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Abstract: Background: Alzheimer’s disease (AD) is a complex and severe neurodegenerative disease
that still lacks effective methods of diagnosis. The current diagnostic methods of AD rely on cogni-
tive tests, imaging techniques and cerebrospinal fluid (CSF) levels of amyloid-β1-42 (Aβ42), total
tau protein and hyperphosphorylated tau (p-tau). However, the available methods are expensive
and relatively invasive. Artificial intelligence techniques like machine learning tools have being
increasingly used in precision diagnosis. Methods: We conducted a meta-analysis to investigate the
machine learning and novel biomarkers for the diagnosis of AD. Methods: We searched PubMed, the
Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews
for reviews and trials that investigated the machine learning and novel biomarkers in diagnosis
of AD. Results: In additional to Aβ and tau-related biomarkers, biomarkers according to other
mechanisms of AD pathology have been investigated. Neuronal injury biomarker includes neurofilia-
ment light (NFL). Biomarkers about synaptic dysfunction and/or loss includes neurogranin, BACE1,
synaptotagmin, SNAP-25, GAP-43, synaptophysin. Biomarkers about neuroinflammation includes
sTREM2, and YKL-40. Besides, D-glutamate is one of coagonists at the NMDARs. Several machine
learning algorithms including support vector machine, logistic regression, random forest, and naïve
Bayes) to build an optimal predictive model to distinguish patients with AD from healthy controls.
Conclusions: Our results revealed machine learning with novel biomarkers and multiple variables
may increase the sensitivity and specificity in diagnosis of AD. Rapid and cost-effective HPLC for
biomarkers and machine learning algorithms may assist physicians in diagnosing AD in outpatient
clinics.

Keywords: machine learning; deep learning; AI; biomarker; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD), characterized by progressive memory loss and cognitive
impairment, is the most common cause of dementia [1]. Approximately 5.7 million Ameri-
can patients suffer from AD. In 2015, AD was ranked as the sixth leading cause of death in
the United States. This care is valued at more than $232 billion and contributes as a factor
of extended risk of emotional anxiety and negative mental and physical health issues of
caregivers. However, early and accurate diagnosis of AD may help save up to $7.9 trillion
in medical and care expenses [2].
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Current diagnostic approaches for AD mainly depend on neurocognitive tests, brain
imaging, and cerebrospinal fluid (CSF) assays [3,4]. Deposition of amyloid plaques, neu-
rofibrillary tangles and significant synapse loss are noted in brain pathology in patients with
AD [5]. Diagnostic guidelines have included cerebrospinal fluid (CSF) levels of amyloid-
β1-42 (Aβ42), total tau protein and hyperphosphorylated tau (p-tau) [6,7]. CSF biomarkers
like Aβ42 and p-tau have been used for research purposes. However, these methods are
expensive and relatively invasive [8,9]. Besides, sensitivity and specificity of CSF Aβ42
and p-tau biomarkers have raised concerns about their clinical implication [6,10,11]. The
sensitivity of CSF Aβ42 ranges from 0.69 to 0.81 and specificity ranges from 0.44 to 0.89 [12].
Moreover, patients with AD are generally diagnosed late. If AD can be detected in early
stages before major brain damage develop, patients may benefit more from treatment.
Therefore, identifying biomarkers that can assist in detecting AD early or at onset is crit-
ical. Biomarkers can improve diagnostics and enable treatment initiation at the earliest
possible stage [13].

However, the causal link between Aβ and AD has not been proved. The role of
the amyloid-β in the definition, etiology and diagnosis of Alzheimer’s disease is ques-
tioned [14]. Pathological levels of Aβ and tau are noted in cognitively normal people.
About 20% of cognitively normal elderly exhibit neuropathological AD when restrictive
diagnostic criteria for Aβ and tau pathology are applied [15]. On the contrary, some
individuals clinically diagnosed with AD do not have Aβ pathology. Studies have re-
ported limited evidence of cerebral AD pathology in approximately 10–20% of individuals
clinically diagnosed with AD [16,17].

Therefore, biomarkers according to other mechanisms of AD pathology have been
investigated. Neuronal injury biomarker includes neurofiliament light (NFL). Biomarkers
about synaptic dysfunction and/or loss includes neurogranin, BACE1, synaptotagmin,
SNAP-25, GAP-43, synaptophysin. Biomarkers about neuroinflammation includes sTREM2,
and YKL-40 [12]. Besides, abnormal hyperfunction of the N-methyl-D-aspartate receptor
(NMDAR) has been found to be involved in synapse dysfunction and neurotoxicity of
AD mechanisms [18–20]. D-Serine, one of major coagonists at the NMDARs, has been
found to be related with NMDAR-mediated neurotoxicity [21,22]. On the other hand,
D-serine has been shown to increase adult hippocampal neurogenesis [23]. Several trials
have investigated CSF D-serine levels. Two studies have reported that CSF D-serine levels
in an AD group were significantly higher than in a control group [24,25].

A machine learning algorithm is one of artificial intellectual techniques for selecting the
best model from a set of alternatives to fit a set of observations. Machine learning algorithms
have several merits, including nonlinearity, fault tolerance, and real-time operation, thereby
making them suitable for complex applications [26]. Machine learning tools are being
increasingly used in precision psychiatry [27–29]. However, most of current studies have
used brain image equipment that is not feasible in clinical practice. A pilot study enrolling
31 healthy controls, 21 patients with MCI, and 133 patients with AD has used machine
learning models to predict AD. D-Glutamate is one of agonists at the NMDARs. The naïve
Bayes model and random forest model appeared to be the best models for determining
MCI and AD susceptibility, respectively (area under the receiver operating characteristic
curve: 0.8207 and 0.7900; sensitivity: 0.8438 and 0.6997; and specificity = 0.8158 and 0.9188,
respectively). Therefore, in the context of machine learning methods, we review various
research studies with novel biomarkers on diagnosis of AD.

2. Methods
Search Strategy

PubMed, Cochrane Systematic Reviews, and Cochrane Collaboration Central Register
of Controlled Clinical Trials databases were searched for studies on machine learning
and novel biomarkers for the diagnosis of Alzheimer’s disease from the earliest record to
January 2021. Review studies that investigated biomarker for dementia or AD patients
were analyzed and included trials and related review articles were manually reviewed for
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relevant references. The search strings used are the following: “(machine learning OR deep
learning OR AI) AND biomarker AND (dementia OR Alzheimer’s disease.” This article
reviews and summarizes these clinical trials.

3. Results
3.1. Machine Learning Models in Alzheimer’s Disease

Machine learning is one of artificial intellectual techniques, used for classification,
regression, clustering, or normative modeling. Machine learning algorithms can be divided
into supervised models where the data are labeled, unsupervised algorithms where the
aim is to separate an unlabeled data into groups of related cases, and semi-supervised algo-
rithms including both labeled and unlabeled data [30]. A machine learning algorithm is a
procedure for selecting the best model from a set of alternatives that fit a set of observations.
Machine learning algorithms have several merits, including nonlinearity, fault tolerance,
and real-time operation, thereby making them suitable for complex applications [26].

There are dozens of machine learning algorithms have been developed. Common
algorithms are listed in Table 1. In this review, relevant studies with biomarkers and
machine learning models are listed in Table 2.

Table 1. Common machine learning algorithms.

Algorithm Learning Type Class Restriction Bias Preference Bias

K-Nearest
Neighbors Supervised Instance based

Generally suitable for measuring
distance-based approximations;

however, it is subject to
dimensionality

Preferred for distance-based
problems

Naive Bayes Supervised Probabilistic
Works on problems where the
inputs are independent from

each other

Preferred for problems in
which the probability is

always greater than zero for
each class

Decision Trees/
Random Forests Supervised Tree Becomes less useful on problems

with low covariance
Preferred for problems with

categorical data

Support Vector
Machines Supervised Decision

boundary

Works where there is a definite
distinction between two

classification

Preferred for binary
classification problems

Neural Networks Supervised
Nonlinear
functional

approximation
Little restriction bias Preferred for binary inputs

Hidden Markov
Models

Supervised/
Unsupervised Markovian

Generally works well for system
information where the Markov

assumption holds

Preferred for time-series data
and memoryless information

Clustering Unsupervised Clustering No restriction

Preferred for data that is in
groupings given some form

of distance (Euclidean,
Manhattan, or others)

Feature Selection Unsupervised Matrix
factorization No restriction

Depending on algorithm can
prefer data with high mutual

information

Feature
Transformation Unsupervised Matrix

factorization Must be a nondegenerate matrix
Will work much better on
matrices that don’t have

inversion issues

Bagging Meta-heuristic Meta-heuristic Will work on just about anything Preferred for data that is not
highly variable

3.2. Amyloid-β1-42 (Aβ42), Tau Protein and Hyperphosphorylated Tau (p-tau) with Machine Learning

Several AD biomarkers have been studied including the deposition of pathological
amyloid (Aβ) and tau in the cerebrospinal fluid (CSF) [31], the brain metabolic change
derived from fluorodeoxyglucose positron emission tomography (FDGPET) [32], and the
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structural change in the brain morphology measured from the magnetic resonance imaging
(MRI) [33].

MRI provides a direct measurement of brain structure as possible biomarker to differ-
ential a normal control brain and an AD brain. Numerous studies have been conducted to
explore the potential of MRI-based AD biomarkers [34]. The recent availability of a large
database of individuals with DAT in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and other openly available databases has improved MRI-based AD biomarkers.
Machine learning provide a powerful tool to explore huge brain image data. Pilot studies
have tried to use machine learning to quantify structural MRI neurodegeneration pat-
terns of AD into dementia score on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD
databases

Popuri and his colleagues propose a novel biomarker using structural MRI volume-
based features. They computed a similarity score for the participant’s structural patterns
relative to those observed in the DAT group. They employed ensemble-learning framework
combining structural features in most discriminative ROIs to create an aggregate measure
of neurodegeneration in the brain. The classifier model was trained on 423 stable normal
control (NC) and 330 DAT subjects. In this dataset, clinical diagnosis has the highest
certainty. In the next step, they independently validated on 8,834 unseen images from
ADNI, AIBL, OASIS, and MIRIAD Alzheimer’s disease (AD) databases. The results
revealed promising potential to predict the development of DAT depending on the time-
to-conversion (TTC). The prediction of classification on stable versus progressive mild
cognitive impairment (MCI) groups achieved an AUC of 0.81 for TTC of 6 months and
0.73 for TTC of up to 7 years. Therefore, their findings may help assessing the presence
of AD structural atrophy patterns in normal aging and MCI stages, and monitoring the
progression of the patient’s brain along with the disease course.

Abate and his colleagues evaluated a p53-misfolding conformation recognized by the
antibody 2D3A8, also named Unfolded p53 (U-p532D3A8+), in 375 plasma samples derived
from InveCe.Ab and PharmaCog/E-ADNI longitudinal trials [35]. They used machine
learning models with U-p532D3A8+ plasma levels, Mini-Mental State Examination (MMSE)
and apolipoprotein E epsilon-4 (APOEε4) to predict AD. Their results showed likelihood
risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These ML
models predicted (AUC = 0.92) Aβ+—amnestic Mild Cognitive Impairment (aMCI) patients
who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according
to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). These findings may support
U-p532D3A8+ plasma level as a promising additional candidate blood-based biomarker
for AD.

3.3. PET-Based Tau Biomarker with Machine Learning

Deep learning, developed from machine learning, has been used in a variety of
applications in the rapidly growing huge and complicated amount of medical imaging
data [36]. Many studies have been focusing on the application of deep learning to AD
research. The prediction of AD mainly rely on deep learning using neuroimaging data
such as magnetic resonance imaging (MRI) and/or amyloid positron emission tomography
(PET). However, MRI scans cannot visualize molecular pathological hallmarks of AD,
and amyloid PET cannot, without difficulty, visualize the progression of AD due to the
accumulation of amyloid-β early in the disease course with a plateau in later stages [37].

The presence and location of pathological tau deposition in the human brain are
well established [38]. Studies have analyzed AD-related neuropathology and generated a
staging algorithm to describe the anatomical distribution of tau [39]. Subsequent studies
have revealed that the topography of tau corresponds with the pathological stages of
neurofibrillary tangle deposition. Cross-sectional autopsy data indicated that AD-related
tau pathology begins with tau deposition in the medial temporal lobe (Braak stages I and
II), moves to the lateral temporal cortex and part of the medial parietal lobe (stages III
and IV), and eventually proceeds to broader neocortical regions (stages V and VI) [40].
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Convolutional neural networks (CNNs) are novel and frequently used in deep learning.
A CNN combined with tau PET is novel because the resulting spatial characteristics
and interpretation differ considerably with those of amyloid PET, FDG PET, or MRI.
Furthermore, the regional location and topography of tau PET signals are considered
more crucial than those of other molecular imaging modalities, resulting in implications
for how a CNN interacts with such complex inputs as well as for the visualization of
informative features.

Choi et al. developed a deep CNN–based automatic image interpretation system that
could accurately predict future cognitive decline in patients with MCI by using FDG and
florbetapir PET [41]. Their PET images included those of 139 patients with AD, 171 patients
with MCI, and 182 healthy controls obtained from the ADNI database. Their deep CNN was
trained using three-dimensional (3D) PET volumes of AD and healthy controls as inputs.
By contrast, manually defined image feature extraction methods, such as quantification
using predefined regions of interest, were unnecessary for our approach. Furthermore, their
CNN used minimally processed images without spatial normalization, which is commonly
used in conventional quantitative analyses. The cognitive outcomes of patients with MCI
were predicted using this CNN. The prediction accuracy of the conversion of MCI to AD
was compared with the conventional feature-based quantification approach. Prediction
accuracy (84.2%) for conversion to AD in patients with MCI outperformed conventional
feature-based quantification approaches. ROC analyses revealed that the performance of
the CNN was significantly higher than that of the conventional quantification methods
(p < 0.05). The output scores of the CNN were strongly correlated with the longitudinal
changes in cognitive measurements (p < 0.05). These results demonstrate the feasibility of
deep learning as a practical tool for identifying predictive neuroimaging biomarkers.

Jo and his colleagues developed a novel deep learning-based framework. They used
tau PET to identify the morphological phenotypes of tau deposition [42]. With these
tau PET images, they used deep learning models to differentiate patients with AD from
healthy controls. This 3D CNN-based classification model yielded an average accuracy
of 90.8% according to five-fold cross-validation. In addition, the researchers used a layer-
wise relevance propagation (LRP) model to identify the brain regions in tau PET images
that contributed the most to the classification results. The most-identified brain regions
were the hippocampus, parahippocampus, thalamus, and fusiform. The LRP results
were consistent with those from the voxel-wise analysis in SPM12, indicating significant
focal AD–associated regional tau deposition in the bilateral temporal lobes, including the
entorhinal cortex. The AD probability scores calculated by the classifier were correlated
with brain tau deposition in the medial temporal lobe in patients with MCI (r = 0.43 and
r = 0.49 for early and late MCI, respectively). A deep learning framework combining
3D CNN and LRP algorithms can be used with tau PET images to identify informative
features for AD classification and may be feasible for the early detection of AD during the
prodromal stages.

Patients with AD exhibit early changes in the structural integrity of white matter
(WM). A pilot study investigated the use of diffusion tensor imaging (DTI) in assessing
WM alterations in the predementia stage of mild cognitive impairment (MCI) [43]. They
applied a Support Vector Machine (SVM) with DTI and volumetric magnetic resonance
imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42−), 35 positive MCI
subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study
on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity
(MD), and mode of anisotropy (MO) maps. For comparison, they studied classification
based on gray matter (GM) and WM volume. The accuracies were up to 68% for MO and
63% for GM volume when distinguishing between MCI-Aβ42− and MCI-Aβ42+. When
separating MCI-Aβ42+ from HC, the accuracy was up to 77% for MD and a significantly
lower accuracy of 68% for GM volume. Therefore, their findings suggest that DTI data
provide better prediction accuracy than GM volume in predementia AD.
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Qiu and his colleagues developed and validated an interpretable deep learning frame-
work for Alzheimer’s disease classification. The model was trained using clinically diag-
nosed Alzheimer’s disease and cognitively normal subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (n = 417). They validated on three independent
cohorts: the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL)
(n = 382), the Framingham Heart Study (n = 102), and the National Alzheimer’s Coordinat-
ing Center (NACC) (n = 582). Their predicting model was consistent across datasets, with
mean area under curve values of 0.996, 0.974, 0.876 and 0.954 for the ADNI study, AIBL,
Framingham Heart Study and NACC datasets, respectively. Furthermore, their approach
exceeded the diagnostic performance of practicing neurologists (n = 11). The high-risk
cerebral regions recognized by the model closely with post-mortem histopathological
findings. Their framework provides a clinically adaptable strategy for using routinely
available imaging techniques such as MRI to generate nuanced neuroimaging signatures
for Alzheimer’s disease diagnosis. This approach may be generalized for linking deep
learning to pathophysiological processes in human disease [44].

3.4. N-Methyl-D-Aspartate Receptor (NMDAR)-Mediated Biomarkers with Machine Learning

N-Methyl-D-aspartate (NMDA) receptors play a very important role in cognitive
functions [45]. NMDAR-mediated glutamate is a major excitatory neurotransmitter in the
mammalian central nervous system (CNS) [46]. NMDAR and glutamate play fundamental
roles in synaptic plasticity and in the underlying molecular mechanisms of learning and
memory [47]. Their crucial roles in excitatory neurotransmission indicate that normal
signaling disruption through iGluRs is implicated in a wide range of neuropathological
disorders and diseases, especially Alzheimer’s disease (AD) [48,49].

L-Amino acids are predominant in Nature. But their molecular chirality, D-amino
acids, have been noted to affect protein folding, neuronal proliferation, and brain functional
laterality. Recently, D-form amino acids have been found to play a crucial role in cognitive
functions and psychiatric disorders [50]. Pilot studies have shown that D-amino acids
are novel neurotransmitters [51]. However, studies on D-glutamate are few. Its role in
neurocognitive function remains unclear. A pilot human study showed that D-glutamate
levels are associated with cognitive functions in patients with AD or MCI [52].

Previous trials have revealed that decreased plasma D-glutamate levels are associ-
ated with cognitive impairment in AD [52,53]. A study of 397 participants reported that
D-glutamate levels in patients with MCI, and AD were significantly decreased than those
of healthy controls (MCI: 1097.8 ± 284.0, mild AD: 1031.9 ± 775.8, moderate to severe
AD: 598.3 ± 551.9, healthy elderly: 1620.4 ± 558.2,). Furthermore, they found that MMSE
score was significantly correlated with D-glutamate level (adjusted R square = 0.344) [53].
Another trial enrolling 144 patients showed that the D-glutamate level was negatively corre-
lated with the cognitive functions using Alzheimer’s Disease Assessment Scale-Cognitive
Subscale (ADAS-cog) behavior scores (r = −0.177, p = 0.034) [52].

These findings raise the next question about the reason why the lower peripheral
D-glutamate levels are correlated with cognitive impairment. Brain image studies have
explored the relationship between glutamate and cognition. Wong and his colleagues
included eight patients with MCI, nine patients with AD, and 16 healthy elderly controls.
They found that reduced hippocampal glutamate in MCI and AD was associated with
episodic memory performance [54]. Vijayakumari and his colleagues using functional
magnetic resonance imaging (fMRI) study to study 15 patients with amnestic MCI and
22 age-, sex-, and education-matched healthy controls. They noted a significant increase
was observed in glutamate during a working memory task (both 0 back and 1 back) in
healthy controls, but no significant changes were detected in patients with MCI [55].

Pilot studies have used machine learning models with NMDAR-mediated biomarker
like D-amino acid oxidase activator (DAOA, also known as G72) protein level to detect
schizophrenia. They enrolled 149 participants including 89 patients with schizophrenia
and 60 healthy controls. The naive Bayes model using two factors like G72 rs1421292
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and G72 protein. The naive Bayes showed the best model for disease susceptibility
(sensitivity = 0.7969, specificity = 0.9372, area under the receiver operating characteris-
tic curve (AUC) = 0.9356) [56]. Another machine learning- ensemble approach to predict
schizophrenia using biomarker in the N-methyl-D-aspartate receptor (NMDAR) and tryp-
tophan catabolic pathways [57]. The analysis revealed that the ensemble boosting model
with random under sampling [AUC = 0.9242 ± 0.0652; sensitivity = 0.8580 ± 0.0770;
specificity = 0.8594 ± 0.0760] performed best to predict complicated relationship between
schizophrenia and biomarkers.

Chang and his colleagues [58] enrolled 31 healthy controls, 21 patients with MCI, and
133 patients with AD. They measured serum D-glutamate levels using high-performance
liquid chromatography (HPLC). Cognitive deficit severity was assessed using the Clinical
Dementia Rating scale and the MMSE. The researchers employed four machine learn-
ing algorithms (SVM, logistic regression, random forest, and naïve Bayes) to build an
optimal predictive model for distinguishing patients with MCI or AD from healthy con-
trols. They found that the MCI and AD groups had lower plasma D-glutamate levels
(1097.79 ± 283.99 and 785.10 ± 720.06 ng/mL, respectively) than did healthy controls
(1620.08 ± 548.80 ng/mL). They found that the naïve Bayes model and random forest
model were the best models for determining MCI and AD susceptibility, respectively (area
under the receiver operating characteristic curve: 0.8207 and 0.7900; sensitivity: 0.8438
and 0.6997; and specificity = 0.8158 and 0.9188, respectively). Moreover, the total MMSE
score was positively correlated with D-glutamate levels (r = 0.368, p < 0.001). Multivariate
regression analysis indicated that D-glutamate levels were significantly associated with
the total MMSE score (B = 0.003, confidence interval: 0.002–0.005, p < 0.001). Their re-
sults showed that peripheral plasma D-glutamate levels were associated with cognitive
impairment and may therefore be a suitable peripheral biomarker for detecting MCI and
AD. They suggested rapid and cost-effective HPLC for biomarkers with machine learning
models may improve diagnosis of MCI and AD in outpatient clinics.

In addition to predicting Alzheimer’s disease, machine learning models may help
to predict NMDAR antagonists for new medication development. Recently, generative
deep learning models have been applied to de novo drug design as a means to expand the
amount of chemical space that can be explored for potential drug-like compounds. Schultz
and his colleagues assessed the application of a generative model to the NMDAR. They
investigated two primary objectives. First, the creation and release of a comprehensive
library of experimentally validated NMDAR phencyclidine (PCP) site antagonists to assist
the drug discovery community. Second, an analysis of both the advantages conferred
by applying such generative artificial intelligence models to drug design and the current
limitations of the approach. They applied and provided source code for, a variety of ligand-
and structure-based assessment techniques used in standard drug discovery analyses to
the deep learning- generated compounds. Finally, they found twelve candidate antagonists.
Further synthesis and experimental validation of these compounds are still required [59].

3.5. Metabolites Biomarkers with Machine Learning

Recently, pilot studies have examined blood metabolites as potential biomarkers for
AD [60]. It is easier to evaluate metabolites at blood than at CSF or brain tissue. Blood
metabolites may represent an essential aspect of the phenotype of an organism. Therefore,
they might act as a molecular fingerprint of AD.

Stamate and hiscolleagues [61] used the data from the European Medical Information
Framework for AD Multimodal Biomarker Discovery (EMIF-AD) [62]. They explored eight
hundred metabolites using machine learning (ML) algorithms to identify those individuals
with AD from dataset. They also compared the effectiveness of blood-based metabolites as
a predictor of AD with CSF markers.

In this study, they used ML algorithms including deep learning (DL), extreme gradient
boosting (XGBoost), and random forest (RF) algorithm. They enrolled 242 cognitively
normal (CN) participants and 115 patients with AD-type dementia. Three machine learning
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models like DL, XGBoost, and RF were used to differentiate AD from CN. They internally
validated these models using nested cross validation (NCV). When using the test data,
DL showed the AUC of 0.85 (0.80 to 0.89), XGBoost showed 0.88 (0.86 to 0.89) and RF
showed 0.85 (0.83 to 0.87). When using CSF amyloid, p-tau and t-tau (together with age
and gender), XGBoost revealed the AUC values of 0.78, 0.83 and 0.87, respectively.

Table 2. Relevant studies on the biomarkers and predictive models of AD.

Study Biomarker Model Results

Popuri et al., 2020 [63] CSF [t-tau/Aβ1-42] ensemble-learning

Classification performance on stable
versus progressive mild cognitive

impairment (MCI) groups achieved an
AUC of 0.81 for TTC of 6 months and 0.73

for TTC of up to 7 years, achieving
state-of-the-art results.

Abate et al., 2020 [35] p53 Regression Tree (RT)

These algorithms also accurately classify
(AUC = 0.92) Aβ+—amnestic Mild

Cognitive Impairment (aMCI) patients
who will develop AD

Choi et al., 2018 [41] amyloid convolutional neural network
(CNN)

Accuracy of prediction (84.2%) for
conversion to AD in MCI patients

outperformed conventional feature-based
quantification approaches.

Jo et al., 2020 [42] tau convolutional neural network
(CNN)

Deep learning-based classification model
of AD from CN yielded an average

accuracy of 90.8%

Dyrba et al., 2015 [43] amyloid-β42 Support Vector Machine
(SVM)

accuracies of up to 68% for MO and 63%
for GM volume when it came to

distinguishing between
MCI-Aβ42− and MCI-Aβ42+.

Chang et al. (2021) [1] D-glutamate
support vector machine,

logistic regression, random
forest, and naïve Bayes

The naïve Bayes model and random
forest model appeared to be the best
models for determining MCI and AD
susceptibility, respectively (area under

the receiver operating characteristic
curve: 0.8207 and 0.7900; sensitivity:

0.8438 and 0.6997; and specificity = 0.8158
and 0.9188, respectively).

Stamate et al. 2019 [61] Metabolites biomarkers

Deep Learning (DL), Extreme
Gradient

Boosting (XGBoost) and
Random Forest (RF)

DL produced the AUC of 0.85 (0.80–0.89),
XGBoost produced 0.88 (0.86–0.89) and

RF produced 0.85 (0.83–0.87).

4. Outlook and Future Direction

AD is human diseases. In addition to biomarkers in brain, CSF or blood, multiple risk
factors with several markers are under study. In addition to medications, multidomain
interventions, targeting multiple risk factors simultaneously, could be effective dementia
prevention strategies. However, multidomain interventions may be burdensome and not
universally acceptable. Coley and his colleague [64] investigated adherence rates and
predictors for all intervention components separately and simultaneously in the Finnish
Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)
and Multidomain Alzheimer Preventive Trial (MAPT). FINGER participants received a
2-year multidomain lifestyle intervention (physical training, cognitive training, nutritional
counseling, and cardiovascular monitoring). MAPT participants received a 3-year multido-
main lifestyle intervention (cognitive training, physical activity counseling, and nutritional
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counseling) with either an omega-3 supplement or placebo. Adherence decreased with
increasing intervention complexity and intensity. It was highest for cardiovascular moni-
toring, nutritional counseling, and the omega-3 supplement, and lowest for unsupervised
computer-based cognitive training. The most consistent baseline predictors of adherence
were smoking and depressive symptoms. Reducing participant burden, maintaining in-
person contacts, and taking into account participant characteristics may increase adherence
in future trials with large sample size.

Increasing studies are investigating machine learning techniques with novel biomark-
ers as promising approaches to predict AD. Some studies have shown promising results.
However, some lack large sample sizes and the appropriate power, or not hypothesis-driven.
This review examined novel biomarkers including amyloid, tau protein, NMDAR-mediated
biomarkers, and metabolites biomarkers. Because many machine learning models have
no standard settings and guidelines, a robust comparison of these trials remains incom-
plete. However, brain image-based biomarkers with machine learning models especially
deep learning such as CNN are promising. Moreover, machine learning combined with
NMDAR-mediated biomarkers appear to be a new approach to predict the long-term cog-
nitive outcome. Therefore, although the field of machine learning is relatively immature,
such techniques, especially deep learning, warrant further study for their diagnostic and
therapeutic implications on patients with AD.
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