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Abstract: Understanding the causality of the post-traumatic osteoarthritis (P’TOA) disease process of
the knee joint is important for diagnosing early disease and developing new and effective preventions
or treatments. The aim of this review was to provide detailed clinical data on inflammatory and
other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of
events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to
identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the
knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss
methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant
and in vitro chondrocyte models, and answer whether these models are representative of the clinical
inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine
concentrations used in such models and demonstrate that, compared to concentrations in the synovial
fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to
present evidence that TNF-o and IL-6 cytokines are causal factors, while IL-13 and IL-17 are credible
factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for
future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an
emphasis on early disease.

Keywords: chondrocyte; articular cartilage; osteoarthritis; post-traumatic osteoarthritis; immunomod-
ulation; acute; subacute; chronic; inflammation; early PTOA; cartilage repair; clinical; knee trauma;
knee joint; injury; inflammatory cytokines; synovial fluid; in vitro models; cartilage; IL-13; TNF-«;
IL-6; IL-17; complement; Bradford Hill; early disease

1. Introduction

Osteoarthritis (OA) is the most prevalent form of joint disease and one of the leading
causes of disability affecting 630 million people worldwide [1]. While OA is considered
an age-related disease, it also affects younger individuals with 8% of the population aged
18-44, 30% of the population aged 45-64 and 50% of individuals over 65 years of age having
OA. Joint trauma is a major cause of this degenerative disease and, astoundingly, 23% to
50% of the people that suffer a trauma to the knee joint eventually develop post-traumatic
osteoarthritis (PTOA) [2-8]. Those with prior knee joint trauma are 3 to 6 times more likely
to develop PTOA and were diagnosed 10 years earlier than those without any history of an
injury [1,9,10].

Inflammation has been shown to be play a role in the pathogenesis of OA [11-13] or
PTOA [14-18] in general. While other reviews suggest a general timeline of the pathogenic
response following joint injury, they do not (a) focus solely on a particular joint (i.e., acute
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knee joint injury), and/or (b) do not provide a detailed clinical inflammatory timeline and
sequence of events of inflammatory and other mediators present in the synovial fluid (SF),
serum, plasma and urine following knee trauma. Moreover, a detailed review that relates
the available detailed knowledge derived from basic science studies, which simulate injury
and induce inflammation, with data of clinically orientated studies is lacking but would be
beneficial to identify types and concentrations of inflammatory mediators in post-traumatic
patient tissues related to the knee joint and/or fluids. The objective of this review was,
therefore, to develop a timeline of events after knee trauma from early acute inflammation
to development of final end-stage clinical PTOA and to compare the clinical stages of
inflammation to the in vivo and in vitro/ex vivo models of injury and/or inflammation.
The aim was to identify key inflammatory inducers of knee PTOA and to determine
if the models as well the concentrations of inflammatory cytokines commonly used to
induce inflammation are representative of clinical knee PTOA. We also discuss beneficial
infrastructure for future studies to dissect the role of local vs. systemic inflammation in
PTOA progression of the knee joint with an emphasis on early disease.

2. Methodology

In preparing this systematic review, eligible articles were identified using PubMed,
Medline, Cochrane Library, Google Scholar, Web of Science databases, and by hand-
searching. The following inclusion criteria were used: (1) peer-reviewed studies that
were published in the English language and, unless otherwise stated, (2) clinical samples
that were obtained from the knee joint or from the SF, serum, plasma or urine following
acute knee trauma from patients having no history of a previous knee injury; (3) in vivo
PTOA models of the knee joint that applied insult/injury and/or inflammatory cytokines
(chemically induced models of injury were excluded), and (4) in vitro chondrocyte and
cartilage ex vivo explant models that used cells, cartilage, SF and/or the joint capsule
obtained or isolated exclusively from the knee joint.

Each clinical study was assessed for quality using the National Institute of Health
(NIH) Study Quality Assessment Tool, which can be accessed at URL: www.nhlbi.nih.gov/
health-topics/study-quality-assessment-tools (accessed on 14 November 2020). This tool
is widely used for critically appraising cohort and cross-sectional studies and consists of
14 questions, of which most can be answered with “yes” (assigned a value of 1) or “no”
(assigned a value of 0). Other possible answers were not reported (NR) and not applicable
(NA). Based on the total score, the quality assessment was defined as 0-5 (poor), 6-9 (fair)
or 10-14 (good).

The Bradford Hill Framework provides nine criteria for establishing epidemiologic
evidence of a causal relationship between an exposure and an observed effect [19]. We
used this framework to evaluate the relationship between the presence of inflammatory
markers (IL-13, TNF-«, IL-6 or IL-17) after knee trauma and PTOA disease progression.
The criteria, which are widely used in public health research and have stayed virtually
unchanged since it was first published, are as follows: strength of the association, consis-
tency of findings, specificity of the association, temporal sequence of association, biological
gradient, biological plausibility, coherence, experimental evidence and analogy. Using this
framework, we determined whether IL-13, TNF-«, IL-6, and/or IL-17 led to a convincing,
credible or probable causal PTOA disease effect, or whether the evidence was suggestive,
limited, or inconclusive. The evidence collected for each viewpoint is presented with a
final judgement as to whether the nine criteria were fulfilled or not.

Because we noted that each clinical assessment chose a different time range for the
collection of clinical samples, in this review we defined acute inflammation as inflammation
occurring directly after knee injury and lasting for up to 2 weeks, subacute inflammation
as the time between acute and chronic inflammation lasting 2 to 6 weeks, and chronic in-
flammation, as prolonged inflammation exhibited by a significant increase in inflammatory
markers, lasting for prolonged periods from greater than 6 weeks to years following knee
injury [20].


www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
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3. Results of the Clinical Studies That Measured Inflammatory and Other Key
Biochemical Biomarkers in Patients Who Have Had Knee Trauma

The quality assessment results of the clinical knee injury studies included in this
systematic review demonstrate that all of the included studies were of good or fair quality
(Table 1). The main limitations and reasons for scores of zero were due to a lack of a power
calculation or justification of sample size, the absence of a blinded outcome assessment,
and/or not considering possible confounding factors in the analysis. The confounding
factors are listed in Table 2 along with the types of injury, the group in which injury samples
were compared, the post-traumatic phase (acute, subacute, chronic, and/or PTOA), the
markers measured after knee trauma, the age, cohort size, and the number of males/females
that were included in the studies.

Table 1. Quality assessment results of the clinical observational cohort and cross-sectional knee injury studies included

in this review. Quality was assessed using the (NIH) Study Quality Assessment Tool and guidelines. Abbreviations:

Question (Q), yes (Y), no (N), not applicable (NA) or not reported (NR). Yes answers are given a score of 1 and no answers a

score of 0. The study quality is defined as 0-5 (poor); 6-9 (fair): 10-14 (good).

Q Q QO Q Q Q

Q 0 Q O QO Q9 Q .
Study QU 5, 3 4 5 6 7 8 9 10 11 12 13 14 S0 Quality

Haller [21] 1 1 0 1 0 1 1 1 1 NA 1 1 1 0 10 good
Haller [22] 1 1 0 1 0 1 1 1 1 NA 1 1 1 0 10 good
Swird [23] 1 1 1 0 0 1 1 1 1 NA 1 NR 1 1 10 good
Bigoni [24] 1 1 1 1 0 1 1 1 1 NA 1 NR 1 0 10 good
Irie [25] 1 1 1 1 0 1 1 1 1 NA 0 NR O 0 8 fair
Elsaid [26] 1 1 1 1 1 1 1 1 1 NA 0 NR O 1 10 good
Catterall [27] 1 1 1 0 0 1 1 0 1 NA 0 NR 1 0 7 fair
Watt [28] 1 1 1 1 1 1 1 1 1 NA 1 NR 1 1 12 good
Lattermann [29] 1 1 1 0 0 1 1 0 1 NA 1 NR U 0 7 fair
Dahlberg [30] 1 1 1 1 0 1 1 1 1 NA 1 NR 1 0 10 good
Higuchi [31] 1 1 1 0 0 1 1 1 1 NA 1 NR 1 0 9 fair
Struglics [32] 1 1 1 0 18] 1 1 1 1 NA 0 U 1 1 9 fair
Sarafan [33] 1 0 1 U 0 1 1 0 1 NA 1 NR 1 0 7 fair
Lohmander [34] 1 1 0 0 0 1 1 1 1 NA 1 NR NA 1 8 fair
Lohmander [35] 1 1 0 0 0 1 1 1 1 NA 1 NR NA 1 8 fair
Struglics [36] 1 1 1 0 0 1 1 1 1 NA 1 NR 1 1 10 good
Struglics [37] 1 1 0 1 1 1 1 1 1 NA 1 NR 0 1 10 good
Larsson [38] 1 1 NA 1 0 1 1 1 1 NA 1 1 1 0 10 good
Panina [39] 1 1 1 1 0 1 1 1 1 NA 0 NR 1 1 10 fair

Table 2. Details of the clinical observational cohort and cross-sectional knee injury studies included in this review. The

phase after injury refers to acute (A), subacute (S), chronic (C) inflammation or clinically diagnosed PTOA. For the remaining

abbreviations we refer the readers to the list of abbreviations. The age, cohort size and sex are of the injured group only.

Data not reported (NR) indicate that the information was not described in the study.

Age
Study Type of Injuries Comparison I;l;::: Markers Mean Cohort Sex Confounding
Group Ini Measured Median Size Factor
njury
(Range)
IFN-y, IL-18,
IL-1RA, IL-2,
Haller 24 patients had low and ~ Contralateral IL-4, IL-6, IL-7, 4 31 males
1] 21 high energy acute uninjured A IL-8, IL-10, (20-60) 45 14
tibial plateau fracture knee IL-12(p70), IL-13, females
IL-17A, TNF-«,
MCP-1, MIP-1§3
Haller 24 pat.ients had low and Cont.ra?lateral MMP-1,-2, -3, -7, 4 31 males
[22] 2.1.h1gh energy acute uninjured A 9 -10.-12. -13 (20-60) 45 14
tibial plateau fracture knee Lo females
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Age
. Phase .
Stud Type of Injuries Comparison after Markers Mean Cohort Sex Confounding
y Group . Measured Median Size Factor
Injury
(Range)
100% had hemarthrosis;
57 ACL tear, 3 medial
meniscus injuries, 1
posterior cruciate
ligament tear, 5 patellar .
dislocations; 1 Age- and sGAG, 161.23;;611??;3? a
suspected tibial gender- ARGS aggrecan 83 males szean 5 e]arsy
Swird fracture; 3 MCL tear, 2 matched AS fragments, OCL, 25 111 28 rior to ir}i'ur )
[23] lateral collateral healthy ’ SPARC, OPN, (13-64) p jury
. .. females and 7 had
ligament tears, 35 uninjured IL-1B, IL-6, IL-8, revious knee
rotational knee controls TNF-« p
traumas; 3 knee surgery
contusions; 1 knee
hyperextension. 15 of
these had associated
MCLT
Unequal
distribution of
; the number of
Biconi 18t§;‘t1§8igidti§L Healthy IL-1, IL-1ra, IL-6, 30 patients at the
& T uninjured A,S,C IL-8, IL-10, 48 48 males different time
[24] associated + 1 (14-55) . d:
meniscal injury controls TNF-o points measured;
Did not include
any female
subjects
OA & post- Unequal
e N, 20maes  iebutenes
¢ ACL tear _tomy A, S  IL-6,1L-8,IL-Ira, 34 14 © number
[25] including IL-10 (13-55) females patients at the
hydrarthro- different time
sis points measured
Unequal
distribution of
Lubricin, IL-1p3, patients at
Elsaid Contralateral TNF-«, IL-6, o4 19 males different time
[26] ACL tear uninjured S,C Procathepsin B, (15-47) 30 11 points; No
knee Neutrophil females sub-stratification
elastase, sGAG of the injured
groups based on
time after injury
IL-1, CRP, Half of the
sGAG, . d
patients at 2
ARGS-aggrecan, time point were
ACL tear + other knee FA846, CS846, ivenpi a IL-1ra
joint tissue damage None C2C, CTxII, & o
. . but authors
including bone (samples C1,2C, CTx, 6 males
Catterall . . 23 reported no
contusions, medial were A,S NTX, CPII, 11 5 ..
[27] ! . (19-26) statistical
collateral ligament measured Osteocalcin, females R
. . differences
tears, meniscal tears over time) {-Aspartate,

and chondral defects

D-Asx, D-Serine,
sCD44, COMP,
Tenascin C,
Lubricin, MMP-3

between IL-1ra
vs. placebo arms
for all measured
biomarkers
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Table 2. Cont.
Age
. Phase .
Stud Type of Injuries Comparison after Markers Mean Cohort Sex Confounding
y yp ) Group . Measured Median Size Factor
Injury
(Range)
74% had hemarthrosis;
61 combined
ACL + meniscal tear, 34
severe trauma (1 or
more injuries including
meniscal tear, cruciate
ligament rupture,
collateral ligament tear, .
Macroscopically
posterolateral corner intact
injury, traumatic - ..
Watt chondral defects, fri)arzﬂllsvgveer Acltﬁ‘_qrr; ?if:éRP’ 25 121 Wide time range
articular or K A,S,C 4 4 150 males 29 for baseline visit
[28] L limb tumor MCP-1, MMP-3, (16-50)
periarticular fracture, amputation TIMP-1. TSG-6 females (0-8 weeks)
or patellofemoral or 4
o or transplant
tibiofemoral donation
dislocation with severe onations
knee trauma defined as
combined (>1)
ligament rupture,
fracture or dislocation);
28 a single ACL or
MCL rupture, 27
meniscal tears
IL-1e, IL-1B,
.. None IL-1ra, COMP
Isolated ACL injury (no (samples fragments
Lattermann more than a grade 1 were AS CTXL sG A,G NR 41 NR Controls were
[29] MCLcllrilillilg/Hde;ﬁned measured MMP-1, MMP-3, (18-32) not included
y over time) MMP-9, NTX-I,
TSG-6
31 patients had a
combination of cruciate
ligament, collateral
h%ir.ﬂfir:sarlls irsr;elgtlztcius Contralateral 4 patients had
m]e nisctis infuries. 8 uninjured Aggrecan undergone
Dahlberg cartilage lfle sions, knee or ASC fragments, 28 54 NR ligament
3( . . ealt 7 -3, reconstruction
[30] o thou% . healthy . COMP, MMP-3 1840 i
W gan uninjured TIMP-1 more than 3
injuries; remaining had
e controls years before
fibrillations + occa-
sional clefts in the joint
cartilage surface in one
knee compartment
Wide time range
for injury group
(2-134 weeks)
and with no
Age- sub-stratification
Hiouchi matched IL-1B3, TNF-«, % 20 males of the iniured
& Complete ACL rupture healthy A,S,C 1L-6, MMP-3, 32 12 )
[31] (17-42) groups for most
uninjured TIMP-1 females
of the markers
controls measured:
Performed
mostly

correlations
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Table 2. Cont.
Phase Age
Stud Type of Injuries Comparison after Markers Mean Cohort Sex Confounding
y yp ) Group . Measured Median Size Factor
Injury
(Range)
Struglics Healthy TI\I]IIi:% 1%1;16\,1-11]/;8, NR rr3a51?es Wide time range
[37] Acute ruptured ACL umlr:iuriad A,S,C ARGS, CTX-I, 21-31) 121 31 foig_ag,ehnekv;mt
controls NTX-I females weeks
Confusing inclu-
sion/exclusion
criteria; While
the authors
report that
fracture patients
Sarafan Healthy NR 9 males endured pain for
Intra-articular fractures uninjured C IL-17, CRP 20 11 at least 3 months
[33] (28-42)
controls females and samples
were taken at the
time of knee joint
surgery, it was
not clear when
the samples were
collected
ACL rupture isolated
Lohmander or combined with Healthy CT)f(;;I’ Qgﬁi‘:can 37 247
[34] another ligament or uninjured A,S,C MMPfgl MM1/°—3 (14-70) males 82
: meniscus tear or an controls TII\;[P-l ! females
isolated meniscus tear
159 patients had ACL Aggrecan and 21
Lohmander rupture +/— injury to carthy 33 males
[35] meniscus; 129 medial “mﬂ‘r‘rfd A/8,C ﬁ?\%ﬁnﬁﬁﬁg (14-70) 67
or lateral meniscus tear controls g ! females
TIMP-1, BSP
Patients were recently
injured (0-12 weeks
after injury; 98% had
hemarthrosis) or had
an old injury (1-37
years after injury): 39 Only 8% of the
had ACL, 4 PCL, 69 old injury group
ACL injury + meniscal were diagnosed
tear, 37 ACL with PTOA;
injury + meniscal Sc]ilg’ccggibcp’ Recentl Sub-stratification
tear + other ligament 4 y ccenty 164 of the group was
injuries, 47 ACL IL-1p, IL-6, IL-8, myury males only divided into
| tyures, =7 Healthy TNF-, ARGS 26 Y
Struglics fmjury + Other. ligament uninjured A5, C, neoepitope of (13-64) 219 55 two groups: 1-3
injuries, 58 isolated females  years (median of
[36] : controls, OA, PTOA aggrecan, Old 75
meniscal tear, 7 . . 50 males 2.0 years) and
. RA or PPA Osteocalcin, injury
meniscal 25 3.01-36.9 years
SPARC, COMP, 32 .
tear + non-ACL CoC (18-65) females (median of 5.1
ligament injuries, 13 o years) with the
patellar dislocation Osteopontin

+/ — soft tissue injuries,
7 other
injuries + medial or
lateral collateral
ligament tears;
2 + give-way), 10 no
signs of soft tissue
injury

latter group
having a wide
range of time

after injury
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Table 2. Cont.
Phase Age
Stud Type of Injuries Comparison after Markers Mean Cohort Sex Confounding
y yp ) Group . Measured Median Size Factor
Injury (Range)
. Healthy 90 males
Struglics ACL injury uninjured A, S,C CcoMP 26 121 31
[37] (21-31)
controls females
Acute knee Chronic knee
injury 56 males  injury group had
Health Aggrecan, ARGS 27 13 a wide range of
Larsson ACL rupture +/— mm‘ure}’d AS,C, gga o (16-59) 19 females time from 3
[38] meniscus tear ) PTOA 85 Chronic knee 95 males  months-36 years
controls fragments, sGAG .
injury 28 (mean of 1 year)
40 females after injury and
(16-70) 97% had PTOA
All patients suffered a 77% of patients
knee injury < 1 year were in the
following a meniscus early-stage
Panina injury and were H.e a}thy IL-1B, IL-6, IL._ 18, NR 60 males PTOA group;
. . uninjured PTOA TNF-«, Leptin, 134 74
[39] diagnosed with early- (26-65) Control data was
controls NO females

(Kellgren—-Lawrence
grade 1-2) or late-stage
(grade 3—4) PTOA

only included for
plasma samples;
not for SF

Samples were measured in the synovial fluid, serum/plasma and/or urine within
24 h and up to many years following knee trauma and ranged from the acute, suba-
cute, and chronic phases of inflammation after knee trauma to clinical PTOA of the knee
joint. Most studies were cross-sectional studies in which only one sample was taken
from each patient. The type of reported knee trauma was mostly caused by anterior
cruciate ligament (ACL) and medial collateral ligament injuries [23-32,34-38] or intra-
articular fracture [21-23,28,33,36]. Fewer injuries were due to patellar dislocation, rota-
tional knee trauma, knee contusion, medial meniscus injury, or posterior cruciate ligament
injury [23,27,28,36,39]. Some studies included controls and others did not (Table 2). A
few studies also investigated the contralateral uninjured knee joints or included OA, post-
meniscectomy, hydrarthrosis, or chronic arthritis samples for comparisons. Most of the
studies consisted of a larger percentage of males (range 59-100%) [21-28,31,32,34-38] rather
than female subjects, with only a few studies having a majority of females in their cohort
that reached up to 55% [33,39]. The age of patients having a knee injury varied from 13 to
70 years old [21-26,28-39] and had a mean age of 29 years [21-26,28,30,31,34-38].

Although differences in the timescale and the choice of markers may make compar-
isons across clinical studies difficult, we simplified the resulting data by (a) including such
information in the text and (b) by dividing the clinical studies into different sections to
create a timeline of events that occur after knee trauma (Figure 1). We first present studies
representative of localized knee joint inflammation, followed by studies that measured pro-
teolytic enzymes and tissue injury markers. We then present studies that demonstrate the
systemic effects of injury, and finally discuss the inflammatory factors that were measured
in clinically diagnosed cases of PTOA due to knee joint trauma.
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CHRONIC PHASE

(1.5 months to years after injury)
SYNOVIAL FLUID

pro-inflammatory cytokines
IL-6 (1.5 months - 1 year), TNF-a (1.5 months - 5 years),
IL-17 (3+ months)

proteolytic enzymes:

MMP-3 (1.5 - 3.4 years; also in uninjuredknee 3.4 years),
TIMP-1 (1.5 months —3.4 years),
procathepsin-B (1.5 months - 1 year)

tissue inju
TSG-6 (1.5- 3 months), SGAG (1.5 months -1 year),
COMP fragments (1.5 months - 5 years; also in uninjured
knee 3.4years), ARGS aggrecan fragments

(1.5 months - 3.4 years; alsoin uninjured knee 3.4 years), y
Lubricin (decreased 1.5 —4 months) PTOA
PLASMA / SF
monocytes + macrophages + neutrophils

Neutrophil elastase (1.5 months -1 year) Early Stage Late Stage
IL-18 (P) Leptin (P)

complement components IL-6 (P) IL-6 (P)

C3bBbP, C4d, sTCC (1.5 months—2.7 years) NO (P) NO (P)

C4d (1-10years) Uric acid (P) Uric acid (P)
ARGS frag ARGS frag
SERUM (SF) (SF)

MMP-3 (3 months), IL-17 (3+ months)
CRP (3 + months)

Knee
Joint Trauma

ACUTE / SUBACUTE PHASE
(0 - 1.5 months) }

SYNOVIAL FLUID .
Healthy

pro-inflammatory cytokines 2>
IL-1B (1 day - 1.5 months), IL-1ra (1 day-9.5 days),
IL-8 (1 day - 2 weeks), IL-6 (1 day — 1.5 months),
TNF-a (1 day - 1.5 months)

anti-inflammatory cytokines
IL-10 (1 - 15 days), IFNy (day 9)

complement components
C3bBbP, C4d, sTCC (1 day- 1.5 months)

I lytic enzym:

MMP-9 (1 day), MMP-1 (1 - 13 days), MMP-10, 12 (1 - 10 days),
MMP-3 (1 day - 1.5 months; also in uninjured knee day 10),
procathepsin-B (1 - 1.5 months)

Activin A, TIMP-1 (10 days - 1.5 months)

i inj!
TSG-6 (2 wks - 1.5 months),

SGAG (5 days - 1.5 months), COMP fragments (5 days - 1.5 months),
ARGS fragments (10 days - 1.5 months; also in uninjured knee day 10),
CTX-Il (5 days to 1.5 months),

CTX-l, NTX-l, C1,2C (5 days -1 month),
decreased lubricin (2 weeks - 1.5 months)

mon + macroph + neutrophil
MCP-1 (1 day - 2 wks),activin A (17 days - 1 month),
neutrophil elastase (1 -1.5months)

SERUM / PLASMA
MCP-1 (2 weeks), TSG-6 (2 weeks - 1.5 months),
Activin A (1day- 1.5 months)
MMP-3 (2 - 4 weeks), TIMP-1 (2 weeks - 1.5 months),
ARGS aggrecan fragments (9 days)

URINE
CTX-ll (day9), NTx (day9)

Figure 1. PTOA development after knee joint injury. Following knee joint injury, an immediate acute phase of inflammation
occurs which continues for up to 2 weeks and is typically followed by a subacute phase, lasting up to 1.5 months, exhibited
by a primary high wave of inflammatory cytokines that decrease over time but remain higher than uninjured controls.
Likewise, other mediators, including complement components, neutrophil and macrophage-associated factors, MMPs,
degradative proteolytic enzymes and ECM fragments increase in the synovial fluid, while lubricin decreases, all indicative



Int. J. Mol. Sci. 2021, 22, 1996

9 of 46

of early, and possibly irreversible, damage to the cartilage tissue. When inflammation is not resolved, cartilage degradation

continues to be associated with a low-grade chronic phase of inflammation characterized by decreased, but higher than

normal, levels of pro-inflammatory cytokines IL-6, TNF-« and IL-17. Although these inflammatory mediators are lower

than what may be observed in OA or RA patients, this sustained low-grade inflammation is still clearly present, significantly

higher than healthy controls, and correlates with degenerative effects, all of which promote joint pathology. A long-term

inflammatory status persists, leading to a systemic effect (presence of biomarkers in the blood and/or uninjured knee)

accompanied with alterations in joint function leading to PTOA. This figure was composed based on all of the clinical data

discussed in this review that measured the concentrations of these markers at the (mean) time or range of times (using the

data of multiple studies) post-injury showing, with the exception of lubricin which was decreased, significantly high levels

of these markers at the indicated time points.

3.1. Continuous Localized Inflammation from Months to Years after Knee Trauma

As pro-inflammatory and anti-inflammatory cytokines are the major immunoregula-
tory molecules that control the immune response and could dictate the direction towards
or against PTOA progression, we first focused on studies that measured these cytokines
after knee trauma. Haller et al. showed that, compared to uninjured knees, the SF col-
lected 24 h after acute tibial plateau fracture contained significantly higher levels of IL-1f3,
IL-6 and IL-8, as well as monocyte chemoattractant protein-1 (MCP-1), also known as
CCL2, which regulates the migration and infiltration of monocytes and macrophages [21].
While anti-inflammatory cytokines IL-4 and IL-13 were not detectable at any time point,
anti-inflammatory and immunoregulators IL-10 and IL-1 receptor antagonist (IL-1ra), the
natural inhibitor or regulator of IL-1(3, were locally and significantly increased 24 h after
knee injury. Approximately half of those patients that were reassessed at a mean of 9.5 days
after injury, which showed that the concentrations of IL-6, IL-8, MCP-1, IL-10 and IL-1ra
concentrations continued to remain elevated in the injured vs. uninjured knees. Interest-
ingly, they did not detect any differences in SF cytokine concentrations between low vs.
high energy injuries 24 h after fracture, suggesting a similar immediate immune response
in tibial plateau fractures despite the level of impact energy. Similar to the aforementioned
study, Watt et al. also showed that MCP-1 was significantly elevated in both the SF and
serum in samples taken within 8 weeks (median 17 days) of knee injury vs. controls [28]
suggesting acute phase infiltration of monocytes and macrophages into the knee joint. This
group also showed that, IL-6, Activin A (a member of the TGF-f superfamily that is closely
related to TGF-31 and controlled by fibroblast growth factor 2 and NF-«B [40]), and TSG-6
(a product of TNF-o gene 6) that binds to complement proteins, hyaluronic acid and CXC
and CC chemokines [41]) were all significantly elevated in the SF vs. controls and, while the
concentrations decreased over time, the majority of patients still had IL-6, Activin A, and
TSG-6 present 1.5 months after injury with levels higher than control values [28]. Activin
A and TSG-6 have both been strongly associated with rapid knee OA progression [42,43].
In this study, IL-13 was below the limit of detection for all but one individual. Higher
levels of SF IL-6 associated with worse clinical symptoms and loss of function, based on the
Knee Injury and Osteoarthritis Outcome Score 4 (KOOSy). Even though the levels of IL-6
increased with the severity of injury, the inflammatory response in all types of knee injuries
was similar, suggesting that the inflammatory response is comparable across different types
of injuries. Higuchi et al. similarly showed that IL-6 was significantly elevated compared
to controls at a mean of 6 months (range of 2-140 weeks) after injury [31]. Moreover, SF
matrix metalloproteinase-3 (MMP-3) concentration significantly correlated with the IL-6
concentration among the various cytokines, but did not correlate with IL-13 or TNF-«.

Similar to the aforementioned study [21], Swérd et al. showed that injured patients
with hemarthrosis, which is bleeding into the joint cavity, exhibited an increase in IL-1f3,
TNF-o, IL-6 and IL-8 in the SF 24 h after injury, followed by a time-dependent decrease
thereafter, with IL-8 remaining significantly higher than age- and gender-matched healthy
controls up to 15 days and IL-13, TNF-« and IL-6 up to 23 days after injury [23]. Catterall
et al. demonstrated the presence of IL-1§3 at both time points measured (i.e., 15 to 47 days
post-injury) [27]. Bigoni et al. screened SF collected after various time points, including
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within 48 h after injury, between 3 and 15 days, 15 days and 3 months, or more than
3 months following knee injury [24]. Within 48 h of injury, the SF concentrations of
IL-1p3, IL-6, and IL-8 were significantly increased vs. healthy controls. IL-13 steadily
decreased after 48 h and between days 3 to 15 days post-injury, and from that point on it
was comparable to control values. IL-8 also gradually decreased and was comparable to
controls in the 15 day to 3 months post-injury group. IL-6 remained high up to 15 days
post injury and, although it decreased, it continued to be present in patients with chronic
symptoms (defined as 3 months or more post injury) and was significantly higher than
controls. TNF-o progressively and significantly increased with time after injury and was
still elevated up to 3 or more months post injury. While IL-10 was not compared to
controls in this study, at all time points it was comparable to healthy controls reported in
another study [25]. Interestingly, in the 0-48 h post-injury group, IL-1ra was significantly
lower than the control group and did not increase at any of the time points. While the
study of Lattermann et al. did not have a control group, they also showed that IL-1ra
significantly decreased from day 5 (range 2-8 days) to day 13 (range 9-20 days) post injury
and continued to decrease 28 days (range 15-45 days) post injury [29].

Irie et al. measured the concentration of SF cytokines at several different time points
(within 24 h, 2-3 days, 4-6 days, 7-9 days, 10-14 days, 15-21 days) after injury, and
determined whether cytokine concentrations were comparable or higher than patients
already with chronic arthritis in the knee [25]. In line with the aforementioned studies, this
study demonstrated a comparable immediate inflammatory response in which the levels of
cytokines TNF-o, IL-1f3, IL-6, IL-8, IL-1ra, and IL-10 were significantly elevated within 24 h
and then steadily decreased thereafter. Notably, despite a decrease in cytokines over time,
concentrations were higher than in chronic arthritis patients with IL-1ra elevated up to 6
days and IL-10 up to 9 days post-trauma. With the exception of the 10-14-day injury group,
IL-1B was significantly higher than in chronic arthritis patients at all of the other days
and remained significantly higher up to 21 days post-injury. TNF-a was also significantly
higher than in chronic arthritis patients and at all time points up to 3 weeks post-injury.
While IL-6 concentration values were exceedingly high compared to the other cytokines
measured in this study, the concentrations of IL-6 only exceeded those of chronic arthritis
patients during the first 3 days following knee trauma.

Other studies have also shown that local inflammation persists and develops into
chronic inflammation [26,30-36]. Thus, IL-17 concentrations were significantly higher in
the SF for 3 or more months after injury compared to healthy controls [26]. Elsaid et al.
showed that, when SF aspirations were taken at a mean of 3 months (range of 32-364 days)
after injury, patients had elevated levels of IL-1(3, IL-6 and TNF-«, compared to uninjured
knees [26]. The concentrations of individual cytokines were also assessed in the injured
knee and plotted against the time of collection after injury, which showed that IL-13 was
present 1 to 3 months post-injury in 50% of the patients andTNF-« in 60% of the patients 1
to 6 months after injury. Interestingly, IL-6 and the catabolic enzymes procathepsin-B and
neutrophil elastase were detectable from 1 month up to 1 year post injury in the injured
knees in 95%, 100% and 80% of patients, respectively.There were no detectable levels of
these markers in SF samples taken from the contralateral joints. Struglics et al. showed that
the concentrations of cytokines IL-6, IL-8, IL-10, IFN-y, TNF-« and and Alanine-Arginine—
Glycine-Serine (ARGS) aggrecan fragments fragment in SF collected from the injured
patients at the initial 0-6 weeks (mean of 9 days) time point were significantly higher than
those of healthy subjects but their levels steadily decreased over time, with SF TNF-«
remaining elevated for up to 5 years after injury [32]. Moreover, over the 5-year period,
ARGS aggrecan fragments concentrations in SF correlated with all of the SF cytokines
measured. Using a mixed variance components model with values adjusted for differences
in age, sex, and body mass index (BMI), this group estimated that TNF-o has a half-life
of 3.6 years in the SF, while IL-6 has a half-life of 0.9 years in the SF and, astonishingly, a
half-life of 45 years in the serum.
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Hence, all of the studies discussed here point to continued subacute and chronic
inflammation in the knee joint after knee trauma with multiple studies confirming that
TNF-o and IL-6 remain significantly elevated months to years after knee trauma and at
comparable concentrations to chronic arthritis patients.

3.2. Activation of the Complement System Correlates with Inflammation Months to Years after
Knee Trauma

Since it is believed that the crucial and driving event in the development of PTOA is a
sustained early inflammatory reaction after trauma or acute injury [14-16,18] (this review),
it is also important to explore a possible contribution of the complement system to knee
PTOA. The 3 distinct but overlapping complement pathways, referred to as the classical, al-
ternative and lectin complement pathways, are activated through various mechanisms that
result in a proteolytic cascade of events that generates potent pro-inflammatory molecules
and leukocyte chemoattractants, which (i) recruits inflammatory cells such as neutrophils,
monocytes, macrophages and T lymphocytes, and (ii) leads to the production and assembly
of the terminal membrane attack complex (MAC), sometimes referred to as the terminal
complement complex (TCC), a cytolytic protein complex that activates destroys cells. While
this complex network of activating, and its regulating proteins, is needed for clearance of
pathogens and dead or dying cells, and thereby helps support repair of injured tissues, it
can also lead to detrimental effects on the host by exerting pathological mechanisms that
promote tissue damage and chronic inflammation [36,44—46].

One study has highlighted complement’s role in chronic inflammation and the possible
progression of PTOA in the knee [36]. This group measured the SF levels of C4d, C3bBbP,
and soluble TCC (sTCC) from those with a recent knee injury (defined as 1-83 days after
injury) or an old injury (defined as 1-37 years after injury) with 8% of those patients
diagnosed with PTOA, as well as from healthy controls from another cohort and OA,
RA and pyrophosphate arthritis (PPA) patients. Patients with a recent knee injury or
OA displayed similar increased levels of C4d, C3bBbP and sTCC in the SF which were
significantly higher than those of healthy controls. Moreover, 98% of patients with recent
knee injuries had hemarthrosis, suggesting that complement components present in the
SF after initial knee trauma may stem from intra-articular bleeding. The concentrations of
pro-inflammatory cytokines TNF-«, IL-6 and IL-1( positively correlated with the levels of
complement factors in patients with a recent injury, with the strongest correlation between
SF TNF-a and C4d levels. While complement components decreased over time, C4d
remained elevated in SF that was aspirated up to 10 years after knee injury, demonstrating
the continuous chronic activation of the complement system following trauma to the knee.

In addition to a potential role in PTOA development, several groups have also shown
that the complement cascade is involved in the pathogenesis of both early and late-stage
OA in the knee [36,47-52]. C3a and sTCC were significantly higher in the SF from patients
with early-stage knee OA (having symptoms less than 1 year) compared to healthy individ-
uals [49,51] and complement transcripts and/or activation components C3/C3a, C4a, C4d,
C3bBbP, factor B, and sTCC have been detected at high levels in the SF, synovial membrane
and in the cartilage of patients with OA in the knee joint [36,47-49,53]. Recent evidence
suggests that all three complement pathways are capable of being activated within the knee
joint in both early and late knee OA and that the synovial membrane is the main source
of complement activation rather than the articular cartilage tissue [50]. Patients with OA
also exhibited high concentrations of lectin complement pathway components, including
mannose bindin lectin (MBL), H-ficolin, M-ficolin, mannan-binding lectin serine protease-
2 (MASP-2), and MASP-3, which were higher in the plasma than the SF [54], and while
the levels were significantly lower than patients with RA, this data suggests a possible
role of the lectin pathway in promoting chronic disease in knee OA. Moreover, inhibitors
of the complement system, including factor H, C4-binding protein, C1 inhibitor and clus-
terin, were significantly decreased in both early- and end-stage OA vs. healthy synovial
membranes [51], suggesting a lack of complement system regulation. Thus, complement
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could be a major contributor to not only injury-related acute inflammation but also chronic
inflammation and possibly PTOA pathogenesis.

3.3. Release of MMPs, ECM Components and Damage to the Cartilage Collagen Network Months
to Years after Knee Trauma

In addition to increased levels of inflammatory cytokines after knee joint injury, the
expression of MMPs, the release of ECM components, and the degradation of type II
collagen in articular cartilage tissue is increased compared to the controls. In the same
set of patients from [21], Haller et al. showed that MMP-1, 3, 9, 10, 12 were initially
elevated in the acute samples (within 24 h after injury) with MMP-1, 3, 10, 12 remaining
elevated at the second aspiration a mean of 9.5 days (range of 3-21 days) after injury [22].
Lattermann et al. also showed that MMP-1 significantly increased from day 1 to day 13
after injury [29]. Watt et al. demonstrated that, compared to controls, MMP-3 and TIMP-1
were significantly elevated in the SF samples that were obtained within 8 weeks (median
17 days) of knee injury and, while the concentrations decreased over time, the majority
of patients still had higher than control concentrations of MMP-3 and TIMP-1 1.5 months
after injury [28]. Higher levels of SF MMP-3 and TIMP-1 also associated with the presence
of hemarthrosis (moderate or severely blood-stained SF) and the severity of injury. In line
with the aforementioned studies, Higuchi et al. similarly showed that MMP-3 and TIMP-1
remained highly elevated in the SF at a mean of 6 months (range of 2-140 weeks) after
injury compared to healthy controls [31].

Lubricin, a glycoprotein secreted by synoviocytes as well as superficial zone chondro-
cytes found in the SF that covers the superficial layer of articular cartilage and provides
boundary lubrication in articular joints, is also affected by knee injury. Catterall et al.
showed that SF lubricin levels were significantly decreased in injured knees when compar-
ing levels at baseline (mean 15.2 £ 7.2 days) to the follow-up (mean 47.6 £ 12.4 days) [27].
Similarly, Elsaid et al. showed that the levels of lubricin significantly decreased in the
injured knee 2—4 months, compared to the contralateral uninjured knee joint [26]. While
lubricin returned to normal levels within 1 year, there was a significant inverse corre-
lation between high SF TNF-o and low SF lubricin concentrations and between low
SF lubricin and the high release of sulfated glycosaminoglycan (sGAG), which also re-
mained significantly elevated from 1 month to 1 year after injury in injured vs. uninjured
knee joints.

In addition to synovial inflammatory biomarkers and MMPs, major ECM cartilage
degradative products increased rapidly upon injury, and while they decreased in the
subacute to chronic phases, their levels remain significantly higher than healthy controls.
Whereas the following two studies did not include controls, Lattermann et al. showed
that sGAG and the non-collagenous ECM cartilage oligomeric matrix protein (COMP)
fragments were highest in the SF during the first two weeks of injury but started to
decrease at a mean of 28 days post-injury, while C-telopeptide fragments of collagen type II
(CTX-II) increased over time from the acute (day 5 and day 14) to the subacute (day 28)
phase [29]. Catterall et al. similarly showed that the concentrations of sGAG and ARGS
aggrecan fragments decreased from 15.2 + 7.2 days to 47.6 & 12.4 days after injury, while
CTX-II, as well other collagen I and II collagen fragments, including C-terminal crosslinked
telopeptide type I collagen (CTX-I), N-terminal telopeptides of type I collagen (NTX-I) and
C1,2C significantly increased [27]. In line with these studies, Lohmander et al. showed that
CTX-II peaked hours after injury and, while concentrations gradually decreased over time,
CTX-II remained present and significantly higher in the SF vs. healthy uninjured controls
1 week, 2.5 months, 1 year and even up to 2.7 years after injury [34]. Similarly, Struglics
et al. demonstrated that SF COMP fragments were significantly higher than controls at all
time points investigated (i.e., 9.1 days, 3.6 and 7 months, and 1, 2, and 5 years after injury),
which positively correlated with SF IL-6, IL-8, TNF-«, IFNy and IL-10, with SF and serum
ARGS aggrecan fragments and urine CTX-II and NTX-I levels [37].

In another study, Struglics et al. showed that the ARGS neoepitope was increased
in the SF 4-7 months after injury compared to the controls [32], whereas Lohmander



Int. J. Mol. Sci. 2021, 22, 1996

13 of 46

et al. demonstrated that the concentration of the ARGS aggrecan fragments in the SF
peaked hours after injury, significantly increased from 2 weeks to 10 weeks after injury,
and then decreased gradually during the first year after injury, but then leveled off with
concentrations remaining significantly elevated vs. healthy controls 1 week, 2.5 months,
1 year and up to 2.7 years after injury [35]. Dahlberg et al. demonstrated that the SF
concentrations of ARGS and COMP fragments as well as MMP-3 and TIMP-1 were greater
than healthy controls at 10 days post-injury and, while the concentrations of markers in
the injured knee decreased with increased time after injury, the concentrations of COMP
fragments, MMP-3 and TIMP-1 were still higher than healthy controls 3.4 years after
injury [30].

These studies indicate that the injured knee joint continues to be exposed to the
degradative action of catabolic enzymes during the early acute, to subacute and chronic
phases following injury, and that this exposure correlates with measurable inflammation.
While the above studies demonstrate a temporal decrease in tissue injury markers, they
point to a sustained post-traumatic inflammation, which is associated with a long-term,
continuing degradation of the cartilage matrix after knee joint injury, suggesting a lasting
role in progression to PTOA.

3.4. Systemic Measurable Effects after Knee Trauma

While the inflammatory response following joint injury may in part be localized to the
knee joint, studies investigating inflammatory components in the blood (serum/plasma),
contralateral uninjured knee and urine have also demonstrated the presence of systemic
subacute and chronic inflammation following knee trauma. Sarafan et al. showed that IL-17
was present in the serum (and SF as already discussed) three or more months after knee
trauma. OA patients had significantly higher serum IL-17 concentrations than patients with
intra-articular knee joint fractures, with the healthy control group exhibiting the lowest
IL-17 values [33]. Other studies have similarly shown both circulating and SF IL-17 in
patients diagnosed with early- or late-stage knee OA compared to healthy controls and
that synovia IL-17 levels correlate with knee OA severity [35,55-60].

Multiple studies showed that CRP concentrations in the serum significantly exceeded
the levels in SF, beginning 2 to 3 months following knee injury [27,28,33]. CRP levels were
equally present in the serum and SF of patients having either OA or an intra-articular
fracture with associated pain for at least three months and, in both cases, CRP levels were
significantly higher than in the controls [33]. Catterall et al. showed that, while CRP levels
decreased over time in both the serum and SF from 15.2 & 7.2 days to 47.6 + 12.4 days
after injury, there was a significant correlation between SF and serum CRP [27]. Watt et al.
demonstrated a similar correlation between serum and SF CRP up to 3 months compared
to the baseline samples obtained within 2 months after injury [28].

Struglics et al. showed that the urine concentrations of the collagen fragments
CTX-II and NTX-I were initially increased at the baseline point (mean 9 days after in-
jury; range 0-6 weeks) in the patients having knee injury, but levels decreased with time
after injury [32]. Catterall et al. found significant correlations between the serum and SF
concentrations of CTX-I and NTX-I and MMP-3 1.5 months after injury [27]. Watt et al.
showed that at the baseline visit (taken within 8 weeks of knee injury; median 17 days),
like the concentrations found in the SE, serum/plasma concentrations of MMP-3, TIMP-1,
TSG-6, MCP-1, and Activin A were also significantly elevated compared to controls [28]. In
fact, TSG-6 levels remained constant in the serum, while MMP-3 continued to increase in
the serum up to 3 months after baseline taken within 2 months of injury, suggesting that
MMP-3 was still systemically present up to 5 months post-injury. Dahlberg et al.’s data
demonstrated that the contralateral uninjured also had significantly higher concentrations
of MMP-3 as well as ARGS and COMP fragments compared to healthy controls at 10 days
and 3.4 years after injury [30]. Moreover, the SF concentrations of MMP-3 and COMP
fragments were similar in the injured and the contralateral uninjured knee 3 months and
3.4 years after knee injury, further emphasizing systemic long-term effects of knee injury.
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Struglics et al. also showed a correlation between the concentrations of the ARGS neoepi-
tope in the SF and serum [32]. These studies highlight the systemic long-term effects of
knee trauma.

Pengas et al. showed that, even up to forty years after open total meniscectomy (an
outdated surgical method of repairing meniscal tears), SF MMP-3 levels remained high and,
while sGAG levels were low, both correlated with the radiographic OA score. Moreover,
serum MMP-3 correlated with MMP-3 SF levels in the operated knee. Interestingly, they
showed that the quality of life could be predicted 40 years after surgery using the pre- and
post-surgery concentrations of MMP-3 and sGAG and patient age [61]. Together, these
studies [22,27-31,61] indicate the importance of MMP-3 as a reflective systemic biomarker
of degradative activity after knee trauma that is measurable in both injured and uninjured
knee joints and even in serum.

Importantly, these data suggest that, whereas the inflammation caused by injury
originated from a single knee injury, the inflammatory effects lead to a systematic response,
suggesting that certain serum markers could potentially be assessed along with other
clinical assessments of joint inflammation and injury in the subacute to chronic phases to
post-traumatically monitor systemic knee injury and possible progression to PTOA.

3.5. Local and Circulating Inflammatory Cytokines and Other Biochemical Biomarkers Once
PTOA Is Diagnosed

Two studies showed that progression to clinical PTOA can occur as early as 1 year or
less following ACL and/or meniscus injury [38,39]. Larsson et al. demonstrated that while
SF sGAG, ARGS aggrecan fragments and aggrecan levels were significantly elevated at a
mean of 10 days post-injury, only the ARGS aggrecan fragments remained significantly
higher in the SF of patients diagnosed with early to late PTOA (mean 1 of year post-injury;
range of 3 months to 36 years post-injury) vs. healthy controls [38]. Panina et al. showed
that, compared to healthy controls, progression to clinical PTOA can occur as early as 1 year
or less following meniscus injury [39]. Patients diagnosed with either early- (Kellgren—
Lawrence grade 1-2) or late-stage (grade 3—4) PTOA had significantly higher levels of IL-6,
NO and uric acid in the plasma, while plasma IL-13 was significantly increased only in the
early-stage PTOA group. Leptin, a hormone associated with obesity that is known to play
a catabolic role in articular cartilage, especially in women [62], was significantly increased
in the late-stage PTOA group compared to the control group. Cytokines in the SF were
not vs. controls and no significant differences between early-stage vs. late-stage PTOA
were detected. However, correlation analyses showed that the levels of NO, IL-6, and IL-18
in the plasma significantly correlated with those in SF. SF and plasma leptin levels and
SF IL-18 significantly correlated with PTOA severity and PTOA progression. Moreover,
there was a 1000-fold increase in IL-6 in the SF compared to the plasma and the plasma
IL-6 concentrations were significantly higher than healthy controls, interestingly, there was
not a significant increase in SF or plasma TNF-« levels compared to controls or between
patients with early and late PTOA. Other studies have shown similar results in patients
diagnosed with knee OA. Thus, TNF-« was not increased in the SF [55,63] or the serum
of patients diagnosed with knee OA [64]. However, the data suggest that both IL-6 and
TNE-« chronically persist years after knee trauma (Figure 1).

Similar to the results from Ersoy et al. [39], another study showed that the serum
nitrate and nitrite levels, measured by the same assay, in 36 OA patients were significantly
higher than in 30 healthy controls [65]. Other OA studies have corroborated increased uric
acid levels in subjects with knee OA. Serum uric acid levels predicted future joint space
narrowing in knee OA patients [66] and, while the mean serum uric acid concentrations
were significantly higher than their paired SF uric acid concentrations, SF uric acid strongly
correlated with SF inflammatory cytokines IL-1p and IL-18 [67].

3.6. The Role of Inflammation in the Pathogenesis of Knee PTOA—Summary of Clinical Proof

Compiling the available clinical data, we developed a chronological representation
of specific inflammatory and other biochemical biomarkers that significantly increase fol-
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lowing knee joint trauma (Figure 1). It is clear from the clinical studies discussed above
that knee joint injuries lead to a normal acute inflammatory response following the initial
trauma and, importantly, this is followed by a continuous phase of inflammation last-
ing from months to years following knee trauma, indicating the importance of the early
regulation of the immune response for potential clinical benefit. Load-bearing macro-
molecules of the articular cartilage ECM (notably, ARGS aggrecan and COMP fragments
and sGAG), followed by collagen cleavage products, become clinically measurable in the
SF early after knee joint injury and continue to be present, signifying early and possibly
even irreversible damage to articular cartilage. Not surprisingly, there is a high patient
variability between individual, but local joint inflammation often persists in what we
defined as the chronic phase of inflammation characterized by higher-than-normal levels
of inflammatory cytokines IL-6, TNF-« and IL-17 in the SE. Evidence suggests a systemic
response from 1 weeks to 5 years after knee injury, as specific markers are detectable in the
contralateral uninjured knee, serum and urine. Once PTOA is clinically diagnosed, there
is a systemic inflammatory response with patients exhibiting higher than normal levels
of IL-6, IL-1p3, leptin, NO, uric acid, ARGS aggercan fragments and possibly complement
pathway activation products in the SF and/or plasma.

4. Results of the In Vivo, Ex Vivo and In Vitro Models That Simulate Inflammation
and/or Injury of the Knee Joint

4.1. In Vivo Knee Joint Inflammatory, Injury and PTOA Animal Models

In vivo models are useful for mimicking clinically relevant injury conditions and help
us to understand the factors that contribute to knee PTOA disease onset and progression.
The majority of knee injuries included in the clinical part of this review were ACL/MCL
injuries or articular fractures (Table 2). Several clinical studies also reported rapidly
developing hemarthrosis in the acutely injured knee [23,36,68]. We will briefly discuss
selected models that mimic these clinical scenarios and show that they induce, to various
degrees, subsequent structural damage, inflammation, and/or biomechanical changes that
eventually lead to the degeneration of articular cartilage and knee PTOA.

Several studies have shown that intra-articular injection of the cytokines TNF-c, IL-1f3,
or IL-17 alone (i.e., without applying injury) [69-71] are capable of producing some of the
injurious effects observed in the different acute, subacute and chronic phases after clinical
trauma. Sixteen hours after the intra-articular injection of 10 ug of TNF-« into rat knee
joints, a maximal aggrecan loss was observed that was followed by gradual recovery of
the proteoglycans in the articular cartilage after 72 h [71]. Likewise, the levels of sGAG in
the SF significantly increased vs. control between 8 and 16 hours after TNF-« treatment,
but returned to normal levels within 2448 h suggesting that TNF-o« alone may not induce
a profound effect on ECM degradation. A single intra-articular injection of IL-17 caused
NO release into the SF in rats, similar to IL-1(3, IL-17 also dose-dependently inhibited
proteoglycan synthesis, but to a lesser extent than IL-1f [69,70]. IL-17 also upregulated the
expression of IL-13. Moreover, three intra-articular injections of IL-17 (1, 10 and 50 ng/mL)
for up to 6 days in New Zealand rabbits led to an early significant increase, at 72 h after the
last injection, in the expression of MMP-1, -3, and -13, as well as ADAMTS-4 and -5 and
COMP, along with the chondrogenic markers COL10A1 and COL1A2; and, concomitantly,
a significant decrease in COL2A1 expression [70]. With the exception of MMP-13, which
decreased at 12 weeks post-injury, the expression of these markers increased over time
until 12 weeks after injection. Furthermore, at the later time points (3, 6 and 12 weeks) the
intra-articular injection of the higher doses of IL-17 progressively caused cartilage defects
and an increase in the synovial thickness and synovium cell number. Interestingly, the
same study showed that the intra-articular injection of IL-17 was capable of inducing PTOA
similar to rabbits having their anterior and posterior cruciate ligaments transected and
the medial meniscus excised. Likewise, the levels of sGAG in synovial fluid significantly
increased vs. control between 8 and 16 h but returned to normal levels within 24-48 h.
Interestingly, in antigen-induced experimental arthritis, IL-6 has been shown to function
upstream of IL-17, but has also been shown to be a downstream target of IL-17A, and
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the combination of IL-6 and IL-17A synergistically generated a positive IL-6 expression
feedback loop that resulted in excessive IL-6 signaling through the soluble IL-6 receptor
(IL-6R) signaling pathway [72]. These data collectively suggest that, while trauma is the
initiating factor of inflammation in the clinical setting, pro-inflammatory cytokines alone,
and particularly IL-17, can replicate injurious effects.

Joint bleeding is very common after acute knee injury and occurs in up to 98% of
knee injuries [23,28,36,68,73]. The blood entering the joint generally reaches up to 100%
volume/volume (v/v) and is cleared within a week if the bleeding stops [73]. When
joint bleeding is prevented during surgery, the severity of synovitis and the infiltration of
mononuclear cells significantly decreases [74]. Only one study has mimicked acute joint
bleeds of the knee joint in animals by injecting (20% v/v) of coagulated blood for up to
4 days. This canine blood-induced injury model increased synovial inflammation (OARSI
score) and decreased sGAG content for up to 4 weeks [73]. The exposure of healthy cartilage
tissue to a minimal amount of blood (only 10% v/v blood) for two days was capable of
increasing general MMP activity and long-term articular cartilage damage measured by
decreased proteoglycan synthesis and content [75]. In other studies, exposure of healthy
human cartilage to 50% v/v blood similarly decreased proteoglycan synthesis, increased
sGAG and resulted in temporal release of IL-f3, TNF-c, and IL-6 for up to 10 days [76-78].
Traumatized (i.e., bluntly injured) OA articular cartilage explants exposed to (20-30%
v/v) human serum and also cartilage homogenate caused significantly more deposition of
complement C5b-9 (i.e., TCC), increased the expression of several injury/inflammatory
genes, including MMP-13, IL-8, and CXCL1, and increased chondrocyte cell death vs.
trauma alone [52]. Moreover, the inactivation of complement by heat inactivation of the
serum prevented most of the effects, suggesting that the exposure of cartilage tissue to blood
potentiates injurious effects through complement system activation. In the human arthritic
joint, complement proteins are produced by synoviocytes, chondrocytes, macrophages
and osteoblasts in the subchondral bone and the activation of complement increases in
response to IL-1f3, TNF-« or blunt mechanical injury in the presence of serum [52,79-86].
While the evidence to date is inconclusive on whether this could account for the increased
complement components in the SF in the acute stage of inflammation after knee trauma
(Figure 1), it suggests that such models may be useful for understanding the early acute to
subacute blood-induced injurious mechanistic effects of knee trauma.

Furman et al., in 2007, were the first to report a non-invasive intra-articular tibial
plateau fracture PTOA model [87]. This intra-articular high energy fracture model uses
a blunt impact to the proximal tibia and has been generally performed in C57BL/6 mice.
It is capable of producing a fracture to the articular cartilage and subchondral bone, as
well as the release of blood and bone marrow into the synovium, which is accompanied by
subsequent synovial inflammation and articular cartilage degeneration 2 to 52 weeks after
impact [87-90]. Tibial plateau fracture mouse models using either low or high energies since
then have shown similar outcomes with the loss of articular cartilage and sGAG depletion,
reduced chondrocyte viability, synovitis, and the presence of circulating IL-1«, IL-3, TNF-«,
and IL-6 [89-91] demonstrating that such fracture models mirror all stages of clinical PTOA.
Moreover, it has a very high (87-95%) success rate in creating a fracture [92]. Similar to
articular cartilage injury models that show that mechanical force cause various types of
damage ranging from single cartilage ECM fracture to full intra-articular fractures [93-95],
this type of intra-articular fracture injury model is capable of resulting in both simple and
complex fractures of the tibia and, thus, resembles sports and accident-induced high impact
joint injuries.

It has been shown that injuries of the ACL and menisci result in PTOA <1 year [38,39]
or up to 10 to 20 years after initial injury [3]. Commonly used models for ACL injury
include non-invasive and invasive models. A non-invasive ACL rupture single tibial
compression overload model applies a single load of 8-12 N at both high (500 mm/s) [96]
and low speeds (1 mm/s) in C57BL/6 mice [96,97]. While the two injury models did not
significantly differ from one another with respect to long-term changes in bone structure,
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joint laxity, and articular cartilage degeneration, the models were able to induce moderate
to severe PTOA 8-10 weeks post injury. Low speed injury also caused synovial hyperplasia
(days 3-15), synovial inflammation (days 3-28) as well as sGAG loss (8 weeks) and fibrosis
(24 h-8 weeks). Using an in vivo fluorescence reflectance imaging (FRI) quantification
method, this same group demonstrated that the high speed injury model increased the
activity of cathepsin proteases produced by activated macrophages and neutrophils, as well
as the activity of MMPs and cathepsin K, which is involved in bone resorption and aggrecan
degradation and, interestingly, while the levels peaked 1-7 days post-injury, their activity
remained present up to 8 weeks post-injury [97], further confirming the chronic presence
of activated macrophages and neutrophils after knee trauma. Another study showed that
three different compression forces (3, 6, and 9 N) applied for 60 cycles with 10 s of rest
between each cycle similarly increased the apoptosis of chondrocytes, COL1 expression
(day 14), cartilage matrix degradation, and the disruption of the cartilage collagen fibril
arrangement and decreased the pericellular aggrecan intensity in the injured region, while
the high energy injury caused faster and more substantial post-traumatic synovitis and
fibrotic scores, cell death in the deeper zone cartilage, and loss of proteoglycans compared
to moderate and low energy injuries [98]. All of the compressive (low to high) forces
also mimicked the systemic effects of injury as a similar, albeit lower, concentration of
these markers was present in the uninjured contralateral limb and COMP fragments were
present in the serum. Trabecular bone loss also occurred in the uninjured contralateral limb.
Because this model ruptures the ACL by mechanical forces that are externally applied
to the joint, this may also result in injury to other joint structures (i.e., cartilage, menisci,
and subchondral bone), depending on the amount of force applied. This model is easy to
perform, highly reproducible, and avoids confounding factors, such as infection, that may
be associated with invasive injury models and is representative of the clinical phases of
PTOA. However, it needs to be taken into consideration that the murine model is better for
investigating the acute to subacute phases of injury, as it results in severe posterior bone
erosion on the medial side of the tibial plateau, which is reportedly atypical of ACL injury-
induced PTOA in other animal species or in humans [96]. It also often causes extreme
erosion of both bone and cartilage 10 or more weeks after injury.

Other animal studies included invasive injury models by applying ACL surgical
transection (ACLT) with or without additional partial medial meniscectomy (MMX) to
investigate the impact on articular cartilage and the expression profile of various inflamma-
tory and chondrogenic markers. Bajpayee et al. performed unilateral ACLT on 3-month-old
mature female New Zealand rabbits and found that, compared to the contralateral unin-
jured knee, the levels of IL-13, MMP-1, 3 and 13 significantly increased in cartilage explants
3 weeks after surgery, while ACAN expression levels significantly decreased and stayed
significantly low at 9 weeks after surgery. While the expressed levels of MMP-3 and -13
remained elevated in the cartilage samples at week 9 after injury, IL-1f3 levels significantly
decreased [99]. This is in line with the clinical data (Figure 1) showing an initial increase of
IL-1pB in the acute and subacute phase (up to 1.5 months) after injury which disappears
in the chronic phase. In another study, Pickarski et al. compared the effects proceeding
two different PTOA models using ACLT and ACLT + MMX in 10-week-old male rats. They
demonstrated that, in both models, the expression of MMP-13, as well as aggrecanase-1,
significantly increased in the articular cartilage samples at the first time point 1 week
after surgery, where MMP-13 continued to increase, reaching the peak at 10 weeks, while
aggrecanase-1 levels remained steady but high vs. the contralateral uninjured knee [100].
The gene expression of SOX9 and COL2A, which are chondrogenic phenotype markers
of the chondrocytes, increased in the first week but then returned to normal levels by the
tenth week after injury and, unexpectedly, the levels of expressed SOX9 and COL2A were
lower in the ACLT + MMX model, compared to the ACLT model. However, both ACLT
and ACLT + MMX models lead to degradation of the articular cartilage. It is notable that
this invasive ACLT model may lead to unintended outcomes due to the disruption of
the natural joint environment, e.g., incomplete retinaculum repair with patella maltrack-



Int. J. Mol. Sci. 2021, 22, 1996

18 of 46

ing, which may increase the rate of subsequent joint degeneration [101]. This procedure
may also irritate the fat pad that could additionally increase intra-articular inflammation.
Therefore, it has been suggested that this model is not entirely representative of human
ACL injury.

When considering the use of animal models, it is important to note genetic and/or
anatomical differences in animals compared to humans [102-106]. The injury models
discussed here have been performed on mice, rats and rabbits. Each of these animal
species has their advantages and disadvantages [102,103]. While naturally occurring OA
is common in rabbits, they have a much higher chondrocyte density than other species,
and the thickness and cellularity of the transitional and radial zones of chondrocytes is
highly variable. Moreover, rabbit articular cartilage spontaneous heals and regenerates,
especially in young animals up to 5 months of age. Rodent models have a significantly
smaller joint size and thinner articular cartilage than humans, but they serve as the most
cost-effective models for feasibility, preclinical studies and mechanistic studies. Mice do
not exhibit distinct chondrocyte zonal depth arrangements as humans do in the superficial,
transitional, and radial zones of the cartilage. Additionally, the radial zone makes up
nearly two-thirds of the rat articular cartilage thickness. Another microstructural difference
is that human articular cartilage displays joint surface-specific cell arrangements in the
large joints termed “superficial chondrocyte spatial organization”, which other species
do not display [107-110]. In the context of inflammation and articular cartilage regener-
ation, it is important to point out that certain mouse strains (e.g., MRL/Mp], LG/], and
LGXSM-6 mouse strains) have shown a superior regenerative and healing response of
the articular cartilage, as well as other tissues, compared to other mouse strains (e.g.,
C57BL/6, LGXSM-33) [104,105,111,112]. In fact, in a closed articular tibial plateau fracture,
the PTOA model MRL/Mp] mice had lower systemic IL-1x and higher anti-inflammatory
cytokines IL-4 and IL-10 present than C57BL/6 mice. When comparing the injured to the
uninjured knee, in contrast to C57BL/6 mice, MRL/Mp] mice showed no differences in
the histologic grading of articular cartilage degeneration, bone density, or subchondral
bone thickness [111]. This suggests that, e.g., C57BL/6 may be more beneficial for knee
PTOA studies. Moreover, unlike rats, mice have naturally occurring OA as well as a rapid
disease onset. Importantly, the availability of genetically modified mouse strains provides
the opportunity to study the molecular mechanisms contributing to PTOA development.

4.2. Considerations in Using In Vitro Chondrocyte and Ex Vivo Articular Cartilage Models

While the experimental environment of cell-based or articular cartilage explant models
may not fully simulate the joint tissues post-trauma, such models decrease the overall
complexity and allow application of injury and/or inflammatory cytokines in controlled,
defined microenvironments. Ex vivo tissue articular cartilage explant studies permit the
preservation of the cells in their natural three-dimensional environment and the mainte-
nance of cell-matrix interactions and cartilage zonal cell arrangements. Moreover, me-
chanical injury, e.g., through single vs. repetitive impact, can simulate different types
of trauma or ranges of trauma extent and, thus, apply different forces to the tissue and
the cells within their native ECM. Such studies allow us to probe input—-output behavior
and bridge gaps in mechanisms of post-injurious inflammation, helping to identify the
specific mechanisms that contribute to post-injurious perpetuation of inflammation and
subsequent PTOA. These studies also allow for linking the observed effects to both cell and
tissue behavior, helping us to understand cytokine and/or cell-cell crosstalk, and will one
day help in explaining the presence of differing responses between patient groups and the
progression to PTOA in many, but not all, patients.

Before we discuss these models, we will discuss the source of articular cartilage
tissue used in in vitro and ex vivo models. The majority of cell-based in vitro studies
have used primary chondrocytes of human origin. Others have used primary bovine
chondrocytes or cell lines, such as the chondrosarcoma SW-1353 human cell line, the
murine chondroprogenitor ATDCS5 cell line derived from AT805 teratocarcinoma cells or
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immortalized human juvenile costal-derived chondrocyte T/C-28a2 cells. Obviously, there
are pros and cons for each source. Cell lines are convenient, but they do not fully represent
a primary cell. For example, T/C-28a2 and SW-1353 human cell lines are not suitable
for studying NO release and iNOS expression because, in comparison to ATDC-5 cells,
these cells are incapable of producing NO and expressing iNOS in response to LPS, IL-1¢,
or IL-1f3 treatment [113]. ATDCS5 cells are an acceptable alternative as they imitate the
articular chondrocyte phenotype and they have been successfully used in inflammatory
in vitro models of OA [113-117]. However, an important question remains; namely, how
the accumulated data translate to the clinical outcome.

Articular cartilage explant studies tend use bovine or human tissues. The advantage
of using bovine tissue is that it is easily accessible and a healthy source of young and adult
tissue that could be used to better understand disease progression in different age groups,
especially if both injury and inflammatory factors are applied. Another advantage of
bovine cartilage explant is the development of naturally occurring OA in multiple bovine
joints that very closely mimic the onset and progression in aging humans [103]. Therefore,
bovine tissue is useful for investigating the early disease onset or in preclinical assessments
aimed at prevention of early disease. One disadvantage of bovine cartilage is its decreased
thickness and higher cellularity compared to human cartilage [100]. However, access to
healthy human cartilage is difficult and, for this reason, most of the human injury and/or
inflammatory studies have been performed on tissue explants or on chondrocytes isolated
from human patient OA articular cartilage. While some studies grade their tissue and
use “healthier” parts, e.g., macroscopically intact-appearing areas, the tissue cannot be
considered truly healthy due to disease presence and exposure to inflammatory cytokines
and degradative enzymes present in the joint. However, the use of different grades of
diseased OA tissue may be beneficial for simulating chronic inflammation, especially
if the media is supplemented with the chronic inflammatory cytokines present in the
diseased joint (Figure 1). This suggests that, in some settings, human tissue-based models
may be more relevant due to the morphological, physiological and biochemical tissue
properties, whereas basic science studies can very well address mechanistic questions in
cells and tissues other than human. Because cells and tissues are derived from patients with
differences in, e.g., age, genetics, or co-morbidities, it is often unavoidable to investigate a
larger number of patient tissue explants or use stratification strategies to better understand
outcomes and treatment effects.

An important consideration of inflammatory or other in vitro studies is the arising
dedifferentiation of chondrocytes that stem from culturing cells on conventional tissue
culture plastic [118]. It is well known that chondrocytes in monolayer culture undergo
in vitro dedifferentiation exhibited by a change in their cell morphology, transitioning
from a spherical morphology to a flat spindle-like morphology, with a corresponding
change in the cell gene expression profile exhibited by an increase in type I collagen
(COLIA2) and decrease in type II collagen (COL2A1) expression that results in lower quality
cartilage ECM. This process occurs early after the expansion of primary chondrocytes in
cell culture and increases with increasing passage [119,120]. For example, previous studies
have used alginate bead and pellet culture [121,122], serum or growth factors combined
with subsequent alginate bead cultures [123], pellet cultures combined with low oxygen
concentrations [124], co-cultures with mesenchymal stromal cells (MSCs) on a porous
surface [125], agarose hydrogels with varying RGD adhesion site densities and mechanical
properties [126], single-component photo-crosslinkable hydrogels [127], and chimeric
Activin A/BMP2 ligand AB235 [128] to attempt re-differentiation of passaged chondrocytes.
These studies generated valuable insight by inducing the re-differentiation of human OA
chondrocytes obtained during joint replacement procedures [121,123,124,127,128] and
of porcine and bovine chondrocytes [125,126]. In one of our own studies, we cultured
patient- and joint surface-matched human OA chondrocytes vs. OA chondrons, which are
OA chondrocytes within their retained pericellular matrix, in a self-assembling peptide
hydrogel. Interestingly, human OA chondrons displayed a significant long-term survival
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advantage over chondrocytes in hydrogel culture [129]. Thus, retaining a native cartilage
structure presented a significant advantage in stabilizing the chondrocyte phenotype.
In another study, we evaluated human chondrocytes isolated from articular cartilage
lesion sites vs. knee joint notch sites and showed that, after monolayer expansion, re-
differentiating lesion chondrocytes cultured in alginate beads resulted in a pool of cells
with a greater chondrogenic potential compared to expanded and de-differentiated notch
chondrocytes, indicating that ex vivo re-differentiated lesion chondrocytes may hold non-
utilized clinical potential for tissue engineering articular cartilage [130]. On a side note, such
location-based investigations are important because chondrocyte metabolic characteristics
differ across joints [131-135], whereas other characteristics such as the abovementioned
chondrocyte arrangements within the tissue differ, even between individual joint surfaces
within the same joint [107,110] and between different stages of OA [108,109,136]. Thus,
while there are various methods to delay chondrocyte dedifferentiation, current methods
have not achieved complete success in preventing this process. However, because relatively
few chondrocytes are present in the tissue, the expansion of chondrocytes is essential to
achieve experimentally (and clinically) relevant cell numbers. Therefore, although these
studies are essential, these points need to be considered.

A study by Tsuchida et al. elucidated the effect of culturing chondrocytes on the
production of various inflammatory mediators [137]. This study showed that most of
the concentrations of inflammatory cytokines, such as IL-1x, IL-6, and TNF-« in the
cartilage from tissues with grade IIl and IV focal defects or from OA tissue were 10- to
100-fold higher than those measured in the SF. Remarkably, the cytokine production by
chondrocytes in cell culture was much higher for many inflammatory mediators, compared
to articular cartilage. This is in contrast with the general belief that synovial cells are
the main source of inflammatory mediators in articular joints and, instead, indicate that
the chondrocytes within their native tissue can act as a primary source of the production
of many cytokines. Moreover, there were large variations in the concentrations of these
inflammatory mediators after 7 days of culture of chondrocytes, which were seeded onto
collagen-coated plates directly after isolation vs. those that were seeded at passage 2. In
addition, some cytokines, such the pro-inflammatory IL-1a and IL-8 cytokines and anti-
inflammatory IL-4, IL-10 and IL-13 cytokines, were absent in protein extracts from healthy
native tissue, whereas they were produced in healthy chondrocyte cultures. This suggests a
response to culture, although a head-to-head comparison of directly isolated chondrocytes
and cultured chondrocytes vs. isolated cartilage explants, as well as cultured cartilage
explants would be needed to fully conclude this. These results and the resuls of another
study [138] show that chondrocytes are clearly capable of contributing to inflammation,
and this process may represent a normal healing or regenerative response to cell culture.
These findings should be considered in future in vitro studies using chondrocytes as a
representative model by clearly stating and discussing the cell source and culture details
to avoid misleading data and/or inaccurate interpretations. This also further supports
performing combined studies at multiple levels when assessing inflammation or anti-
inflammatory treatment strategies for a better representation of the full narrative.

4.3. In Vitro Chondrocyte and Ex Vivo Articular Cartilage Explant Injury and/or Inflammatory Models

Other reviews [139,140] have well described how articular cartilage explant mod-
els have used various types of injurious compression protocols to simulate mechani-
cal injury and have demonstrated that, despite differences in protocols, these models
show that they similarly and successfully induce the clinically observed pathologies fol-
lowing trauma to the knee joint. Hence, the mechanically-induced injury of articular
cartilage leads to a significant increase in chondrocyte death, ECM loss, expression of
matrix-degrading enzymes and a decrease in the COL2 gene and, to some extent, an
increase in inflammatory cytokines even in the absence of inflammatory cells, such as
macrophages [141-153]. Some studies have used a combination of mechanical injury and
inflammatory cytokine treatment, typically using IL-1«, IL-13, TNF-«, IL-17, or the combi-
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nation of TNF-a/IL-6/sIL-6R [143-146,148,152,154] to mirror trauma and the presence of
cytokines that are significantly present with the injured knee.

Articular cartilage explant and in vitro chondrocyte studies, using cells or tissue
derived from either OA or healthy sources have shown that IL-1x treatment alone is
capable of increasing production of MMP-1, 3, 9 and -13 and ADAMTS-4 and -5, de-
creasing proteoglycan synthesis and increasing the loss of sGAG [144,148,149,155-157],
while IL-1(3 alone is capable of enhancing NO production, collagenase activity, IL-6, IL-8,
LIE, MMPs (MMP-1, -3, -13, -7, -9, -12), complement components, chemokines as well as
aggrecan release; and inhibiting type II collagen, NF-kB binding activation and phosphor-
Smad2/3 [69,147,152,158-164]. These studies, as well as animal models, showed that IL-13
is involved in inflammation and cartilage degradation. However, Bougault et al. demon-
strated that IL-13 was not produced by OA articular cartilage itself but rather by synovial
tissue [165]; therefore, the source of IL-13 could be synovial fibroblasts or other cells such
as macrophages.

TNF-« alone similarly increased IL-6, IL-8 and LIF, MMPs (MMP-1, -3, -9 and -13),
ADAMTS-5 and -4, complement components, chemokines as well as aggrecan fragment
and sGAG release and decreased COL2 expression of isolated chondrocytes but only
increased NO production when used at high concentrations [143-147,157,160,161,166-169].
In addition, TNF-& induced the expression of IL-1f3 in healthy human chondrocytes [166].
Moreover, Patwari et al. showed that the combination of injury and TNF-o caused higher
loss of sGAG compared to either alone [144].

IL-17 alone dose-dependently increased MMP-1, -3, -13, and MCP-1 and decreased
TIMP, COL2A1, and SOX9 mRNA expression in human OA chondrocytes [170]. When IL-17
was combined with low concentrations of IL-1f3, the combination increased NO production
and decreased GAG synthesis in a rat patellar articular cartilage explant model greater
than either cytokine treatment alone. This study, like other studies on articular cartilage
explants, chondrocytes and/or synoviocytes suggest that IL-17 acts synergistically with
IL-1f or TNF-«x [152,153,169,171-178], potentiates inflammatory gene expression (e.g., IL-6,
IL-8, TNF-o) and MMP expression, and causes catabolic effects, such as ECM component
loss and a decrease in the mRNA expression of chondrogenic markers, such as SOX9,
XYLT1, COL2A1, and ACAN. IL-17A also caused the release of MMP-2, and -9, sGAG,
the ADAMTS-mediated aggrecan degradation fragment (exAGNx1) and MMP-mediated
type II collagen (C2M) in a bovine full-depth articular cartilage [150]. Moreover, this study
showed that the proteomic analysis of conditioned media from IL-17A treated articular
cartilage revealed an upregulation of IL-6, MMP-3, ADAMTS-4, neutrophil/macrophage
chemoattractants CXCL6 and CCL20 (also known as macrophage inflammatory protein-3
alpha, MIP-3x), complement factor B, latent TGF-3-binding protein 2 and chitinase 3-like 1
(CHI3L1 or YKL-40), a secreted glycoprotein linked to OA, compared to control-treated
tissue. This study and another study suggest that the exposure of chondrocytes and
synoviocytes to IL-17, which led to the increased expression of granulocyte-attracting
regulating genes and release of chemokines, could further drive inflammation by inducing
the influx of mononuclear cell influx, such as macrophages [173,174].

IL-17 also inhibited TGF-33-induced the chondrogenic differentiation of human
MSCs [179], which may be locally present after knee trauma, or at least after surgical proce-
dures, such as microfracture [180] or combined microfracture and autologous chondrocyte
implantation (ACI) [181,182]. Therefore, theoretically, TGF-f3 would also be subjected to
IL-17 modulation. For other effects of TGF-f3 on chondrocytes and/or MSCs, we refer the
interested reader to our recent reviews [13,183].

Many IL-17 effects can be reversed by the removal of e.g., IL1-f3 and IL-17A from the
media [152] or by pre-treatment with an IL-17 receptor antibody [175], dexamethasone,
or kinase inhibitors [172,176]. Secukinumab, a human monoclonal antibody that binds to
IL-17A, is already used clinically to treat arthritis-associated symptoms and joint disease
damage in ankylosing spondylitis and psoriatic arthritis, further supporting the antago-
nistic role of IL-17A in joint disease [184]. These studies demonstrate that, like TNF-o or
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IL-B, IL-17 is strongly capable of enhancing inflammation and causing catabolic effects
that lead to degeneration of articular cartilage; and that potentiating effects of cytokine
combinations with IL-17 surpass those of individual cytokines. This review, in the context
of PTOA of the knee, as well as others reviews, suggest that IL-17 is a crucial pathogenic
molecule in local and systemic disease pathogenesis in many types of disease tissues and
that IL-17 signaling may promote chronic disease development [185-189] emphasizing the
need for further mechanistic IL-17 studies in various contexts.

Whereas most studies generally focus on the use of one cytokine, a few studies have
used a combination of TNF-«, IL-6 and soluble IL-6 receptor (sIL-6R) to better simulate
the inflammatory environment existing after knee trauma. Before proceeding to their
effects on articular cartilage, we first briefly discuss the two mechanisms, by which IL-6
interacts with target cells [190,191]. IL-6 is capable of binding to the membrane-bound
IL-6 receptor (IL-6R), a receptor that alone lacks signaling capacity because it does not
contain a signal transduction domain. When the complex of IL-6/IL-6R binds to a second
membrane receptor called glycol-protein 130 (gp130), the dimerization of gp130 occurs,
which initiates intracellular signaling. This “classical” form of IL-6 signaling is important
in the acute phase of inflammation. Interestingly, while gp130 is found in all cell types,
the membrane-bound IL-6R is expressed in only a few cell types, such as neutrophils,
monocytes, and macrophages as well as in naive and memory T cells. IL-6 can also
exert its effects through a second mechanism by interacting with the soluble form of the
IL-6 receptor (i.e., sIL-6R) that is generated through proteolytic actions (e.g., by protease
disintegrin and ADAM enzymes). The sIL-6R binds to IL-6 with a similar binding affinity
as the membrane-bound IL-6R and rather than competing with the membrane-bound IL-6R,
the complex of sIL-6R/IL-6 bind to gp130-expressing cells and, thereby, induce intracellular
“trans-signaling”. This mechanism of signaling leads to a more robust activation of the IL-6
intracellular signaling pathway that promotes the chronification of disease [191].

In healthy bovine articular cartilage, the addition of IL-6 and sIL-6R alone was able
to increase the latent form of MMP-3 (pro-MMP-3), with increases in proMMP-3 being
more prominent with the addition of TNFa [146]. However, the application of mechan-
ical injury and TNF-«/IL-6/sIL-6R to articular cartilage markedly increased MMP-1, 3,
and -10 and aggrecanase-mediated, rather than MMP-mediated, aggrecan catabolism
and produced a more pronounced loss of SGAG and COMP and COMP Ser’”” neoepi-
topes [143,145,146,192,193]. The exposure of non-injured articular cartilage to TNF-o/IL-6/
sIL-6R alone for up to 3 weeks resulted in a similar release of both intact COMP and COMP
Ser”” neoepitopes into the surrounding media of articular cartilage explants to levels found
in the SF of patients suffering from acute knee pain with or even without acute trauma [192].
Therefore, such combinations may be more suitable for understanding the complex, not
yet understood chronic effects after injury.

4.4. Co-Culture Studies

Even though chondrocytes are a strong source of pro-inflammatory cytokines, as dis-
cussed above, the elevated levels of inflammatory cytokines in both articular cartilage and
SF suggest the role of other cells, in addition to chondrocytes, in governing inflammation.
Therefore, co-culture studies can aid in understanding the role of specific cell types, such
as macrophages or synovial fibroblasts, in the development and progression of PTOA.

Several studies demonstrated the importance of synovial fibroblasts as well as macrophages
in clinical knee OA [174,194-197]. Synovial membrane biopsies from untreated PTOA knee
joints contain a high number of macrophages and fibroblasts as well as thicker collagen bun-
dles in the sublining and subsynovial regions of the synovium [194]. Wood et al. detected
the presence of two types of macrophages in patients, with knee OA having distinct func-
tional gene signatures, which were defined as articular cartilage remodeling and inflammatory
macrophages, respectively [196]. The presence of soluble macrophage CD163 and CD14 mark-
ers in the SF and plasma were shown to correlate with pain and with OA structural damage
progression, i.e., joint space narrowing and osteophyte severity, in the knee joint [195]. After
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fracture of the tibia plateau MRL/Mp] mice, which are known to generally heal and regenerate
tissues faster [104,105,111], had a lower intra-articular and systemic inflammatory response com-
pared to wildtype CD7BL/6 mice which may be attributable to reduced synovial macrophages
present after joint injury, as macrophage chemoattractants were also reduced in these mice [112].
Together, these studies suggest that macrophage-related inflammation help drive and may
predict PTOA progression.

To resemble the in vivo joint, some studies have used co-cultures of bovine artic-
ular cartilage explants combined with the joint capsule containing the synovial mem-
brane [198-200], as it is responsible for producing the SF and contains synovial fibroblasts,
as well as lymphocytes and monocytes that could affect the inflammatory environment. In
these studies, the proteolytic activity of both MMPs and aggreganases were elevated when
the synovial joint capsule was added to mechanically injured cartilage, and, consequently,
the concentration of released aggrecan fragments, e.g., ARGS, was higher in the medium,
while GAG synthesis was significantly decreased, demonstrating the direct contribution of
the synovial joint capsule in post-injurious articular cartilage damage. Interestingly, this
same group showed that the human and bovine joint capsule from a normal knee joint
released a 20-25 kDa heat-labile factor that was capable of causing a 40 to 60% decrease
in cartilage proteoglycan synthesis and the inhibition of IL-1 and/or TNF-« was unable
to prevent sGAG loss, suggesting that the joint capsule is capable of releasing an IL-1
or TNF-independent pathway cytokine or other factor, which strongly inhibits cartilage
biosynthetic activity [200]. IL-17 could be a candidate for this factor, as it is within this
molecular weight range.

Similarly, Beekhuizen et al. used a human in vitro single vs. co-culture model com-
prised of articular cartilage explants and synovial tissue to study the contribution of both
in OA tissues [201]. Whereas mono-cultured cartilage released IL-1f3, IL-4, IL-7, IL-10,
and IL-13, the synovial tissue culture released IL-6, IL-8 and IL-1ra. Most of the cytokines
detected in the co-cultured articular cartilage/synovial explants matched with cytokines
measured in OA SF, suggesting that both tissues are capable of contributing to an inflam-
matory environment, but with a differential response. Another study demonstrated that
the inflammatory milieu of OA SF inhibited the cell viability of chondrocytes, altered
their cell morphology by producing smaller and more globular-like cells that had reduced
cell-cell contacts and significantly increased the concentrations of IL-6, IL-8, MCP-1 as well
as vascular endothelial growth factor (VEGF) [202]. These studies highlight the use of
in vitro co-culture studies in gaining insights into post-traumatic mechanisms as well as
their contribution in promoting post-injurious effects and inflammation.

In vitro models have further assessed the role of macrophages to understand how
these pro-inflammatory or anti-inflammatory cells could enhance the inflammatory environ-
ment and OA progression. In a 3D co-culture model containing either healthy chondrocytes
or OA chondrocytes and pro-inflammatory M1 macrophages, there was a simultaneous in-
crease in both matrix degradative enzymes, including MMP-1 and -3 and pro-inflammatory
cytokines IL-13, TNF-«, IL-8, MCP-1 and IFN-y [203], demonstrating that (lipopolysac-
charide (LPS)-stimulated) M1 macrophages are capable of initiating inflammation and
inducing cartilage degradation at both an early stage (i.e., prior to OA) in healthy cells,
as well as during later stages of OA. In line with this study, another study showed that
conditioned media from (IFN-y + TNF-« stimulated) M1 macrophages upregulated IL-1f3,
IL-6, MMP-13 and ADAMTS5 and inhibited ACAN and COL2A1 expression in human
articular cartilage explants, further endorsing the role of M1 macrophages in disease
progression [204]. Together, these results manifest a remarkable effect of the synovial in-
flammatory environment in the progression of inflammation, articular cartilage destruction
and disease progression. All of these studies reinforce the validity of co-culture systems as
relevant and helpful PTOA models.
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5. Clinical Findings vs. Experimental Evidence
5.1. Comparing the Concentrations of Inflammatory Cytokines Used in Laboratory Models vs. the
Clinical Presentation

While the results of the models discussed in this review match the profile of the
clinical presentation of patients after knee joint trauma and, therefore, are useful models for
investigating the post-injurious effects and mechanisms of inflammation, it is important to
note that most of the laboratory studies applied markedly higher concentrations of IL-13,
TNF-«, IL-6 and IL-17 than those measured in the SF of the knee joint after knee trauma
(Table 3), especially IL-1p or TNF-. While the IL-6 and IL-17 concentrations used in
laboratory models were not as exceedingly high, they were still higher than physiological
concentrations found after knee joint trauma. Importantly, although this problem in the
study design has been raised in the context of OA [185,205], the present review concludes
that a comparable problem affects studies pertaining to PTOA. Therefore, future study
designs may consider investigating cytokine concentrations that are similar to the range
found in the SF of joints after trauma or PTOA. By doing so, one may discover new facets of
articular cartilage biology, which is especially important in pre-clinical assessments of acute
anti-inflammatory and/or regenerative PTOA treatments aiming to reduce inflammation
and early articular cartilage damage.

Table 3. Concentrations of pro-inflammatory cytokines measured in the synovial fluid after knee trauma or in clinically

diagnosed cases of knee OA vs. those used in in vitro chondrocyte and ex vivo cartilage explant models.

Cvtokine Concentration in Phase Present after Concentration Used in Fold Chanee
y Synovial Fluid Knee Trauma Laboratory Models 8
IL-1B pgﬁf’i Acute, Subacute, PTOA ~ 25-1 x 10° pg/mL 50-400 x
TNF-« p;ﬁgL AC“tgi:g:iaCC“te' 100-1 x 106 pg/mL 77-5000

Acute, Subacute, 6
IL-6 1-66,099 pg/mL Chronic, PTOA 100-2 x 10° pg/mL 3-5x
IL-17 b gz/‘iL Chronic, PTOA 100-1 x 10° pg/mL 12-52

5.2. Comparing the Results of In Vivo, Ex Vivo and In Vitro Laboratory Models vs. the Clinical
Presentation

One of the questions that we address in this review is whether the various in vivo,
in vitro and ex vivo models of inflammation and/or injury simulate the clinical scenario
and adequately replicate the different stages of post-injurious inflammation that occur
after acute clinical trauma in the human knee joint. To address this question, much like
the clinical studies that generally excluded patients with prior joint pathology, we focused
on the animal models (Figure 2A) discussed in this review as well as articular cartilage
(Figure 2B) and chondrocytes (Figure 2C) obtained from healthy (i.e., non-OA) tissue.
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Figure 2. The effects of injury and/or inflammatory cytokines in in vivo models and ex vivo and
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in vitro models using tissue and chondrocytes from non-0A (healthy) articular cartilage. A (—)
sign indicates a decrease and a (+) sign an increase. (a) In vivo models effects showing the effects
of intra-articular injection of IL-1f [69,70], TNF-« [71], or IL-17 [69,70] alone, blood-induced in-
jury [73], intra-articular (I.A.) acute tibial plateau fracture [87-92], or ACLT which includes data
from the non-invasive ACL rupture single tibial compression overload model and invasive ACLT
model [96-101]. The * indicates the corresponding model that showed an increase of that marker in
the serum (S). (b) Ex vivo cartilage explant models using non-0A (healthy) tissue showing the effects
of blood-induced injury [76-78], mechanical injury using a single injurious compression without
the addition of any pro-inflammatory cytokines [93,141,143,144,206,207], inflammatory cytokines
IL-1x alone [144,149,155,156] or combined with injury* [144,148], IL-1$3 alone [147,152], TNF-a
alone [144-147] or combined with injury* [143-146], IL-17A alone [150], and TNF-o/IL-6/sIL-6R
alone [143,146,154] or combined with injury* [144,148,154]. (c) In vitro chondrocyte models using
cells isolated from non-OA (healthy) cartilage tissue showing the effects of IL-1 [157], IL-1/3 [159,160],
TNF-« [166,167], IL-17 or IL-17F [172,175], IL-6 or IL-8 [160], and LIF [160,175].

As shown in Figure 2B,C, the application of blood, mechanical injury, pro-inflammatory
cytokines, or their combination in the various in vitro models on healthy chondrocytes and
ex vivo models of healthy articular cartilage explants showed similar results to the clinical
post-injury data. IL-6, one of the distinctive markers detected in all phases following clini-
cal injury (Figure 1), was significantly increased in these models on the mRNA and protein
expression level in response to blood and multiple pro-inflammatory cytokine stimuli
(IL-1«, IL-1B, TNF-«, IL-17, IL-8, LIF and the combination of TNF-a/IL-6/sIL-6R) alone.
Similarly, as with the increased MMP-3 noted in clinical studies, MMP-3 was increased
in vitro and ex vivo in response to injury or to the presence of pro-inflammatory cytokines
(IL-1B, TNF-«, IL-17, or the combination of TNF-«, IL-6 and sIL-6R). The breakdown of
ECM components (release of aggrecan and sGAG fragments and decreased proteoglycan
and COL2 synthesis) was also apparent in response to injury or IL-1«, IL-13, TNF-«, IL-17,
or the combination of TNF-«/IL-6/sIL-6R. Although TNF-oc was not measured in articular
cartilage/chondrocyte injury and/or inflammatory studies, blood-induced injury models
on articular cartilage explants showed that the presence of blood was capable of increasing
TNEF-o. These data together, with the continued presence of TNF-o in the chronic stage of
inflammation after knee joint trauma (Figure 1), suggest that TNF-« is produced by other
cell types, such as synovial macrophages, synovial fibroblasts or T helper 17 (Th17) cells.

These data demonstrate that ex vivo/in vitro models using healthy tissue sources are
capable of replicating the various clinical phases after knee trauma. When explant models
combine injury with the application of pro-inflammatory cytokines, they can simulate the
mechanisms and phases of inflammation that are associated with PTOA of the human
knee joint. Moreover, Figure 2C confirms that the in vivo models of intra-articular injection
of II-1p3 or IL-17 or intra-articular tibial plateau fracture or ACL injury recreate PTOA
disease progression. Interestingly, the intra-articular tibial plateau fracture model and
ACLT models showed that injury resulted in high levels of IL-13 and/or IL-6 in the serum,
indicating that both models also successfully mimicked the systemic effect observed in the
clinical early and late PTOA stages. Therefore, these models are capable of fully simulating
the acute, subacute, and chronic phases of injury and the PTOA of the knee joint.

5.3. Assessing Clinical and Experimental Results to Determine if IL-13, TNF-w, IL-6 and IL-17
Are Possible Causal Factors in Inducing Progression towards Knee PTOA

As in vivo (Figure 2A) and ex vivo articular cartilage (Figure 2B) and chondrocyte
(Figure 2C) studies illustrated that the presence of one or more inflammatory cytokines
alone (i.e., without application of injury) is equally capable of producing the same effects of
those induced by injury, these data confirm that inflammatory cytokines lead to prolonged
post-traumatic inflammatory and catabolic effects and function in a damage-perpetuating
way similar to injury alone. Because IL-13, TNF-¢, IL-6, and IL-17 were the leading pro-
inflammatory cytokines that led to these effects (Figure 2) and predominated in the clinical
setting as well (Figure 1), we used the Bradford Hill Framework [19] to establish whether
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the presence of these factors may lead to a causal PTOA disease effect. As shown in Table 4,
nine out of nine criteria were met for TNF-« and IL-6, indicating that there is convincing
evidence that the presence of these pro-inflammatory cytokines is causal in PTOA of the
knee. Seven out of nine criteria were met for IL-1f and IL-17, indicating that it is credible
that these cytokines are causal in PTOA disease progression. The reasons for this credible
effect, as opposed to a causal effect, stated for IL-1f3 and IL-17 will be discussed.

Table 4. Use of the Bradford Hill criteria as evidence of causation between the presence of IL-1p3, TNF-«, IL-6 or IL-17 after
knee trauma and a PTOA disease progressive effect. We used this as a framework to evaluate the relationship between
the presence of inflammatory markers (IL-13, TNF-«, IL-6, or IL-17) at different stages of inflammation after knee trauma
to determine whether these markers led to a convincing, credible or probable causal PTOA disease progressive effect or

whether the evidence was suggestive, limited, or inconclusive.

IL-1B TNF-« IL-6 IL-17
STRENGTH OF betvéessr(l)crlizjﬁcgc tor Convincing Convincing [21 2(?:1); 6V ;gc;?%ﬂ 36 Convincing
ASSOCIATION and ottcome [21,23-27,29,31,39,208] [23-26,28,32,36,37] 37,39,208,20] [21,33,55-60]
The same findings Convincing
are observed While some studies
among different showed that IL-1p was
CONSISTENCY OF loca.tlons, . significantly increased Convincing Convincing Convincing
FINDINGS populations or in vs. [21,23-27,29,31,39], [23-26,28,32,36,37] [21,23- [21,33]
different study some studies showed remmm 26,28,31,32,36,37,39] o
designs including that it was below the
different types of detection for some
injuries patients [24,26,28,29,31]
Credible
Clinically present from
24hto é’S krlr; Zrel;hs in &, Convincing Credible
[21 23_27})29 31]and in Clinically present There are only 2
’e &;ﬂ I,’T(’) A [39] Convincin from 24 h to 1 year in clinical studies
sary hat i linicall 8 A,S,Cphasesandin  showing that IL-17 is
indicating that it Clinically present early & late PTOA present from 24h to
influences disease from 24 h to 5 years (21,23 9.5 days in the A
progression in A, S, C phases - :
SPECIFICITY OF inﬁ‘; ;"zzgotrhe Conflicting data: Some ~ [23-26,28,32,36,37] 26’21%_3(} ’ééif{i?g] pﬂiii Egl(}rarl;c(l)lg
ASSOCIATION studies showed that Application of TNF-« P .
outcome G - develop more months) after injury
IL-1B was not present in vivo, ex vivo and
[28] or only present in in vitro mirrors advanced knee OA [33]
some yalzien ts clinical svmptoms [210] and application ~ Application of IL-17
[24 2529 31] (Fi urey2 AP—C) of IL-6 ex vivo and in vivo, ex vivo and
A licétio,n (’) FIL-1p & in vitro mirrors in vitro mirrors
i};pvivo ox Vivo & clinical symptoms clinical symptoms
L i .. (Figure 2A-C) (Figure 2A-C)
in vitro mirrors clinical
symptoms
(Figure 2A-C)
Convincing
TEMPORAL The factor Convincing Convincing A, S, C, Early & Late Convincing
SEQUENCE OF precedes the A, S, Early PTOA A, S, C Phases PTOA A, C Phases
ASSOCIATION outcome [21,23-27,29,31,39] [23-26,28,32,36] [21,23- [21,33]
26,28,31,32,36,39]
Convincing Convincing
Correlationbetween Levels of IL-17 in the
TNF-a .. SF correlate with
Dose-response Convincin; concentrations and Convincing severity of knee OA
relationship, where 8 . Early and late PTOA Y
. Early PTOA was ARGS fragments in . . [58]
BIOLOGICAL longer or higher . . were associated with .
associated with a the SF up to 5 years . Presence of IL-17 in
GRADIENT exposure leads to hi high IL-6 . .
b . ighIL-1f3 plasma after knee trauma . synovial fluid
an increased risk of : 39 0 ine th concentrations PTOA . dentifi b ¢
disease concentration [39] [32] suggesting that [39] identifies a subset o
long exposure to : patients with
TNEF-« increases the end-stage knee OA
risk of disease [60]
BIOLOGICAL tP;e;s;zln ];eotl)f ai al Convincing Convincing Convincing Convincing
PLAUSIBILITY pote o8lc [12,211] [12,212] [191,213] [187,189]

mechanism
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Table 4. Cont.
IL-1B8 TNF-a IL-6 IL-17
The current studies Credible CFe.dlble .
e e More clinical studies
agree and do not Clarification is needed
. - . need to measure
conflict with on why some patients IL-17 in the SF and
COHERENCE previously have high Convincing Convincing R
. . serum at the various
reported evidence  concentrations of IL-1§3
) . phases after knee
and the biology of present, while others di
disease do not trauma and in
clinical PTOA
Evidence drawn
EXPERIMENTAL from experimental Convincin, Convincin, Convincin, Convincin,
EVIDENCE models agree with v & v 8 v & v 8
clinical data
Convincin Convincing
Analogous .. vinemng Convincing RA, psoriatic
Convincing RA, psoriatic arthritis . o o .
examples that lead . . . RA, psoriatic arthritis,  arthritis, ankylosing
ANALOGY RA, periodontitis ankylosing . 0 2.
to the same ) A , periodontitis spondylitis,
[214,215] spondylitis, Crohn’s . i
outcome disease [216,217] [216,218,219] periodontitis
’ [184,216,220,221]
7/9 9/9 9/9 7/9
CAUSAL EFFECT EVIDENCE MET EVIDENCE MET EVIDENCE MET EVIDENCE MET

While most of the clinical studies showed that IL-13 was significantly increased
vs. healthy controls [21,23-27,29,31,39], some studies demonstrated that IL-13 was not
present [28] or that it was only present in a certain percentage of the patients [24,26,29,31].
Evidence from the laboratory models clearly demonstrated that IL-1p leads to post-
traumatic PTOA-like effects (Figure 2). There could be several explanations for the lack of
detectable IL-1(3 in some patients, such as common polymorphisms of IL-13 genes that may
cause alterations in the transcription of IL-1§3 that subsequently affects its circulating levels,
causing increased the susceptibility to PTOA [208] or, alternatively, a lack of immunoregula-
tors such as IL-1ra or anti-inflammatory IL-10, IL-13 and IL-4 cytokines. Il-1ra was present
in the SF after knee trauma in three out of four clinical studies discussed in this review,
while one group showed that IL-1ra was significantly lower than the control group 048 h
after injury and did not increase up to 21 days post-injury [25]. Another study provided
insight on this and showed that commonly occurring IL-1ra gene variants, which can post-
transcriptionally influence IL-1ra levels [222], associates with radiographic progression
of knee OA [223], suggesting that an imbalance of IL-1 may cause disease progression
in certain OA cohorts due to a lack of IL-1 control. Moreover, IL-10 [21,24,32,137] was
present in the knee joint during acute inflammation, but significantly decreased thereafter.
Other anti-inflammatory cytokines, such as IL-4 and IL-13, were also absent [21]. Notably,
inflammatory and blood-induced injury models showed that maintaining concentrations
of anti-inflammatory cytokines [12,76,77,114,141,142,224,225] or IL-1ra [226-228] not only
modulated the inflammatory response by reducing inflammation, but additionally stimu-
lated chondro- and cartilage-protective effects. Moreover, IL-10 promoted the regeneration
of cartilage tissue [142]. Therefore, while it is not clear whether IL-1f3 polymorphisms, an
imbalance between IL-1 and IL-1ra, or a lack of control of anti-inflammatory cytokines in
the early stages after knee trauma, or even other reasons beyond the scope of this review,
are responsible for why some patients have excessively high IL-1f3 while others do not;
how this relates to clinical PTOA of the knee remains unclear.

Whereas levels of IL-13, TNF-« and IL-6 were frequently measured after knee trauma,
IL-17 was not. There are two clinical studies that measured IL-17 and demonstrated
that IL-17 was present in the acute [21] and chronic phase (3+ months) after injury [33].
However, in [21], IL-17 correlated with macrophage inflammatory protein-1 beta (MIP-13,
also known as CCL4) 24 h after injury and IFN-y, TNF-«, IL-12, and IL-1ra 24 h and 9.5 days
post-injury, whereas IL-17A was not significantly elevated in the injured knees, compared
to the controls. Strong correlations were also shown, at both time points, between IL-8 and
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IL-6 and between IL-1f3 and IL-2, which negatively regulates Th17 cells, suggesting that
Th17 cells could partake in the inflammatory processes associated with injury. In [33], IL-17
was significantly increased in both the serum and SF compared to controls. However, it
was not clear exactly how long IL-17 was chronically present, as the authors only reported
that fracture patients endured pain for at least 3 months. Therefore, longitudinal studies
are needed to relate the IL-17 changes in the SF and serum to the development of PTOA of
the knee.

6. Summary, Outlook and Early Disease Considerations

The objective of this review was to focus on the current state of the research findings
of one joint, the post-traumatic knee joint, after severe acute knee trauma in order to show
how inflammation plays a central role not only in the initial post-traumatic pathology, but
also in chronic and systemic inflammation, and how it could potentiate PTOA disease.
From the clinical studies discussed in this review, it is evident that inflammation plays a
key role in both the initial phase after injury and in perpetuating post-injurious pathology
towards clinical knee PTOA. This comprehensive review presents, for the first time, a
timeline following the initial event of a knee trauma, in which specific inflammatory as
well as other biochemical biomarkers, increase in the acute, subacute, chronic and early to
late PTOA stages of disease (summarized in Figure 1) after knee trauma. This suggests that
specific markers may be used as potential prognostic indicators of disease (e.g., MMP-3,
ARGS or COMP fragments, IL-17) and could be used to assess whether a patient is or is
not progressing towards the development of clinical PTOA, especially since some of these
biomarkers are increased and measurable in serum/plasma.

However, while this review and other reviews and consensus reports suggest that
such biochemical biomarkers could be used as indicators of PTOA progression [229-231],
so far adequate validation, e.g., of MMP-3, is still lacking. As we show in this review,
while MMP-3 as well as other biochemical biomarkers remain present for extensive periods
of time in the SF after injury, and SF MMP-3 levels even correlated with IL-6 levels in
the SF up to 7 months after knee injury [31], SF analysis is not always clinically feasible
or SF is not reliably gained. Therefore, measuring suitable biochemical markers in the
serum would prove to be more advantageous. However, studies have shown mixed re-
sults in terms of correlations between serum MMP-3 levels and clinical signs of synovitis
(radiographic or MRI grading) or the grade of articular cartilage damage (arthroscopic
grading) [61,232-234]. This suggests that a single marker alone or combined with these
clinically established articular cartilage-focused imaging or grading methods may not be
sufficient. An alternative approach is to use multi-modality measurements with predictors
known to be associated with PTOA. The combination of clinical evaluation, radiographic
OA grade and ultrasonographic indicators of inflammation (swelling /knee effusion), as
well as pain intensity and disease duration, have been used to predict knee joint replace-
ment surgery within 3 years after the initial patient visit [235]. Multivariable analysis has
also predicted PTOA [236]. However, these predicting methods predict late-stage changes
leading to joint replacement, but not the early processes leading to potentially reversible
tissue damage. Moreover, successfully predicting PTOA within 2 to 3 years in patients
after meniscus repair or partial meniscectomy after ACL tear is somewhat expectable, as
advanced joint deterioration is known to be associated with both procedures [237,238].
Despite these facts, the impressive aspect is that they have successfully demonstrated that
multi-modality measurements could be used for prediction.

Another approach is to focus on other diagnostic imaging techniques to diagnose
the early and potentially reversible disease pathology, especially since methods, such as
X-ray and MRI cannot yet statistically discriminate between healthy vs. early OA [239]. We
recently showed that a clinically available confocal laser endomicroscope could be used to
image a surrogate marker of otherwise clinically, but not yet detectable, early OA functional
pathology prior to cell clustering [240]. Specifically, we showed that characteristics of the
spatial organization of the superficial zone chondrocytes (SCSO) are indicative of early
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pathology [94,107-110,136,241] and can be imaged clinically using a confocal laser endomi-
croscope. Combined with random forest modelling, this artificial intelligence (Al)-based
non-destructive quantitative optical biopsy was capable of accurately differentiating be-
tween a healthy vs. early OA architectural fingerprint, suggesting that early OA pathology
detection is indeed possible with current clinical technology [240]. Thus, such new imaging
approaches, combined with modern analysis and/or predictive tools, such as Al, could be
used with measurements of multiple easily measurable biochemical biomarker candidates
(e.g., MMP-3 and possibly IL-17) from blood samples and combined with patient-related
parameters over time and in parallel. Using such an integrated approach could facilitate the
detection of earlier pathological and functional changes compared to current techniques.
In this context, a multi-disciplinary international group of experts has published guidelines
on the design and conduct of interventional studies aimed at preventing PTOA following
acute knee injury [229], which are not only relevant to assessing treatment outcomes but
also critical to understanding and diagnosing early clinical disease. This group advocates
further strategies that enable the prediction and stratification of individual risks for devel-
opment of future PTOA with an emphasis on an earlier time point, such as at the time of
injury. Moreover, they point out that, given that 5-10-year interventional clinical trials are
not feasible, more studies need to be done to determine which measurement(s) could act as
acceptable surrogate short-term outcome predictors of future PTOA or therapeutic efficacy.
This group also suggested that, when possible, samples including serum/plasma, urine
and SF should be collected at all available time points, such as preoperatively, at the time
of surgery, clinical aspiration, and treatment which, in terms of clinical treatment outcomes,
could help identify relationships between early (e.g., 1-2 years) and later outcomes (e.g.,
5-10 years). Thus, inclusion of easily measurable biomarkers, combined with imaging
technologies, e.g., Al-supported endomicroscopy-assisted optical biopsy, that correlate
local tissue architectures [240] with biomarkers and other parameters, such as clinical
symptoms, age, sex, BMI and, e.g., the type of injury, could also better stratify joint- or
injury-specific progression and improve our understanding of early disease pathology
and detection.

The data discussed in this review demonstrated that inflammation and subsequent
tissue destruction following trauma to the knee leads to a localized as well as systemic
inflammation, much like RA. This persistent long-term low-grade chronic inflammation
has already been suggested to be a key mediator in the pathogenesis of OA and a general
phenomenon of OA [17,18,242,243] and now we show similarly an important role in knee
PTOA. While it is known that serum IL-6 concentrations increase with age and systemic IL-6
appears central to the pathophysiology of physical function decline, as well as many chronic
diseases [244,245], “inflammaging”, which is systemic mild inflammation in the absence
of an apparent infection associated with the process of biological aging, also contributes
to an array of age-related diseases including OA [246-248]. In this context, knee PTOA
occurs earlier than idiopathic OA but, importantly, causes a similar response. Specifically,
IL-6 is already detectable in the plasma within 1 year after knee trauma in young adult to
middle-aged patients (age range 43.6 & 15.1 years) having early clinical PTOA (Kellgren—
Lawrence grade 1-2) [39]. While many co-factors could enhance progression towards
PTOA, including aging, an early knee trauma predisposes young adolescents and young
adults to PTOA [4,236,249,250], suggesting that it could lead to earlier chronic disease and,
thus, accelerate the process of “inflammaging”.

In this context and in the consideration of why some patients progress towards disease
while other do not, it is important to consider the complex dysregulated interplay between
the innate and adaptive immune systems that could occur after knee trauma and how
damage-associated molecular patterns (DAMPs) and senescence could tip the balance
and incite early uncontrolled inflammation. Under conditions of tissue injury/cellular
stress induced by, e.g., mechanical injury, hemorrhage, surgical procedures (e.g., knee
injury) and in response to proteolytical release (e.g., MMP-mediated degradation) of ECM,
DAMPs are released from the articular cartilage matrix or the native cells themselves.
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While a full description of DAMPs is outside the scope of this review and could be found
elsewhere [17,18,242], we will briefly point out how DAMPs released from cartilage matrix
or from dying cells have been implicated in events that could drive chronic inflammation
and could lead to systemic knee PTOA. DAMPs from damaged cartilage ECM, such as the
32-mer aggrecan fragment [251,252], small leucine-rich proteoglycans (SLRPs) decorin that
functions to increase the retention of aggrecan in the ECM [253], biglycans [254], low MW
hyaluronic acid, fibronectin [255,256], and prelamin (the precursor of lamin A) [257] as well
as intracellular DAMPs (also known as alarmins) that are extracellularly released either
passively or by exocytosis including the high mobility group box 1 (HMGB1) [258,259] and
uric acid, the final metabolic product of purine catabolism released from dying cells [67],
have been implicated in articular cartilage destruction, inflammation and PTOA disease
progression. These DAMPs are capable of activating a broad range of pattern-recognition
receptors (PRR), e.g., Toll-like receptors (TLRs) or the cytoplasmic nucleotide-binding
oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome,
present on or in various cells including chondrocytes, synoviocytes, fibroblasts, monocytes
and macrophages that, in turn, trigger a range of inflammatory responses and chemotactic
activity through various DAMP-PRR receptor signaling mechanisms. Therefore, the recog-
nition of DAMPs not only by local cells within the joint, but also by recruited effector cells
of the immune system, could lead to a hyper-inflammatory response.

Since DAMP-PRR signaling is also needed in tissue repair, it is difficult to decipher
how the complexity of multiple DAMP-PRR signaling mechanisms contribute towards an
imbalance in inflammatory signaling responses and, more specifically, how this change
tissue repair to maladaptive in the knee joint but recent studies suggest that senescence
could play a role. Articular cartilage tissue and chondrocytes of the knee joint express
significantly more DAMPs (e.g., HMGB-1 and alarmins S100A8 and S100A9) than the
hip joint. DAMPs are present in normal healthy chondrocytes, but increased in OA [260].
DAMPs also induce cellular senescence and are produced by senescent cells (SnCs) and,
like DAMPs, cellular senescence has been suggested to contribute to low grade chronic
systemic inflammation in OA [261-263] and in PTOA [189,264-266]. Senescent cells (SnCs)
increase in response to aging but also increase upon injury, stress and inflammation and,
thus, are relevant to trauma-related pathologies. The process of cellular senescence causes
irreversible cell-cycle arrest and distinct morphological and phenotypic alterations result-
ing in adoption of a pro-inflammatory bio—active secretome phenotype, referred to as the
“senescence-associated secretory phenotype” (SASP). SnCs release a wide-range of proteins,
including DAMPs, as well as pro-inflammatory cytokines, MMPs, and chemokines, includ-
ing those factors shown in Figure 1 that were significantly increased following trauma to
the knee joint, such as IL-6, IL-1, TNF-a and MMP-3. Moreover, inflammatory cytokines
present after knee trauma, such as IL-1f3, TNF-o and IL-17, drive chondrocytes [267] and
fibroblasts [189] towards a senescent phenotype.

As with DAMP-PRR signaling, SnCs are needed for normal healing in acute inflam-
mation and their presence limits fibrosis during tissue repair [268,269]. On the other
hand, SnCs are also capable of promoting OA disease progression when transplanted
into normal knee healthy joints of mature adult mice equivalent in age to 20-30-year-old
humans [261] and in young animals in PTOA knee models [189,264]. Thus, ACLT injury
induced senescence in both young and aged animals. The presence of SnCs increased with
tissue severity, but also differed in the localization between young and old animals with
SnCs localized in the superficial layer of articular cartilage in young animals vs. throughout
the cartilage matrix in aged animals. Moreover, treatment with senolytic drugs in both
young as well as aged mice protected against inflammation and helped eliminate SnCs
and their resulting SASP which, in turn, enabled tissue recovery and the development of
ACLT-induced PTOA [189,264]. The study of Faust et al. has shed some light on how this
process causes a local Th17 immune response in the articular compartment of the joint
and systemic chronic inflammation via the draining inguinal lymph nodes [189]. Their
data suggest that high IL-6 or TGF-{ after injury skews naive CD4+ T cells towards Th17
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cells and that these Th17 cells contribute to chronic disease. Hence, they suggest that these
Th17 cells induce fibroblasts to become senescent and at the same time this in turn could
further promote a Th17 phenotype in innate lymph cells resulting in a positive feedback
loop and chronic inflammation. Moreover, many DAMP markers have been recognized as
SASP markers. Others have shown that extracellular vesicles released from OA senescent
chondrocytes are capable of transmitting the senescent phenotype to nearby cells and
thereby inhibiting ECM deposition by healthy chondrocytes [270] and the number of SnCs
positively correlated with OA severity [271]. It has also been shown that physiological load-
ing increases the diffusion of inflammatory cytokines into injured articular cartilage [272].
These mechanisms could induce senescence in nearby cells and, along with the circulating
Th17 cells [189], could reinforce the long-term production of the inflammatory, such as
the prominent “inflammaging” IL-6 [244,245], and tissue-degenerating molecules that are
increased in those with knee trauma, as shown in our comprised Figure 1. Thus, increased
DAMPs that are released from damaged and apoptotic or necrotic cells could induce im-
munosenescent programming in damaged articular cartilage tissue. If the clearance of
SnCs is diminished in certain individuals (possibly the 23-50% of those who progress to
PTOA [2-8]), an amplifying loop of senescent-induced inflammation may accelerate the
process of “inflammaging”.

These data strongly emphasize the need to improve our understanding of the early
mechanisms that result in an immune response shift and provocation towards the sus-
tained and chronic inflammatory disease that occur following knee trauma, with particular
emphasis on the low-grade pro-inflammatory state in healthy and hence young to middle-
aged adults. Moreover, as the molecular mechanisms and signaling pathways of these
processes and how, e.g., senolytic agents, regulate this is still not clear; further context-
specific investigations are needed. Importantly, other co-morbidities, such as subsequent
knee injuries [249], abnormal mechanical loading [273,274] following the primary injury,
gender [275] (e.g., hormonal) differences, co-morbidities, such as high BMI [249], or the
presence of other diseases, such as diabetes [276-278] and even genetic risk loci [279,280],
that could predispose one to early chronic disease, also need to be considered in pre-clinical
injury/inflammatory models to determine how they enhance the early development of
chronic inflammation and reduce tissue repair capacity in the setting of PTOA progres-
sion. In this context, studies would benefit from focusing on acute vs. chronic models
of inflammation, but also healthy vs. different diseased states of cells and tissues, which
may provide more insight on the effect of the “starting point” on disease outcome. Patient
stratification, and co-morbidity studies as well as biobank data could help in answering
these questions.

In summary, chronic inflammation associated with knee trauma, which together lead
to PTOA, cannot yet be clinically prevented. Although knowledge and awareness have
increased in the past few years, there are many future challenges, yet also multiple promis-
ing avenues. Using the Bradford Hill Framework, we show that TNF-« and IL-6 cytokines
are causal factors, while IL-13 and IL-17 are credible factors in inducing progression to-
wards knee PTOA. Recently, three out of four of these cytokines, namely IL-13, TNF-«,
and IL-6, have been linked to inducing a dedifferentiated phenotype by converging on
signaling pathways that regulate cytoskeletal actin dynamics [281], suggesting a potential
link between post-injurious inflammation and a disease-driving phenotype. This may
potentially open up a novel avenue of disease intervention. Since PTOA occurs in younger
patients compared to other forms of OA, it is evident that early treatment strategies, as
opposed to end-stage early knee replacement, are needed to control inflammation before
clinical PTOA onset. The future lies not only in regulating the inflammatory aspects of
this challenging disease, but more so in recognizing a PTOA-specific immunopathology
at a much earlier stage, as this would ultimately allow for the development of clinical
preventative interventions.
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Abbreviations

ACAN Aggrecan

ACI Autologous chondrocyte implantation

ACL Anterior cruciate ligament

ACLT Anterior cruciate ligament transection

ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs
Al Artificial intelligence

ARGS Alanine-Arginine-Glycine-Serine

BMI Body mass index

C1,2C Type 1/11 collagen degradation

c2C Type II collagen cleavage product

M MMP-mediated type II collagen

CCL2 CC-chemokine ligand 2, also known as MCP-1
CH Chondrocyte

CHI3L1 Chitinase 3-like 1

CLU Clusterin

COLI Collagen I

COLII Collagen II

compP Cartilage oligomeric matrix protein

CPII Procollagen II c-propeptide

CRP C-reactive protein

CS Chondroitin sulphate

CTX-I C-terminal crosslinked telopeptide type I collagen
CTX-II C-terminal crosslinked telopeptide type II collagen
CXCL Chemokine ligand

DAMPs Damage-associated molecular patterns

ECM Extracellular matrix

FB Factor B

FRI Fluorescence reflectance imaging

gp 130 Glycol-protein 130
HMGB1 High mobility group box 1

IFN-y Interferon gamma

IL Interleukin

IL-1ra IL-1 receptor antagonist

IL-6R IL-6 receptor

iNOS Inducible NO synthase

KOOS4 Knee Injury and Osteoarthritis Outcome Score 4
LIF Leukemia inhibitor factor

LPS Lipopolysaccharide

MASP MBL-associated serine proteases

MBL Mannose binding lectin
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MCL Medial collateral ligament

MSC Mesenchymal stem cells

MCP-1  Monocyte chemoattractant protein-1, also known as CCL2
MIP-18  Macrophage inflammatory protein-1 beta, also known as CCL4
MIP-3ec  Macrophage inflammatory protein-3 alpha, also known as CCL20
MMPs  Matrix metalloproteinases

MMX Partial medial meniscectomy

MNC Mononuclear cells

MRI Magnetic resonance imaging

NLRP3  Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3
NO Nitric oxide

NTX-1  N-terminal telopeptides of type I collagen

OA Osteoarthritis

OCL Osteocalcin
OPN Osteopontin

PG Proteoglycan

PLGA Poly (lactic-co-glycolic acid)

PPA Pyrophosphate arthritis, also known as pseudogout
PRP Platelet rich plasma

PRR Pattern-recognition receptors

PTOA Post-traumatic osteoarthritis

RA Rheumatoid arthritis

SASP Senescence-associated secretory phenotype

SCSO Superficial zone chondrocytes

SF Synovial fluid

sGAG Sulfated glycosaminoglycan
SPARC  Secreted protein acidic and rich in cysteine, also known as osteonectin

sTCC Soluble terminal complement complex
SnCs Senescent cells
TIMP Tissue inhibitor of metalloproteinases

TLRs Toll-like receptors

TNF-«  Tumor necrosis factor alpha

TSG-6  Product of tumor necrosis factor alpha-stimulated gene 6
Th17 T helper 17

VEGF Vascular endothelial growth factor
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