to the current achievements, challenges, and potential applications of organoids.

3. The Basis of 3D Cellular Structure Formation

Understanding the principles that lead to organization during tissue development
is fundamental to developmental biology. Cell sorting is the process by which cohering
disorganized aggregates of cells establish structured tissues. These cellular aggregates
from disorganized structures become homogeneous tissue domains [29]. The ability of
disordered cell aggregates to restore normal tissue architecture suggests that understanding
the mechanisms underlying cell sorting in vivo should prove instructive in understanding
the processes that govern and stabilize the definitive relationships of the tissues associated
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with each other in the various organs. These cells can sometimes further divide to give rise
to more differentiated progeny, which is further displaced.

The basis of this organ self-assembly seems to arise from the segregation of cells with
similar adhesive properties into domains that achieve the most thermodynamically stable
pattern, known as Steinberg’s differential adhesion hypothesis [30]. Differential adhesion
is mediated by cell surface adhesion proteins, for example, in separating vertebrate neural
and epidermal ectoderm [31,32], where differential epithelial and neural and cadherin
expression mediates cell sorting out. The events of cell sorting do not mimic the pathways of
the morphogenic movements, whereas during normal morphogenesis, the tissues of single
organs do not sort out into their final form from random mixtures of the constituent cells.
Despite the latter, an understanding of the mechanisms by which cultured heterotypic cell
aggregates generate patterned arrays of tissues shows promise for analyzing the processes
that the embryo employs to produce the definitive organization of tissues brought into
association by prior morphogenetic cell movements.

A second mechanism that can influence tissue morphogenesis is the correct and
spatially restricted progenitor cell fate decisions. Progenitor cells give rise to more differen-
tiated progeny, which, because of spatial constraints of the tissue and division orientation,
are forced into a more superficial position that promotes their differentiation. This strati-
fication depends upon proper stem cell division orientation, the interplay of symmetric
and asymmetric divisions, and the migration of differentiated daughter cells to defined
locations within the tissue [33,34]. A common technique used in studying tissue orga-
nization is re-aggregation, which breaks the tissue down into its simplest components,
the cells, and allows them to re-aggregate in a simplified environment, devoid of sur-
rounding tissues. It enables the investigator to observe how these cells interact to form the
tissue and manipulate the components to determine which are essential in this process.
Re-aggregation studies have been used since the early 20th century, first using simple
organisms such as sea urchins and sponges and later using more complex, multi-layered
tissues such as limb buds and retina from chicks [35,36]. These studies have revealed
the innate ability of these multi-layered tissues to self-organize in vitro in the absence of
many extrinsic cues and scaffolds. Stem cells (SCs), cultured in a dish, proliferate as a
monolayer in two-dimensions (2D) and frequently require indeterminate or xenogeneic
materials, including attachment substrates, cytokines, growth factors, as well as serum,
to be effectively maintained and expanded in vitro. Xenogeneic contaminants from any
non-human feeder cells or foreign components of the culture system hinder clinical appli-
cation [37]. Monolayer culture requires interaction to maintain self-renewal and potency
of cells, cell differentiation, vitality, expression of genes and proteins, responsiveness to
stimuli, drug metabolism, and other cellular functions, which are highly inefficient for
large-scale expansion of cells [38,39]. In particular, 2D attachment influences cell shape
and structure [40], leading to cell flattening and changes in the internal cytoskeleton and
nuclear shape [41], which in turn induces gene and protein expression changes [42,43].
After isolation from the tissue and transfer to the 2D conditions, cells start to lose their
morphology, affecting their function [44], the organization of the structures inside the cell,
secretion, and cell signaling [45]. Further studies have shown that the composition and
organization of the ECM can also send biochemical and mechanical signals for cell differ-
entiation [46]. Two-dimensional culture techniques and applications have been practiced
for most primary and established cell lines and standardized for analytical assays ranging
from microscopy and counting cells to the study of disease processes and drug testing [47].
When in 2D, cells have more surface area in contact with the plastic and culture media than
with other cells [48], forcing them into a polarization that does not reflect physiological con-
ditions. Two-dimensional culture has been used to differentiate SCs into many specialized
cells, including chondrocytes, osteocytes, adipocytes, cardiomyocytes, smooth muscle cells,
and hepatocytes [49,50]. One of the advantages of monolayer culture is that it allows for
uniform treatment for the differentiation of cells [50]. In some cases, 2D cultures, however,
result in a lack of resulting functional derivatives [51]. Further studies have shown that 2D
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monolayer culture fails to reproduce animal physiology [52] appropriately and is insuffi-
cient to validate drug discovery [53]. Cultures of pluripotent stem cells (PSCs) on dishes are
coated with ECM components (such as Matrigel, laminin, collagen, or gelatin) and mouse
embryonic fibroblasts (MEFs) feeder layer to support attachment [54]. Two-dimensional
expansion of embryonic stem cells (ESCs) has been enhanced using completely defined
xeno-free culture media and attachment substrates such as albumin-free E8 media and
humanized recombinant protein vitronectin, respectively [55,56]. However, homogeneous
expansion of PSCs is still challenging to stabilize as 2D culture methods for propagation of
PSCs are laborious, expensive, and require a high level of expertise. In general, 2D culture
conditions favor the non-specific differentiation of PSCs.

The use of single-cell and multi-cell spheroids has proven to be an efficient system to
optimize and overcome limitations associated with in vitro conventional systems. SCs are
generally cultured in vitro under non-adherent conditions as spheres or adherent condi-
tions in two-dimensional cultures or three-dimensional matrices. This method represents
one of the simplest 3D culture techniques to achieve by forming multicellular aggregates,
or spheroids, which allow 3D interactions with cells and the ECM in the absence of ad-
ditional substrates [57]. A spheroid culture system provides a similar physicochemical
structure that closely mimics the in vivo tissue counterparts by facilitating cell–cell and
cell–matrix interaction, which play a significant role in various cellular mechanisms, subse-
quently maintaining the cellular properties [58]. These spheroids have been utilized with a
wide range of adherent cell types, formed by spontaneous or forced aggregation techniques
including hanging drop, rotating culture, or low-adhesion culture plates in suspension
culture [59,60]. During spheroid formation, dispersed cells aggregate due to long-chain
ECM fibers consisting of RGD (the tripeptide Arg-Gly-Asp) motifs that allow binding
cell-surface integrin, and this leads to upregulated cadherin expression. Cadherin accumu-
lates on the surface of the cell membrane, and the hemophilic cadherin–cadherin binding
between neighboring cells allows for tightening connections between cells, and spheroids
are formed [61,62]. Spheroids comprise highly proliferative, non-proliferative, and apop-
totic cells with limited diffusion of oxygen and nutrients to the center of the spheroid,
leading to an increasing hypoxic environment [63]. Due to their heterogeneous nature,
spheroids have been more successfully employed to study complex 3D cell structures,
cell differentiation, and cancer biology than homogenous cell proliferation [57]. However,
long-term suspension culture of spheroids often results in aggregation of cells, leading
to necrotic centers due to limited diffusion of nutrients and oxygen into and waste out
of the aggregate. In contrast to ESCs, short-term spheroid culture has been employed to
maintain and expand mesenchymal stem cells (MSCs) [57]. When subcultured back to 2D
culture conditions, spheroid-grown MSCs displayed an undifferentiated morphology and
enhanced differentiation potential via increased ECM deposition compared to adherent-
grown MSCs [64]. MSCs cultured in 3D spheroids exhibited increased clonal growth and
multipotency [65], altered miRNA expression, and increased acetylation in the promoter
regions of pluripotency genes, OCT4, SOX2, and NANOG [66].

Organoids represent an essential bridge between traditional 2D cultures and in vivo
mouse/human models. They are more physiologically relevant than monolayer culture
models and are more amenable to manipulating niche components, signaling pathways,
and genome editing than in vivo models. Organoids are classified into tissue and stem
cell organoids, depending on the source from which they are formed. Stem cell organoids
are generated from either ESCs, induced pluripotent stem cells (iPSCs), or primary stem
cells such as neonatal tissue stem cells or tissue-resident adult stem cells. To date, several
in vitro organoids have been established to resemble various tissues, including functional
organoids for thyroid, pancreas, liver, stomach, intestine, vascularized cardiac patch,
and cerebral [67].

A notable difference between organoids derived from primary tissue and ESCs/iPSCs
is the presence of cell types other than the intended lineage in the latter. This is because
the factors used for directed differentiation of ESCs/iPSCs are not entirely efficient in
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driving all the cells towards the lineage of choice; thus, many ectodermal and endodermal
organoids, such as those of the intestine, stomach, and kidney, have limited presence of
mesenchymal cell types [18,21,68]. In addition, the capability of self-renewing to grow in a
near-physiological manner provides us with an excellent model system for a wide range
of basic research and translational applications. A significant advantage of this system
is the ability to greatly expand tissue-specific stem cells and their differentiated progeny
from minimal amounts of starting material such as biopsies, facilitating detailed analyses
of stem cell behavior, drug screening, disease modeling, and genetic screening. Indeed,
intestinal organoids have already been used extensively to analyze stem cell behavior,
identify niche components, model pathogen–epithelia interactions, gene editing, disease
modeling, and orthotopic transplantation [3]. As organoids generated from ESCs, iPSCs,
and fetal tissues faithfully retain the features of their original developmental stage, we
can obtain detailed information of embryonic development in a dish as differentiation of
the cells is systematically induced. It also delivers invaluable mechanistic insight into the
development of stem cells and their niches while providing an opportunity to monitor
their differentiation into mature functional lineages.

Another exciting application of the organoids is modeling host–microbe interactions.
Some 3D tissue models have been applied to the study of microbial pathogenesis, such as
hemolytic uremic syndrome caused by Shiga-toxin-producing Escherichia coli [69]. Studying
bacterial and viral infection will allow a greater understanding of the pathogenic mecha-
nisms and lead to better treatment strategies. Other studies have employed CRISPR/Cas9-
mediated gene editing of healthy organoids to evaluate candidate gene function in tissue
physiology and carcinogenesis directly. This advanced molecular technology system al-
lowed the manipulation of specific genes enabling disease modeling and targeted gene
therapy. Heart disease-associated human induced pluripotent stem cells (hiPSCs) have
been derived from patients with cardiomyopathy, cardiomyopathy-associated Duchenne
Muscular Dystrophy, familial long QT syndrome, prolonged QT interval, arrhythmia,
hypertrophy, and myocardial infarction. In addition, through CRISPR/Cas9 technology,
the possibility of creating hiPSCs with specific gene mutations or repairing known gene
mutations to re-establish physiological cell function has become concrete. Moreover, this
approach introduced serial mutations into healthy human colon organoids, converting
them into cancer organoids capable of driving in vivo cancer formation following ortho-
topic or kidney capsule transplantation [69–71]. Patient-derived organoids also represent
an essential resource for developing personalized treatment regimes. A wide variety of
active drugs and small compounds can be screened for targeting candidate signaling path-
ways to design more effective drug regimens in conjunction with other relevant diagnostic
and prognostic factors. Furthermore, in combination with 4D microscopy, organoids can
be tracked over time to assess cancer stem cell behavior and viability in response to active
drugs to predict patient outcomes.

4. Organoid Generation

Stem cells are primitive or “unspecialized” cells that have the potential to differentiate
into many different and specialized cell types such as blood cells, muscle cells, bone cells,
spleen cells, and other cells with specific functions [72,73]. Different methods exist for
generating tissues from human pluripotent stem cells such as ESCs and iPSCs, and adult
Stem Cells (aSCs) by mimicking the biochemical and physical cues of tissue development
and homeostasis [74]. If provided with the proper microenvironment, ESCs and iPSCs
can potentially differentiate into any tissue that arises from the three germ layers, but not
the embryo, because they cannot give rise to the placenta and supporting tissues. Most
tissues have multipotent stem cells, capable of producing a limited range of differentiated
cell lineages appropriate to their location. This capacity to spontaneous differentiation into
all three germ layers mimics embryonic development and promotes heterogeneous differ-
entiation. In endoderm organoids generated from ESCs and iPSCs, TGF-β (transforming
growth factor) signaling is stimulated to perform the definitive endoderm, differentiating
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into the corresponding embryonic viscera segment [75,76]. In organoids from the ectoderm,
ESCs and iPSCs are induced to form “embryoid body”-like aggregates (PSC clusters) that
are then driven to a neural or non-neural fate following ectodermal specification [20,77].
In organoids derived from the mesoderm, kidney organoids are generated by modulation
of fibroblast growth factor (FGF) and GSK-3β signaling pathways in human iPSCs through
a mesodermal intermediate stage [21].

aSCs are multipotent stem cells, able to differentiate in cell types closely related to
the origin tissue. Creating conditions that mimic those of the natural stem niche can give
rise to the tissue from which they were isolated. In addition, they play an important role
in maintaining tissue homeostasis and tissue repair after injury. The first observation for
tissue generation from aSCs was related to the growth of epidermal stem cells and large
amounts of epithelium in vitro [78].

The advent of iPSC technology and the diversity of human aSC culture methods
have made it possible, for the first time, to generate laboratory models specific to an
individual [79]. Reprogramming other cells into iPSCs has become a routine laboratory
procedure, but generating disease models from those cell lines remains challenging. Culture
methods of iPSCs have been developed to mimic in vivo organ development in 3D, allowing
more complex tissue structures and diverse cell types to be modeled simultaneously. In this
methodology, human iPSCs are sequentially exposed to a course of differentiation cues to
simulate the stages of a human developmental process. During this process, differentiated
iPSCs aggregate to form first an organ bud and later organoids that truly mimic the mature
organ structure, including multiple cell types and their interactions [2].

Human aSC-derived organoids have also emerged as an alternative organoid sys-
tem that consists of a simpler structure. In contrast to the complicated process of iPSC
reprogramming followed by differentiation to the required organ type, these organoids
can be generated from biopsies isolated directly from the organ of interest or diseased
patient tissue. However, the establishment of human aSC-derived organoids is limited
by accessibility to the tissue and prior knowledge of the culture conditions for that tissue.
At the same time, an iPSC line, once established from a patient, can be used to generate
different tissue models without any time limit repeatedly (that is, beyond the patient’s
lifespan) [80].

During organoid formation, many common factors are used to control spatially and
temporally the self-renewal and differentiation of stem cells or assist self-organization.
Growth factors or small molecules influence multiple signaling pathways critical in cell
survival, proliferation, and self-renewal, often in a tissue-specific manner. The use of
ESCs and iPSCs lines to generate organoids involves exposure to factors that promote
germ-layer and tissue-specific patterning, incorporation into Matrigel medium to facilitate
the development of 3D architecture and treatment with differentiation factors to produce
desired organs. Matrigel, which is a heterogeneous and gelatinous protein mixture se-
creted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, provides a scaffold and
additional supplementation of signaling cues via basement membrane ligands to support
cell attachment and survival as well as organoid formation [81]. It comprises mainly
adhesive proteins such as collagen, laminin, and heparin sulfate proteoglycans, which
resemble the extracellular environment to provide structural support and ECM signals
to the cells. Overall, matrigel provides a complex set of ECM signaling inputs and an
appropriate mechanical context to organoids in vitro [82,83]. However, Matrigel has no
defined composition and is animal-derived, representing a limitation to translation in
clinical settings. As an alternative, essential signals from native ECMs can be incorporated
into synthetic polymer matrices to produce designer ECMs like hydrogel generated from
naturally occurring materials, such as fibrin [84], collagen [85], or hyaluronic acid [86] and
synthetic hydrogels [87]. Many laboratories have used biochemically inert crosslinked
hydrogels such as polyethylene glycol (PEG) or alginate to encapsulate cells in 3D [88].
These biomimetic scaffolds can be designed for specific organoid applications, and they can
be constructed from either synthetic polymers (such as polyacrylamine and polyethylene
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glycol, PEG) or natural macromolecules (i.e., agarose or collagen) that can be used to make
them permissive to biological processes. Indeed, engineering ECM with a material capable
of supporting the spectrum of cell behaviors, critical for stem cells surviving, dividing,
differentiating, and ultimately self-organizing into organoid-like structures, has involved
considerable efforts, but further work is needed to identify materials with a full spectrum of
chemical and physical properties necessary to support organoid growth and differentiation
from stem cells.

Engineered matrices have been necessary for isolating the effects of mechanical cues
on stem cell activity, independent of biochemical signals. Stiffness is a critical parameter
influencing stem cell behavior and appears to be a determinant of the differentiation of
MSCs towards different lineages [89]. Engineered matrices for organoid cultures might
be designed with such physical considerations, including stiffness, matrix visco-elasticity,
and degradability, which must be optimized for each specific organoid system. The effi-
ciency of stem cell self-renewal and differentiation is correlated to ECM, and alterations in
ECM composition are a hallmark of many diseases [90,91].

For scaffold-free techniques, cells are cultured in droplets of a defined culture medium
hanging from a plate by gravity and surface tension [92]. Alternatively, the 3D structure
of the organoids can also be established via “air–liquid interface”. In this case, cells are
cultured on an MEF feeder layer or Matrigel initially submerged in a medium, which
gradually evaporates and exposes the upper cell layers to the air to allow polarization and
differentiation [93,94]. The initial culture conditions determine whether a cell (or cluster)
will form an organoid by self-organization [95,96], and the size and number of EBs have
also been shown to affect differentiation efficiency [97]. The size and shape of the initial cell
aggregates are important starting conditions for organoids formation. Microwell structures
or microfluidic devices usually achieve controlled cell aggregation; alternatively, the surface
of cells, the cell membrane, can be modified to improve or initiate cell clustering [98]. There
are different strategies for controlling spatial cell arrangement in vitro, from binding
peptides proteins, nanoparticles, polymers, or bio-orthogonal chemical species [99,100],
to cell surface binding of 3D DNA origami nanostructure that enables the programming
of cell–cell adhesion [101]. In addition, it is possible to apply a magnetic field to cells
magnetized by membrane-binding nanoparticles [102]. Beyond modifying cellular surfaces,
a wealth of genetic engineering strategies is available to control the intrinsic properties of a
cell [103,104].

Cells can be engineered by targeting components of pathways that control stem cell
differentiation and key niche signals or by genome editing (i.e., CRISPR–Cas9 technology).
The CRISPR system is much more flexible than existing techniques that use proteins such as
transcription activator-like effectors (TALEs) and zinc-finger proteins. Although effective
for targeting DNA in a sequence-specific manner, these systems utilize proteins that
contain a DNA-binding domain (rather than nucleic acids) for their target specificity [105].
Genome editing could modulate the intrinsic response of cells in an organoid to external
stimuli or induce specific differentiation drivers that could be employed for the terminal
differentiation of cells. In 2013, it was shown that CRISPR could be applied in mouse
and human intestinal organoids either to knock out a gene or to correct a disease-causing
mutation cystic fibrosis transmembrane conductor receptor (CFTR) [106,107]. Furthermore,
genetic bioengineering could be deployed to knock down relevant signaling pathways
in specific cells to make them unresponsive to the corresponding stimulus, which could
address the lack of spatial signaling control in organoids. Retinal organoids, derived
from iPSCs from patients with retinitis pigmentosa, could also be gene-corrected to rescue
defects in photoreceptor morphology and function [108]. In 2015, Freedman et al. showed
that CRISPR could be used to model disease phenotypes in hPSC-derived organoids,
creating an in vitro model for polycystic kidney disease [109]. Although the initial stages
of differentiation appeared identical between PKD mutant and control organoids, PKD-
mutant organoids behave differently when differentiated toward more mature kidney cells.
Moreover, the tubular structures that develop in wild-type hPSC-derived organoids, the
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maturation of PKD organoids, results in large cystic structures, a condition present in PKD
patients [109]. Therefore, gene editing in organoids can be utilized to elucidate signaling
pathways responsible for disease development.

Stem cell behavior in vivo is highly regulated through the extrinsic biochemical and
biophysical signals from specialized microenvironments. These microenvironments consist
of a complex array of signaling mechanisms from niche support cells, the ECM, and me-
chanical forces, as well as systemic and physiochemical conditions such as oxygen and
pH levels. The capacity to self-organize leading to reproducible and tightly regulated
tissue architectures in vitro is a considerably variable process. Key chemical, physical,
and spatial cues that guide the progress of self-organization in vivo may be lacking after
cell reaggregation in vitro [110]. In these cases, the tools and techniques of engineering
could facilitate the more robust formation and analysis of organoids. New engineering
technologies such as microwell arrays, droplet-based microfluidics, 3D bioprinting with mi-
croscale or nanoscale topography, chemically programmed tissue assembly, and chemically
defined ECMs mean that it is now feasible to engineer organoids in such a way as to pre-
cisely determine their initial size, composition, and spatial organization [87,88,111,112]. To
provide shape-guided morphogenesis in vitro, technologies such as micro-manufacturing,
3D printing, and laser cutting could be used. For example, a poly-dimethylsiloxane (PDMS)
stamp can be used to pattern a collagen scaffold, onto which organoid-derived cells can
then be seeded, or laser-shaped matrices can be applied [113,114].

Another significant challenge in constructing an artificial scaffold in vitro is precisely
replicating the presentation of signals to cells supplied in a precise spatial and temporal
order. In traditional 3D cultures, cells are flooded with biochemical signals without any
spatio-temporal control. This limitation can be addressed by 3D culture matrices that
can release or present biomolecules under spatio-temporal control [115–117]. A possible
approach to overcome this limitation is the delivery of morphogen gradients by microfluidic
devices that can further induce controlled symmetry breaking. In 2016, Demers and
colleagues developed a versatile microfluidic device capable of reproducing the spatial
and temporal chemical in vivo environment during neural tube development [118]. Spatial
control can be carried out by independent immobilization spatial-specific of different
growth factors, promoting cell migration and differentiation within an agarose hydrogel by
employing two-photon photochemistry [119]. Temporal control can be improved through
photochemistry, which allows the design of matrices that locally release soluble chemical
factors (or expose masked ones) in response to light stimulation [120,121].

5. From Cardiac Spheroids to Cardioids

The heart is a highly specialized organ that possesses a limited capacity for self-repair
and regeneration after infarction or disease. Advances in the understanding of stem cell
biology as well as advances in tissue engineering have provided an unlimited source of cells,
particularly cardiomyocytes (CMs), for the development of functioning cardiac muscle
capable of generating force and propagating electrical signals. Cardiac muscle is composed
of several cell types. The main population is represented by CMs, but the endothelial cells
and fibroblasts are the most abundant cell type when referring to numbers. Cardiac muscle
tissue engineered for regeneration requires a significant resource of functional CMs that
could be derived either from PSCs and/or cardiac stem cells (CSCs). Most of the current
knowledge of cardiovascular biology and disease arises from the use of animal models,
predominantly mice, rats, and pigs. Even though animal models have always represented
a key informative tool to study heart disease, many aspects, such as the species difference
in functional and biological properties, limit their translation to human cardiac disease and
drug testing [122].

In the development of cardiac organoids, the current limitation on which several
research groups are focusing their effort, consist in reproducing the vascular network of
cardiac tissue. Current models do not yet achieve proper vascularization and efficient
angiogenesis, conditions necessary for the delivery of nutrients and oxygen. The solution
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produced by techniques such as microfluidics, with which it is possible to control the size
and shape of new cellular constructs, has allowed significant progress; however, several
bottlenecks in reproducing all the necessary conditions of the heart structure in vitro are
still unresolved. The known difficulty in deriving human CMs and their propagation
in culture has hindered their use and instigated the use of alternative models. Human
pluripotent stem cell-derived CMs represent a valuable resource for modeling the human
heart, with significant advantages with respect to the study of toxic effects and efficacy
of new drug therapies, as well as in regenerative therapy to treat cardiovascular diseases.
One of the main limitations in the use of hPSC-derived CMs is their immature phenotype
having contractile and other biological and physiological properties that differ from those
of adult human CMs. CMs derived from hPSCs are typically generated through 3D ag-
gregates (EBs) from 2D differentiation cultures using hanging drop methods, suspension
cultures, or forced-aggregation method (Table 1). Usually, EBs are placed in matrix-covered
plates for further differentiation, and the presence of contractile CMs will be assessed in
the following days. Cardiac differentiation of EBs can be manipulated by the addition of
cardiac growth factors, specific morphogenes, or by transgenic modifications to boost PSs
cardiac commitment. CMs from cardiospheres revealed enhanced structural maturation
with respect to CMs from 2D cultures [123]. Crucial factors that improve the efficiency of
cardiac differentiation are the confluency in culture before differentiation, the size of the
hPSC undifferentiated aggregates, and the size of EBs. Depending on confluency, the dif-
ferentiation process is affected by the increase of cell-to-cell interactions and the associated
paracrine factors. After 4–7 days of culture in suspension, EBs are plated onto gelatin- or
Matrigel-coated dishes and cultured using a cardiomyogenic differentiation media. Despite
that the beating foci of cardiomyocytes-derived from PSC occur within the adherent EBs
layers, myogenic differentiation can also be observed in EBs cultivated the whole time in
the form of floating EBs. Nevertheless, the growth conditions can considerably influence
the microenvironment generated in culture and therefore also the differentiation efficiency.
Specifically, myogenic differentiation of pluripotent cells can be enhanced by stage-specific
application of key growth factors in defined media [124–126]. A variety of serum-free
defined media for cardiac differentiation in EBs have been tested [126–128]. StemPro-34
is a serum-free media firstly used to culture hematopoietic progenitors. Nowadays, it
has been also used for EB cardiac differentiation [124,127]. In the absence of serum to
induce cardiogenesis, different growth factors implicated in normal cardiac development,
including BMP4, activin-A, FGF2, Wnt agonists and antagonists, and vascular endothe-
lial growth factor, were tested. Cardiomyogenesis has been shown to be sensitive to the
glycogen synthase kinase-3 (GSK-3) inhibitor CHIR99021 concentration, while aggregate
size did not prove to be a prevalent factor among culture platforms [126]. Successively,
Yan and colleagues have demonstrated that cardiovascular spheroids derived from hPSCs
and treated for 48 h with CHIR99021 express higher level of α-actinin and higher ratios
of sarcomeric striations and Z-lines sarcomeres compared to 2D cultures [129]. 3D aggre-
gates of hiPSC-derived cardiomyocytes (hiPSC-CMs) in comparison with 2D cultures have
displayed down-regulation of the genes involved in glycolysis and lipid biosynthesis and
increased expression of the genes involved in the mitochondrial oxidative phosphorylation
system [130]. Light microscopy inspection of EB derived from hPSCs-derived CMs has
revealed that the cells in the border of the EB are elongated with a rod-shaped morphology,
with cross-striations of myofibrils in the cytoplasm. On the contrary, the CMs located at
the center of EB have shown a round shape, no striations, but numerous lipid vacuoles
and glycogen accumulation. Electron microscopy has shown that all EBs contain similar
cells with ultrastructural features of CMs, surrounded by a monolayer of epithelial cells.
Among the differentiated CMs at the center of EBs, it has been possible to visualize small
cellular spaces containing collagen fibrils and cellular debris. The CMs nuclei located in the
center of EBs showed a slightly irregular outline, while those located in the periphery were
oval [131]. In addition, immunofluorescence staining has shown many different cardiac-
specific markers, including troponin-T, α-actin, atrial myocyte-specific MLC-2a, ventricular
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myocyte-specific MLC-2v beating cells, and pacing cell-specific HCN4 [132]. CMs induc-
tion from PSCs has resulted in mixtures of ventricular-like, atrial-like, nodal-like cells, and
pacemaker-like cells defined by intracellular electrophysiological measurements of action
potentials [125]. Indeed, the phenotype of CMs-derived PSCs is characterized by a combi-
nation of sub-populations but also presenting a different degree of maturity. As reported in
several studies, it is possible to guide differentiation towards atrial-like or to ventricular-like
CMs by modulating the retinoic acid and Wnt signaling pathways [133–135].

Table 1. Main methodologies of cardiosphere derivation with their characteristics.

Methodology Growth Characteristics Advantages Disvantages

Suspension
cultures

Uncontrolled spheroid
size, non-uniform
spheroid shape,
variations in cell number

Simple, cheap,
quick to scale up Low efficiency

Hanging drops
Fast spheroid formation,
well-controlled and
uniform spheroid size

Simple, no special
equipment is
required

Laborious task,
time-consuming, instable,
difficult long-term
cultures, low throughput,
low efficiency

Forced
aggregation

Rapid cell aggregation,
well-controlled and
uniform spheroid size

Increased efficiency,
high throughput

More complex, undefined
potential effects to cells,
special equipment and
culture conditions
are required

In 2003, the identification and characterization of niches of endogenous CSCs in
the adult mammalian heart had been associated with the expression of type III receptor
tyrosine kinase c-kit (CD117 or SCFR-stem cell factor receptor) [136]. However, the adult
heart contains a heterogeneous c-kitpos cell population, most of which displays blood and
endothelial lineage-commitment [137–141]. Recently, it was demonstrated that only a
fraction of c-kitpos cardiac cells, negative for CD45 and CD31, are enriched for multipotent
CSCs [43,142,143]. These cells are distributed throughout the myocardium with the highest
density in the atria and apex [139,144]. CSCs can be propagated over long-term culture
and maintained in an undifferentiated, self-renewing, and stable state, without showing
senescence or abnormal karyotype [145]. CSCs are clonogenic in vitro, and when grown in
differentiation media for endothelial, smooth muscle, and cardyomyocyte lineages, acquire
phenotypic characteristics of these different cell types.

When CSCs grow in suspension, they form spheres of hundreds of cells, similar to
the pseudo-embryoid bodies created by the neural stem cells (neurospheres), which by
analogy were named “cardiospheres” [136]. Cardiospheres are self-assembling, multicellu-
lar floating clusters that represent a distinctive feature of multipotent cells (Figure 2a,b).
These cardiac-derived multicellular spheroids, are spontaneously formed by cardiac
stem/progenitor cells and are cultured on a bacteriological dish or a poly(HEMA)-coated
dish [43,146]. Immunostaining revealed that cardiospheres consist of c-kitpos CSCs and
supporting cells bound together by ECM proteins and connexins [136,147]. The archi-
tectural features of cardiospheres resemble those of in vivo stem cell niches, where stem
cells are surrounded by supporting cells and linked by interactive ECM molecules [148].
Li et al. have shown that human cardiosphere-derived CSCs display the greatest myo-
genic differentiation potency in vitro compared with human BM-derived MSCs, adipose
tissue-derived MSCs, and BM-derived mononuclear cells [148]. Marban and colleagues
isolated a human cardiac progenitor cells (c-kitpos) population from endomyocardial biopsy
composed by a different sub-population expressing endothelial (CD31 and CD34) and
mesenchymal markers (CD90, CD105). Cardiospheres derived from this heterogeneous
population expressed c-kit in the core and the mesenchymal marker CD105, CD31, CD133,
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and MDR-1 on their periphery. These cardiospheres also expressed Connexin43, NKX2.5,
and desmin whereas in the periphery show cardiomyocyte-specific sarcomeric proteins
(cTNI and αMHC). Therefore, such cardiospheres possess a core characterized by the
expression of cardiac stem/progenitor markers while the cells located at the periphery
seem to represent spontaneous differentiation of precursor cells into endothelial, mesenchy-
mal, or cardiomyogenic lineages [149]. However, to boost CSC potential is indispensable
to refocus the investigation on cloned Linnegc-kitpos CSC, since they represent the true
pool of multipotent adult cardiac stem/progenitor cells. Indeed, we have demonstrated
that the efficiency of cardiomyogenic induction using clonally derived CSCs is remark-
ably higher when compared to heterogenous freshly isolated CSC-enriched cardiac cells
(Figure 2c) [43]. Cloned CSC showed robust self-renewing and serial sub-cloning capacity,
genome stability, and multi-lineage cardiac cell differentiation potential [43]. Importantly,
they generate cardiospheres at high frequency, which give rise to secondary and tertiary
cardiospheres. When placed in laminin-coated plastic dishes with LIF-deprived basic
differentiation medium for 14 days, the peripheral cells of the spheres expressed high levels
of smooth muscle as well as endothelial and cardiac lineages. Nevertheless, the CM derived
from cloned CSCs still reach a biochemical myogenic differentiation that is intermediate
between fetal and neonatal cardiomyocytes [150]. These data have also been confirmed
by RNASeq expression profile analysis. Comparison of transcriptome and miRNome be-
tween clonal CSCs, contracting cardiomyocytes obtained from CSC-derived cardiospheres
(iCMs), and adult cardiomyocytes (aCMs) has shown that CSCs are cardiomyogenic since
they activate the entire gene network and specific cardiomyo-miRs characteristic of the
aCMs phenotype. Yet, in concordance with the immature phenotype of iCMs, the expres-
sion of these miRNAs is still significantly lower than in aCMs, falling between CSCs and
aCMs [150].

D
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a

Figure 2. (a,b) Representative light microscopy image of monolayer culture and cardiospheres derived from
c-kitpos/CD45neg/CD31neg hCSCs. Scale bar = 400 µm and 100 µm. (c) Representative confocal microscopy images
of cardiospheres derived-c-kitpos/CD45neg/CD31neg hCSCs plated in cardiac differentiation media efficiently commit
to cardiomyogenic cell lineages (TNNI, green). Nuclei are stained in blue (DAPI). Scale bar = 50 µm. Adapted from
Scalise M. et al. [139].

Cardiosphere attachment on laminin or 0,1% gelatin plates alters cell shape and
geometry, leading to cell flattening and changes in the cytoskeleton and nuclear shape.
Cardiospheres show upregulation of many stem cell-relevant factors, such as c-kit, SOX2,
Nanog, IGF-1, and Tert, which play an essential role in the growth and maintenance of the
undifferentiated state [148]. Interestingly, the expression of HDAC2, an important histone
deacetylase, is also upregulated in cardiospheres. The mechanism underlying this culture-
acquired enrichment in stemness is unclear but may be related to the recapitulation of a stem
cell niche microenvironment and HDAC2-mediated epigenetic modification. In addition,
ECM and adhesion molecules, including laminin-β1, integrin-α2, and E-selectin, are also
upregulated in cardiospheres [148]. As other spheres, also cardiospheres face a limited
supply of oxygen and nutrients to the center of the spheroid.
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Moreover, the work of Smith et al. has shown the feasibility of generating human and
porcine cardiospheres and expanding stem cells from routine endomyocardial biopsy spec-
imens. Cardiosphere-derived cells (CDCs) were isolated from percutaneous endomyocar-
dial biopsies of the adult patients and examined in vitro for biophysical and cytochemical
evidence of cardiogenic differentiation [151]. Human and porcine CDCs differentiated into
electrically functional myocytes in vitro. Direct injection of human CDCs into the infarct
border zone of SCID mice led to functional improvement and myocardial regeneration
documented respectively by echocardiography and histology. CDCs transplantation in-
duced both cardiomyogenesis and angiogenesis [151]. Other groups have investigated
the ability of cells to secrete cytokines and growth factors (i.e., VEGF, HGF, and IGF)
and the potential contribution of paracrine mechanisms to the beneficial and protective
effects of cardiosphere-derived cells in vitro and in vivo [152]. Numerous studies have
demonstrated that CDCs can engraft, differentiate, and improve cardiac function post-
MI in mice [148,152], rats [153–155], and pigs [156,157]. While using the intracoronary
route, CDC-treated pigs had similar values of EF to placebo-treated animals [156]; a slight
improvement in the EF in post-MI pigs was obtained when CDCs were combined with
βFGF [158].

6. Cardioids

The hiPSC-CMs are useful for traditional two-dimensional (2D) monoculture. Still, this
model usually lacks a complete functional maturation [159], differentiation ability, and gene
expression, which hampers their capacity to accurately predict human biology and patho-
physiology in some instances [160]. Nevertheless, this gap could be overcome due to the
possibility of generating hiPSC-CMs three-dimensional 3D structures [160–163]. Therefore,
cardiac organoids, named as “Cardioids”, are generated from hiPSCs that self-organize into
complex native-like organ [164] structures [165], representing faithfully many features of
cardiac development stages (Figure 3). Cardiac organoids are usually prepared by inducing
the aggregation of specific cells suspended in a medium or embedded in the 3D gel matrix.
Recently, it was shown that hiPSC-derived EBs adherent to collagen-conjugated hydro-
gels are more successful in forming myocardium-like tissue [166]. Collagen-conjugated
hydrogel has a stiffness similar to that of myocardial tissue, and probably for this, they can
better stimulate cell proliferation and then differentiation into cardiomyocytes. However,
there are some limitations related to matrix use. First, using a soft matrix cannot transmit
mechanical signals that are insoluble during cardiomyocyte differentiation. Therefore,
the difference in gel stiffness results in a difference in the degree of differentiation.

Artificially engineered heart tissues were successfully obtained through many bio-
engineering approaches using scaffolds, molds, cell hydrogel matrices, and 3D-printed
biomaterials [160,167–169]. These approaches effectively measure contraction force, per-
form compound screens, and model structural muscle and arrhythmogenic disorders.

Nevertheless, many previous methods [165,170–173] do not recapitulate cardiac-
specific self-organization to acquire an in vivo-like structure [28]. To this aim, using a high-
throughput approach, it was demonstrated that WNT and BMP, the central regulators of the
cardiac specification [174], drive chamber-like self-organization [28]. Moreover, the inhibi-
tion of WNT signaling at the cardiac mesoderm stage seems crucial for CM specification but
is not necessary for cardioid self-organization. Recent work uses a protocol based on three
sequential modulation steps of the WNT pathway (activation/inhibition/activation) at
specific time points on suspension EBs to drive the production of significant heart-like struc-
tures in terms of organization, functionality, cardiac cell type complexity, ECM composition,
and vascularization [175]. The gene expression profile of cardioids showed upregulation of
cardiac-specific genes and downregulation of WNT signaling at day 20 differentiation and
significantly higher gene expression of transforming growth factor β (TGF-β) signaling
(such as TGFβ1, TGFβ2, TGFβ3, TGFβR1, and TGFβR2) and cardiac-specific genes (MYL4,
MYH7, and NKX2.5 [176]). Comparison of transcriptomes of 2D iPSC-CMs, 3D iPSC-CMs,
human cardioids (hCOs) RNA-seq datasets of healthy human myocardium derived from
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fetal atria, fetal ventricles, and adult ventricles showed that hCOs best summarize cellular
diversity and share the highest transcriptomic similarity to fetal myocardium, presenting
fibroblast specific ECM organization, endothelial cell vascularization, and early immune
cell regulation [28].

Cardiomyocytes

Epicardium

Endothelial cells

Self-organization of cardioids

Figure 3. Cardioids recapitulate intrinsic self-organization and arrangement to form cardiac architecture and chamber-like
structures growing from pluripotent and cardiac stem cells.

In cardioids, the patterning and morphogenesis of CM and endothelial cell lineages
are controlled by the combination of specific cardiac and endothelial growth factors. Specif-
ically, at the early time point of mesodermal differentiation, WNT and ACTIVIN were
added to differentiation media, while the next step requires adding VEGF to move on both
specification and patterning of the EC layer in cardiac mesoderm [28]. Therefore, cardioids
are a promising system to study the underlying mechanisms of CM and EC patterning
and crosstalk in the context of a beating chamber. Moreover, cardiac organoids represent a
booster to investigate mechanisms of human cardiogenesis. However, the self-assembly pro-
cess used in most organoid procedures is still a limiting factor for a consistent generation of
cardiovascular tissues. Mostly, this process is a random method resulting in heterogeneous
organoids regarding cell composition, size, and shape [95]. Nonetheless, the application
of hiPSC-derived cardiac organoids to disease modeling shows countless advantages in
clinical medicine, contributing to the investigation of a large variety of phenotypes and a
robust technology applicable in drug development and screening [160,177–182].

Recently, cardiac organoids that incorporate an oxygen-diffusion gradient and that are
stimulated by the neurotransmitter norepinephrine resemble the structure of the human
heart after myocardial infarction (by mimicking the infarct, border, and remote zones)
recapitulating transcriptomic, structural, and functional hallmarks of myocardial infarc-
tion [165]. Furthemore, these organoids can model hypoxia-enhanced doxorubicin car-
diotoxicity [165]. The authors utilized non-adhesive agarose hydrogel molds to make
hiPSC-CMs and non-myocyte mixtures used to form human cardioids. The human car-
dioids were placed into a hypoxic chamber and were treated with 1 µM noradrenaline to
create an apoptotic gradient, which simulates the environment of myocardial infarction
in vitro. The transcriptomic data and functional analyses showed that infarcted organoids
recapitulate key aspects of metabolism in the human infarcted myocardium. However,
the absence of inflammatory cells or the level of maturation of hiPSC-CMs obtained in vitro
implies the lack of perfect simulation of heart failure in the infarct organoids [183]. Changes
in transcriptome level explain the extent to which infarcted organoids could model re-
sponses of human cardiac tissue after infarction. From this perspective, iPSC-based systems
are likely to be very helpful to model diseases across many adult tissues, including the
heart [74,184].
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Another approach has been the generation of 3D cardioids from mouse embryonic
stem cell-derived EBs using the substrate laminin-entactin (LN/ET), which includes com-
ponents of the ECM in connective tissue, and exogenous FGF4 for induction of CM prolif-
eration and cardiac chamber formation. Interestingly, when EBs were generated without
the LN/ET complex, they failed to undergo morphological changes suggesting that the
LN/ET complex promotes an extracellular environment for heart development. They also
investigated the presence of cardiac muscle-specific structures, finding the appearance of
intercalated discs, sarcomere structures with Z-bands, mitochondria, and desmosomes,
Purkinje cells, and T-tubule [185]. Among all, the intercalated disc is involved in the
coordination of muscle contraction. Therefore, these cardioids might possess contractile
cardiac muscle cell properties. Thus, this heart organoid culture system provides a valid
method to significantly improve regenerative medicine, study congenital heart diseases,
and screen potentially dangerous drugs that cause cardiac defects.

A human in vitro model of acute cryoinjury has been also developed, which seems
to be physiologically representative of the native immature human heart and exhibits
an endogenous regenerative response [178]. A different method includes generating a
3D microtissue system composed of the primary cardiac cell line, CMs, cardiac endothe-
lial cells, and cardiac fibroblasts derived entirely from hiPSCs [171]. This system seems
to promote the crosstalk between different cell lines improving cardiomyocytes matu-
ration. Specifically, they identified some key mechanisms in the tri-cellular interactions
that enhance CM maturation. One mechanism observed in tri-cellular interactions that
enhance CM maturation includes the increased cAMP levels in CMs positively affecting
the assembly of CX43 gap junctions [171]. The silencing of CX43 significantly reduced the
structural organization of sarcomeres and the contraction duration [171]. Other factors
such as paracrine effects or cell-extracellular matrix interactions may also contribute to CM
specification and maturation.

Taken together, the main purpose of all the experimental procedures is to obtain
fully mature hiPSC-CMs to mimic faithfully in vivo heart structures. Combining genomic
editing technology and hCOs, it is possible to precisely modify and correct each mutation
and realize innovative and personalized therapeutic platforms for disease modeling. Long
and colleagues have used hCOs to show that dystrophin mutations impaired cardiac
contractility and sensitivity to calcium concentration and that correcting mutations in the
X-linked dystrophin gene by myoediting contractile dysfunction was partially-to-fully
restored [186]. hCOs can be used to study more electrophysiological phenomena, such
as conduction and reentry, in arrhythmogenic syndromes, such as short QT syndrome,
exploiting their ability to produce both spontaneous and induced action potentials with a
higher conduction velocity [187].

The development of 3D stamping and bioprinting techniques also provides scaffolds
to generate heart-on-a-chip. Engineered heart tissues and heart-on-a-chip methods allowed
modeling of specific cardiac diseases, including Barth syndrome-associated cardiomyopa-
thy [188], Duchenne muscular dystrophy [186], and primary hypertension-induced left
ventricular hypertrophy [169]. Compared to standard 2D culture formats, engineered 3D
heart tissues improve CM maturity and exhibit a more physiological 3D muscle environ-
ment [189], representing the new frontiers to study human cardiac regeneration in vitro.

Based on the consideration that the adult heart contains a niche of endogenous stem
cells [190–192], these could be considered a potential source for organoid generation. Car-
diac organoids can be generated by isolating adult stem cells from small biopsy specimens.
CSCs can release their own cardiac morphogens promoting the formation of structures
of greatly increased complexity and finely organized architecture. CSCs have the po-
tential to differentiate into many or all the cell types present in the heart and acquire
anatomic morphology such as chamber organization and atrioventricular specification.
Therefore, cardioids generated from CSCs may provide a basis for the study of congenital
and age-related cardiovascular disease [142,193–198].
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7. Future Directions

The findings discussed here illustrate that organoid technology is one of the most
promising three-dimensional (3D) culture innovations in biological and medical research.
Organoids display physiological functions specific to that organ and present cell organi-
zation similar to that of the organ itself [199]. However, organoids recapitulate some but
not all aspects of the tissue of origin. Only a fraction of the in vivo cellular and physical
environment is recapitulated. Mimicking the spatial and functional complexity observed
in vivo is indeed a defined, yet not readily achievable, target to reach. Different approaches
are being followed, from co-culture systems that combine different cell types using engi-
neering approaches to mixing different types of already pre-patterned and differentiated
structures to generate multiplex organ tissues. Organoid culture often requires Matrigel
or another animal-based matrix extract to support cells to aggregate into 3D structures.
The composition of these extracts can change between batches which may affect the repro-
ducibility of experiments. In addition, they may transfer pathogens and are potentially
immunogenic when transplanted to humans, limiting the application of organoids in a
clinical transplantation protocol. This may be resolved by using clinical-grade collagen or
a synthetic polyethylene glycol-based gel [87,200].

Organoids potentially provide alternative cellular sources for cell therapy transplan-
tation, revolutionizing the future treatment of several chronic diseases or extending the
time required for an organ transplant. They contribute to reducing the use of animal
models and costs in the pharmaceutical industry. Despite that, these approaches tend to be
expensive, work-intensive, and not readily scalable. A cardioids model, as a supplement to
a preclinical model, can be used to simulate pathological processes and heart development
effectively and to detect toxicity and side effects of drugs. Still, it has not yet wholly
replaced animal models. Significantly, an important limitation of the hCOs is their inability
to include all the cells found in the in vivo heart. hCOs, due to the lack of inflammatory
cells and the use of immature hiPSC-CMs, cannot highlight the immune system’s role in
myocardial infarction, heart failure, or other cardiac diseases. Their ability to recapitulate
heart development is still limited compared to other models, such as mice, even though
they have the significant advantage of being human in origin rather than a surrogate
animal model [201]. There is large room for improvement in the technology, particularly in
better recapitulating morphological and anatomical features and inducing the formation of
effective vascular networks that can provide nutrients [202]. A fundamental limitation of
many organoid systems is a lack of a functional vascular network to facilitate the exchange
of nutrients and waste material removal, as they rely solely on diffusion [203]. Innovative
co-culture methods can better simulate the interaction between multiple cell types, which
will be helpful to constructing specific-chambered hCOs containing ventricle-like and
atrial-like structures and functions in the future.

The real possibility to manipulate the expression of a specific target gene through the
genome editing strategy makes organoids a suitable preclinical tool to approximate the
therapeutic efficiency of gene editing.

Moreover, the organoid-on-a-chip platform is an innovative technology to fabricate
3D organ models, which may bridge the gap between monolayer cell cultures and animal
models. The artificial assembly of multiple organoids or the combination of organoids
with cells from different tissue lineages becomes essential for analyzing other parameters
that may change under specific conditions [164]. This approach could replicate the definite
functions at the multiorgan level and the complex processes of drug metabolism and
reaction [204,205].

High-fidelity hCOs could be valuable in understanding human physiology, cardiac
development, specific drug testing, disease modeling, and drug discovery. Therefore,
in the last few years, 3D models have become increasingly more sensitive and are used
to study many diseases such as neurogenerative diseases, cancer, and cardiomyopathy.
Furthermore, 3D models in regenerative medicine are promptly developing and offer
an unprecedented approach to personalized medicine. Both spheroids and organoids
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models are not only closer representations of in vivo tissues than 2D cell cultures but can
also efficiently recapitulate human-specific biology in a dish and shed light on biological
mechanisms, pathogenesis, and disease treatment. However, the current technologies for
spheroid and organoid generation are limited by the inability to replicate the complex
cell–cell interactions, cellular diversity, and microenvironment cues of tissues in vivo and
lack of reproducibility. Further studies are required to refine the technology to go beyond
and definitively abandon animal models to investigate critical cellular events in biology.
Bioengineering strategies may provide new directions to overcome this issue.
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