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Abstract: Recent developments in tissue clearing methods have significantly advanced the three-
dimensional analysis of biological structures in whole, intact tissue, providing a greater understand-
ing of spatial relationships and biological circuits. Nonetheless, studies have reported issues with
maintaining structural integrity and preventing tissue disintegration, limiting the wide application
of these techniques to fragile tissues such as developing embryos. Here, we present an optimized
passive tissue clearing technique (PACT)-based embryo clearing method, initial embedding PACT
(IMPACT)-Basic, that improves tissue rigidity without compromising optical transparency. We also
present IMPACT-Advance, which is specifically optimized for thin slices of mouse embryos past E13.5.
We demonstrate proof-of-concept by investigating the expression of two relatively understudied
PR domain (PRDM) proteins, PRDM10 and PRDM13, in intact cleared mouse embryos at various
stages of development. We observed strong PRDM10 and PRDM13 expression in the developing
nervous system and skeletal cartilage, suggesting a functional role for these proteins in these tissues
throughout embryogenesis.

Keywords: transparent embryo; embryo clearing; passive clearing technique; IMPACT; PRDM10; PRDM13

1. Introduction

Significant recent advancements in the field of tissue clearing have allowed for the
appreciation of molecular patterns and cellular circuits in various biological tissues in three-
dimensional space. As opposed to traditional immunohistochemistry in frozen or paraffin
sections, clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in
situ-hybridization-compatible tissue-hydrogel (CLARITY)-based methods enable the mi-
croscopic study of tissue architecture in intact whole tissues and organs [1,2]. We re-
cently reported the development of novel passive tissue clearing techniques (PACTs),
process-separated PACT (psPACT) and modified PACTs (mPACT and mPACT-A), which
significantly reduced required tissue processing times while improving achieved optical
transparency [3-5].
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A full understanding of the biological processes that shape a developing embryo
requires the study of these phenomena across not only time but, when possible, also
three-dimensional space [6,7]; the complexities of organ formation and development
are not adequately captured in two-dimensional sections that are used in traditional
immunohistochemistry. Processing developing embryos via CLARITY-based methods
for this purpose, however, has proven challenging because the fragility of embryonic
tissues leads to their disintegration upon exposure to the harsh treatments required by the
majority of tissue clearing protocols. Though studies have sought to address this issue,
currently published methods specific to clearing vertebrate embryos are limited by either
long processing times or the use of organic solvents, which are known to produce artifacts
in subsequent immunostaining [5].

Here, we present an optimized version of our previously published mPACT method
that is specifically geared towards clearing mouse embryos [3,5]. The protocol, which we
refer to as IMPACT-Basic (initial embedding PACT), maintains tissue integrity without
compromising achieved optical transparency. We also present IMPACT-Advance, which
allows for the clearance of thin sections of mouse embryos. IMPACT-Advance addresses
the limitations imposed by the narrow 2-mm working distance of traditional confocal
microscopes, which prevents the study of larger samples including mouse embryos past
E13.5. To demonstrate proof-of-concept, we investigated the expression of PR domain
10 (PRDM10) and PRDM13, two members of the PRDM (PRDI-BF1 and RIZ homology
domain-containing) family [8,9], in mouse embryos cleared via IMPACT-Basic and IMPACT-
Advance. PRDMs have emerged as important transcriptional regulators that control
the development of numerous organ systems throughout embryogenesis. While both
PRDM10 and PRDM13 have been implicated in key developmental processes, such as
cell fate specification, and in various cancer [10-19], they remain significantly less well-
characterized compared to their counterparts in the PRDM family [8,9,20]. Our studies
not only demonstrate the applicability and efficacy of the IMPACT methods for clearing
embryonic tissue but also provide the first three-dimensional survey of PRDM10 and
PRDM13 expression in the developing mouse embryo.

2. Results
2.1. Generation of Transparent Mouse Embryos Using a PACT-Based Modified Tissue
Clearing Method

To investigate the expression of PRDM10 and PRDM13 in intact embryos and central
nervous system (CNS) tissue, we sought to optimize our previously described mPACT
and mPACT-A protocols to both accelerate clearing and improve the preservation of
tissue integrity. In mPACT and mPACT-A, samples are fixed in paraformaldehyde (PFA),
treated with A4P0 (4% acrylamide in phosphate-buffered saline (PBS)) and 0.25% 2,2’-
azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044), and they are embedded
with vacuum and nitrogen gas followed by either a PBS wash or A4P0, respectively, prior
to clearing. Here, we fixed samples with IM1 (4% acrylamide and 4% PFA in PBS), followed
by treatment with IM2 (0.25% VA-044 and 4% PFA in PBS). After embedding, samples
were re-incubated in IM1 prior to clearing (Figure 1A). In the newly optimized mPACT
(IMPACT-Basic) procedure, incubation and clearing was performed at 45 °C rather than
at the 37 °C temperature of the standard procedure. This protocol, which we refer to as
IMPACT-Basic, yielded firmer tissues post-clearance. Figure 1B provides a detailed outline
of the steps required in IMPACT-Basic. Though previous reports suggested that the IM2
solution can decrease the efficacy of tissue clearing [2], mouse brain tissues processed via
IMPACT-Basic achieved a higher level of optical transparency as PACT and mPACT within
the same time frame. After demonstrating the feasibility of IMPACT-Basic, we then applied
this protocol to developing mouse embryos at various stages, all of which were successfully
cleared (Figure 2 and Figure S1A).
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Figure 1. Schematic representation of passive tissue clearing methods. (A) The individual reagents or processes used for
polymerization in the passive clearing methods are shown, including the additional incubation steps in polymerization
solution (4% acrylamide and 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) (IM1), 0.25% 2,2’-azobis[2-(2-
imidazolin-2-yl)propane]dihydrochloride (VA-044) and 4% PFA in PBS (IM2), 4% acrylamide-based solution containing
N,N,N’,N’-tetramethyl ethylenediamine (TEMED) (AD1), and 4% acrylamide-based solution containing ammonium
persulfate (APS) (AD2)) in the initial embedding passive tissue clearing technique (IMPACT)-Basic and IMPACT-Advance
protocols. (B) Schematic representation of IMPACT optimized for mouse embryos. The steps for IMPACT-Basic and
IMPACT-Advance, are drawn in greater detail.
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Figure 2. Generation of transparent mouse embryos via IMPACT-Basic. (A) Comparison of optical transparency in the
mouse hemi-brain achieved by PACT, modified PACT (mPACT), and IMPACT-Basic. The transparency of all cleared samples
was assessed against a patterned background (length:width = 5 mm:5 mm). (B,C) Comparison of optical transparency
in E9.5, E10.5, E13.5, and E15.5 mouse embryos achieved by IMPACT-Basic (black scale bar: 2 mm). (D) Comparison of
optical and fluorescence images in E9.5 mouse embryos achieved by clearing at 37 and 45 °C using IMPACT-Basic. The

whole image of each sample was created using fluorescent microscopy, and the microscope was focused on 1 x 2 panels
(horizontal x vertical). Merged images are with PR domain 10 (PRDM10) and PRDM13 in green, lectin in red, and DAPI

in blue.

To investigate the expression profiles of PRDM10 and PRDM13, we performed im-
munostaining for the two proteins (PRDM10 and PRDM13) at E9.5 after clearing alongside
lectin staining to visualize blood vessels. Cleared mouse embryo of IMPACT-Basic methods
showed blood vessels and PRDM expression while preserving proteins in at the E9.5 mouse
embryo after clearing (Figure 2D and Figure S2). We also compared the reported embryo
clearing protocols (iDISCO+, BABB, CUBIC, RTF and ClearT) and IMPACT-Basic in at
E13.5 mouse embryos. IMPACT-Basic achieved the best clearance, as observed by eye
(Figure 3A,B and Figure S3). We performed immunostaining for lectin to visualize a blood
vessel in an E9.5 mouse embryo cleared via IMPACT-Basic and compared it to the blood
vessel visualization in embryos cleared via BABB and Clear”. As a result, morpholog-
ical structures of E9.5 mouse embryos processed with IMPACT-Basic were observed at
higher resolutions than with BABB and Clear! (Figure 3C). These results demonstrated
the use of IMPACT-Basic to visualize molecular patterns in whole mouse embryos and,
for the first time, showed the three-dimensional expression of PRDM10 and PRDM13 in a
developing mouse.
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Figure 3. Generation of transparent mouse embryos via passive clearing methods. (A,B) Schematic representation of
passive tissue clearing methods. The individual reagents or processes used for dehydration and clearing process in the four
clearing methods are shown. Comparison of optical transparency achieved in E13.5 processed via iDISCO+, BABB, CUBIC,
RTF, Clear” and IMPACT-Basic. The transparency of all cleared samples was assessed against a patterned background
(length:width = 5 mm:5 mm). (C) Comparison of optical and lectin images in E9.5 processed via BABB, Clear’, and
IMPACT-Basic. The whole image of each sample was created from serial z-images (25 slices) of the blood vessel pattern
using confocal microscopy, and the microscope was focused on 3 x 4, 6 x 7, and 4 x 5 panels (horizontal x vertical).
PRO = prosencephalon; MS = mesencephalon; RHO = rhombencephalon; SC = spinal cord; HRT = heart; FL = fore limb.
White scale bar: 1000 um.
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2.2. Profiling of PRDM10 and PRDM13 Expression in Early-Stage Mouse Embryos via
IMPACT-Basic

PRDM family proteins function as either direct histone methyltransferases or modula-
tors of epigenetic regulators. Despite the pleiotropic roles of PRDM10 and PRDM13 in both
development and pathological states such as cancer, little is known about their expression
profiles. We therefore performed immunostaining for PRDM10 and PRDM13 in mouse
embryos processed via IMPACT-Basic, which allowed us to survey their expression in a
three-dimensional manner in whole, intact mouse embryos without being restricted to a
single tissue or organ system. At E9.5, we observed high PRDM10 and PRDM13 expression
in craniofacial structures and developing somites, as well as in the brain and the developing
notochord (Figure 4A,B and Videos S1 and S2). Within the brain, both proteins were specifi-
cally expressed in the developing telencephalon, tegmentum, cerebellum, midbrain, dorsal
root ganglia, and hindbrain. At E10.5, PRDM10 and PRDM13 expression was observed in
developing craniofacial structures, CNS, somites, heart, and tegmentum (Figure 4C-F and
Figure S4A). Especially strong expression was observed in the spinal cord, with segmental
expression in the spinal ganglia. These results provided a proof-of-concept demonstration
that our embryo-specific IMPACT-Basic method can be used to perform three-dimensional
analyses of biological structures in whole intact embryos.

2.3. Development of Embryo-Specific IMPACT-Advance to Achieve Tissue Clarity and Retain
Intact Organs in Large Embryo Section

While IMPACT-Basic successfully allowed for the imaging of embryos up to E10.5, we
found that embryos at and after E13.5 were difficult to assess due to the limited 2-mm work-
ing distance of the objective lens in conventional confocal laser microscopy. Large samples
can be visualized using light-sheet microscopy, but the technique is not amenable to most
traditional laboratories due to limited equipment and high associated costs [21]. Previous
studies have demonstrated the application of PACT-based methods on tissue sections as
a workaround, but mouse embryo sections, which are highly fragile, disintegrate upon
PACT treatment. To address this issue, we further optimized our IMPACT-Basic method
to specifically process sections of mouse embryos at E13.5-E15.5, hereafter referred to as
IMPACT-Advance. IMPACT-Advance follows the same steps as IMPACT-Basic, but after
the second incubation in IM1, embryos are sliced into thin sections at a thickness of roughly
a third of the original embryo and incubated in AD1 (4% acrylamide-based solution con-
taining N,N,N’,N'-tetramethyl ethylenediamine (TEMED)) and AD2 (4% acrylamide-based
solution containing ammonium persulfate (APS)) prior to clearing (Figure 1). IMPACT-
Advance successfully achieved the optical clearance of E13.5 mouse embryo sections within
24 h with little tissue damage (Figure 5A,B, and Figure S1B).

2.4. Profiling of PRDM10 and PRDM13 Expression in E13.5 Mouse Embryos via IMPACT-Advance

We then performed the immunostaining of PRDM10 and PRDM13 in E13.5 mouse
embryo slices processed via IMPACT-Advance. At E13.5, PRDM10 expression was still
concentrated in the developing brain, spinal cord, and skeletal cartilage, but it was also
observed in the ventricle, tongue, olfactory epithelium, and umbilical cord (Figure 5C,D
and Figure 54B, and Video S3). These results were in concordance with previous published
studies on PRDM10 expression in mice [22]. Similar to PRDM10, PRDM13 was also
expressed in the developing brain, spinal cord, and skeletal cartilage, but it was also
observed in the lung, olfactory epithelium, and the eye (Figure 6A,B). The especially high
levels of PRDM10 and PRDM13 expression in major blood vessels, the CNS, and skeletal
cartilage suggest that these proteins may play critical functional roles in the development
of these tissues.
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Figure 4. Profiling of PRDM10 and PRDM13 expression during mouse development in intact embryos processed via
IMPACT. (A) PRDM10 and DAPI immunostaining in E9.5 mouse embryo processed via IMPACT-Basic. Zoom-in images
of mesencephalon region (a), prosencephalon and rthombencephalon regions (b), and spinal cord region and developing
somites (c,d). (B) PRDM13 and DAPI immunostaining in E9.5 mouse embryo. Zoom-in images of craniofacial and
rhombencephalon regions (a), heart (b), and spinal cord region and developing somites (c,d). PRO = prosencephalon;
MS = mesencephalon; RHO = rhombencephalon; SC = spinal cord; CNP = caudal neuropore; HRT = heart; OV = optic
vesicle; S = somite pairs; FL = fore limb. (C) Sagittal sections of PRDM10 and lectin immunostaining at E10.5. Zoom-in
images of midbrain (a), craniofacial region (b), dorsal region (c), ventral region (d), and spinal cord region (e). (D) Additional
regions in which PRDM10 expression was observed at E10.5. Zoom-in images of midbrain (a), craniofacial region (b),
dorsal region (c), and spinal cord region (d). (E) Sagittal sections of PRDM13 and lectin immunostaining at E10.5. Zoom-in
images of midbrain (a), craniofacial region (b), tail region (c), and spinal cord region (d). (F) Additional regions in which
PRDM13 expression was observed at E10.5. Zoom-in images of midbrain (a), craniofacial region (b), dorsal region (c),
tail region (d), and spinal cord region (e). All images were tile scanned and z-stacked. DRG = dorsal root ganglion;
FBA = first branchial arch; FV = fourth ventricle; HRT = heart; MV = mesencephalic vesicle; SC = spinal cord; NT = neural
tube; TEV = telencephalic vesicle; TV = third ventricle; T = tegmentum; FL = fore limb; L = liver. Scale bars are as follows:
white: 1000 um; yellow: 300 pm; and green: 200 pum).
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Figure 5. PRDM10 expression in mouse embryos at E13.5. (A) Comparison of optical transparency achieved in E13.5 mouse
embryos via IMPACT-Advance. (B) Comparison of optical transparency achieved in E13.5 mouse embryos processed via
IMPACT-Basic and IMPACT-Advance. Black arrows point to roughened surface of regions that experienced swelling after
clearing via IMPACT-Basic, which were not observed in tissues processed by IMPACT-Advance. (C) PRDM10 and lectin
immunostaining in E13.5 embryos processed via IMPACT-Advance. Zoom-in images of dorsal region (a), fourth ventricle
(b), spinal cord region (c), craniofacial region (d), and midbrain (e). (D) Additional regions in which PRDM10 expression
was observed at E13.5. Zoom-in images of craniofacial region (a), midbrain and fourth ventricle (b), dorsal region (c), and
spinal cord and tail regions (d,e). All section images were tile scan and z-stacked (range: 130 um). Scale bars are as follows:

black: 2 mm; white: 1000 um; yellow: 300 um; and green: 200 pm.
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Figure 6. PRDM13 expression in mouse embryos at E13.5. (A) PRDM13 and lectin immunostaining at E13.5. Zoom-in
images of craniofacial region (a), tongue and spinal cord regions (b), midbrain (c), eye (d), liver (e), and fourth ventricle and
dorsal regions (f). (B) Additional regions in which PRDM13 expression was observed at E13.5. Zoom-in images of dorsal
region (a), liver and lung regions (b), tail and hind limb regions (c), and spinal cord region (d). All section images were tile
scan and z-stacked (range: 130 um). Scale bars are as follows: white: 1000 um; yellow: 300 um; and green: 200 um.

3. Discussion

Here, we demonstrate the use of two novel tissue clearing protocols, IMPACT-Basic
and IMPACT-Advance, specifically developed to process mouse embryos. While the orig-
inal CLARITY method significantly advanced our understanding of three-dimensional
relationships between biological structures with unprecedented detail, its relatively harsh
treatments are not amenable to clearing mouse embryos. In response, various methodolo-
gies have been developed specifically for embryonic mouse tissue, but they are not without
their own limitations [23]. For instance, Scale [24], Clear! [25], and SeeDB [26] require over
a week to achieve optical transparency. In contrast, iDISCO+ [27], BABB [28], RTF [29],
and CUBIC [21,30] rapidly generate transparent embryos, but their use of organic solvents
can interfere with immunostaining and produce undesired artifacts [5]. Furthermore, their
clearing protocols require immunostaining prior to clearing the tissue of interest (Figure 3
and Figure S2). We also compared the blood vessel visualization of E9.5 mouse embryos
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processed with BABB, Clear!, and IMPACT-Basic. The embryonic blood vessels were
clearly observed in clear and high-resolution images after applying IMPACT-Basic.

Our IMPACT-Basic and IMPACT-Advance protocols are based on our previously
described modified passive clearing techniques (mMPACT and mPACT-A), which generate
transparent tissues with high efficacy, limited equipment, and minimal hands-on processing
time, as well as without the use of electrophoretic tissue clearing [3-5]. To improve tissue
integrity, IMPACT-Basic requires sample fixation in IM1, which consists of 4% PFA and
4% acrylamide in PFA, followed by incubation in IM2 (0.25% VA-044 and 4% PFA in PBS).
After embedding, samples are re-incubated in IM1 (Figure 1). Despite these modifications,
IMPACT-Basic cleared processed tissues in the same time frame as the original PACT and
mPACT protocols, and it achieved the same, if not higher, levels of transparency (Figure 2A).
Furthermore, when applied to mouse embryos at E9.5-E15.5, IMPACT-Basic generated
clear tissues that remained intact with a minimal loss of tissue integrity (Figure 2B,C).

Despite the success of IMPACT-Basic, due to the limited 2-mm working distance of
objectives in most confocal microscopes, it is difficult to image embryos past E13.5. Further-
more, light-sheet microscopy, which allows for the imaging of larger samples, is not avail-
able in most laboratories for routine use. Therefore, we further optimized IMPACT-Basic
for clearing thin sections as opposed to whole mouse embryos. This protocol, which we
termed IMPACT-Advance, involves processing whole mouse embryos via IMPACT-Basic
up to the re-incubation step in IM1, followed by thin-slicing and subsequent incubation in
AD1 (4% acrylamide-based solution containing TEMED) and AD2 (4% acrylamide-based
solution containing APS) (Figure 1). Slices of E13.5 embryos were successfully cleared via
IMPACT-Advance with minimal damage to tissue integrity (Figure 5A,B).

To demonstrate proof-of-concept, we investigated the expression of two PRDM fam-
ily proteins, PRDM10 and PRDM13, in mouse embryos cleared via IMPACT-Basic and
IMPACT-Advance methods (Figures 4-6). PRDM10 and PRDM13 have been implicated in
both vertebrate development and cancer, but their expression profiles and function are less
well-characterized relative to other members of the PRDM family. Probing their expression
in an intact embryo allowed for a broad survey of their expression profiles in the entire
embryo without being restricted to any one organ system or tissue type; furthermore, it
allowed for an appreciation of three-dimensional relationships between PRDM-expressing
tissues that could potentially uncover novel findings about their functions. Consistent
with previous reports of PRDM10 and its role in the development of sensory neurons,
we showed that PRDM10 is expressed in the developing nervous system at E9.5, E10.5,
and E13.5, including the neural crest, olfactory epithelium, notochord, and dorsal root
ganglia, as well as other regions in the developing brain and spine. We also observed
PRDM10 expression in craniofacial structures and cartilage formation. Similarly, we ob-
served PRDM13 expression primarily in craniofacial structures and CNS tissues such as
the notochord, eye, and olfactory epithelium, with an especially high expression in the
spinal ganglia. Additional areas of PRDM13 expression included the lung and the adrenal
medulla. Both proteins were expressed in a segmental fashion in somites, spinal cord,
heart, and tegmentum at E10.5 and E13.5 (Table S2).

Our results established, for the first time, the expression profiles of PRDM10 and
PRDM13 in intact whole mouse embryos at various developmental stages. Consistent
with the overexpression of PRDM10 and PRDM13 in numerous cancer types, both proteins
were expressed in a wide spectrum of tissues in the developing embryo, supporting the
need for future studies to probe their functional roles beyond what has been previously
reported in the literature. Importantly, these studies have demonstrated the feasibility and
efficacy of IMPACT-Basic and IMPACT-Advance for clearing tissues derived from mouse
embryos, further broadening the applicability of CLARITY-based methods for studying
biological structures.
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4. Materials and Methods
4.1. Animal

Adult male and female ICR (Institute of Cancer Research) mice were purchased from
Orient Inc. (Gyeonggi-do, Korea) and were raised in a specific pathogen-free (SPF) envi-
ronment. Mouse embryos were isolated from E9.5 to E13.5. All experimental procedures
were carried out in strict accordance with the recommendations provided by the Ministry
of Agriculture, Food, and Rural Affairs (MAFRA) and were approved by the Institutional
Animal Care and Use Committee (IACUC) at Yonsei University (licenses #2017-0230, Date
of Approval: 10 March 2020).

4.2. Isolation of Mouse Embryo and Tissue

Upon opening the mouse thorax, an incision was made to the right atrium of the heart.
Mice were then perfused with equal volumes of cold 0.1 M PBS with 10 unit/mL heparin
(Sigma-Aldrich Inc., St. Louis, MO, USA) and 4% PFA (Biosesang Inc., Gyeonggi-do, Korea).
Mouse embryos were then isolated using previously described methods. The sample was
submerged in 4% PFA and stored at 4 °C for 24 h.

4.3. Original PACT and mPACT

For the original PACT protocol, samples were fixed in a fresh hydrogel monomer
solution (A4P4; 4% acrylamide (Sigma-Aldrich Inc., St. Louis, MO, USA) and 4% PFA in
0.1 M PBS) containing 0.25% photoinitiator VA-044 (Wako Chemicals USA, Inc., Richmond,
VA, USA) and stored 4 °C for 24 h. For mPACT, the sample was submerged in 4% PFA and
stored at 4 °C for 24 h. Samples were washed with 0.1 M PBS and then submerged in A4P0
solution (4% acrylamide in 0.1 M PBS) at 37 °C for 24 h, followed by incubation in 0.25%
VA-044 in 0.1 M PBS at 37 °C for 6 h. Samples were embedded with vacuum and nitrogen
gas, each for 10 min. Tissues processed via the original PACT protocol were removed
from the embedded hydrogel and transferred to clearing solution (8% sodium dodecyl
sulfate (SDS; Affymetrix Inc., OH, USA) in 0.1 M PBS, pH 8.0) with 0.5% «-thioglycerol
(Sigma-Aldrich Inc., St. Louis, MO, USA) in a shaking incubator at 37 °C and 150 rpm until
optical transparency was achieved.

4.4, IMPACT-Basic and IMPACT-Advance

For IMPACT-Basic, samples were fixed in IM1 solution (A4P4: 4% acrylamide and 4%
PFA in 0.1 M PBS) at 4 °C for 24 h, and then they were incubated in fresh IM1 solution at
37 °C for 6 h. After a 30 min wash in PBST (0.1% Triton X-100 (Sigma-Aldrich Inc., St. Louis,
MO, USA) in 0.1 M PBS), samples were submerged in IM2 solution (0.25% VA-044 and 4%
PFA in 0.1 M PBS). Samples were embedded with vacuum and nitrogen gas for 10 min, and
then they were incubated at 45 °C for 6 h. Samples were then washed in PBST for 30 min
and resubmerged in IM1 solution at 45 °C for 3 h.

For IMPACT-Advance, samples were processed via the IMPACT-Basic protocol until
embedding, after which they were sagittally sliced with a knife under a stereoscopic micro-
scope (SMZ745T; Nikon, Tokyo, Japan). Slices were placed in a shaking incubator at room
temperature with 10 mL of AD1 (4% acrylamide, 0.1% bis-acrylamide (Sigma-Aldrich Inc.,
MO, USA), 4% PFA, and 1.3% TEMED; Amresco Inc., Solon, PA, USA) in 0.1 M PBS) for
30 min and then submerged in AD2 (4% acrylamide, 0.1% bis-acrylamide, 4% PFA, and
2% APS; Amresco Inc., Solon, PA, USA) in 0.1 M PBS) solution at room temperature for
10 min. Samples were transferred to 24 x 60-mm coverslips (Paul Marienfeld GmbH & Co.,
Lauda-Konigshofen, Germany) and embedded at room temperature for 20 min, followed by
incubation in clearing solution (8% SDS in 0.1 M PBS at pH 8.0) with a-thioglycerol (0.25%:
E9.5 mouse embryo; 0.5%: E10.5-E15.5 mouse embryos and brain) at 45 °C and 150 rpm
until optical transparency was achieved. For more detailed instructions, see Figure 1B.
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4.5. RTF

After fixation in 4% PFA, samples were incubated in RTF-R1 solution (30% triethanolamine
(Daejung Chemicals & Metals, Gyeonggi-do, Korea) and 40% formamide (Georgiachem,
Norcross, GA, USA) in dH,0O) for 6 h at room temperature, followed by incubation in
RTF-R2 solution (60% triethanolamine and 25% formamide in dH,0) for 6 h at room
temperature. Samples were then immersed in RTF-R3 solution (70% triethanolamine and
15% formamide in dH,O) at room temperature until they achieved optical clearance.

4.6. CUBIC

After fixation in 4% PFA, samples were immersed in 50% CUBIC-L (Tokyo Chemical
Industry Co., Ltd., Tokyo, Japan) with 0.1 M PBS and incubated in 100% CUBIC-L solution
at 37 °C for 72 h in a shaking incubator. Samples were washed in PBS for 24 h and pre-
treated in 50% CUBIC-R (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) solution with
0.1 M PBS at room temperature for 24 h. Samples were then incubated in 100% CUBIC-R
solution at room temperature for 48 h.

4.7. BABB

Embryos were fixed in 4% PFA at 4 °C for 24 h and then washed with 0.1 M PBS for
1 h before being hydrated to 20%, 50%, 80%, and 100% ethanol (Millipore Co., MA, USA)
at 37 °C for 1 h each. Embryos were further washed with 100% ethanol at 4 °C for 1 h.
Embryos were incubated in 100% dichloromethane (DCM; Sigma-Aldrich, Inc., St. Louis,
MO, USA) at room temperature for 30 min, and the sample was washed with ethanol. The
embryo was then incubated in BABB solution (1 volume of benzyl alcohol (BA; Sigma-
Aldrich, Inc., St. Louis, MO, USA) to 2 volumes of benzyl benzoate (BB; Sigma-Aldrich,
Inc., St. Louis, MO, USA)) at room temperature until the tissue cleared.

4.8. iDISCO+

Embryos were fixed in 4% PFA at 4 °C for 24 h and then washed with 0.1 M PBS for
1 h before being hydrated to 20%, 50%, 80%, and 100% methanol (Millipore Co., Burlington,
MA, USA) at room temperature for 1 h each. Embryos were further washed with 100%
methanol at 4 °C for 1 h. Embryos were incubated in 5% hydrogen peroxide H,O; (1 volume
of 30% HyO; to 5 volumes of methanol) at 4 °C for 12 h. After treatment with 5% H202,
the embryos were rehydrated to 80%, 60%, 40%, and 20% methanol with 0.1 M PBS at
room temperature for 1 h each. After PBS washing, the embryos were dehydrated with
20%, 40%, 60%, and 100% methanol at room temperature for 1 h each; then, they were
transferred to a glass bottle containing mixture of 66% DCM and 33% methanol, and they
were incubated at room temperature for 3 h. Embryos were incubated in 100% DCM for
15 min, and each sample was washed with methanol. Each embryo was then incubated in
dibenzyl ether (DBE; Sigma-Aldrich Inc., St. Louis, MO, USA) at room temperature until
the tissue cleared.

4.9. ClearT

Following 4% PFA fixation, embryos were incubated in 20% formamide and 40%
formamide (vol/vol) in 0.1 M PBS (pH 7.4) for 30 min each, followed by 80% formamide
(vol/vol) and 95% formamide (vol/vol) for 2 h until they achieved optical clearance.

4.10. Immunostaining

Cleared embryos were incubated in PBST for 2 h and blocked with 2% bovine serum
albumin (BSA; Sigma-Aldrich, Inc., St. Louis, MO, USA) in PBST for 6 h. Embryos were
incubated with either anti-PRDM10 or anti-PRDM13 primary antibodies for 24-72 h, fol-
lowed by 3 washes in PBST for 2448 h each. They were then incubated in secondary
antibody (goat anti-rabbit IgG Hé&L, Alexa Fluor® 488), lectin dye (DyLight 594-labeled Ly-
copersicon Esculentum (Tomato) lectin), and DAPI in PBST for 24-72 h. Detailed information
about antibodies and dyes used in this study is provided in Table S1.
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nRIMS was prepared by mixing 0.8 g/mL Nycodenz (Axis-Shield Density Gradient
Media, Oslo, Norway) in 30 mL of a base buffer (0.01% sodium azide (Sigma-Aldrich,
Inc., St. Louis, MO, USA) and 0.1% Tween-20 in 0.1 M PBS; pH 7.5). Labeled embryos
were washed three times with PBST for 24-72 h and stored in 5 mL of #RIMS solution for
6-24 h. The embryos at E9.5 were incubated in a small confocal dish (SPL Life Sciences
Co., Gyeonggi-do, Korea) containing nRIMS and covered with a 24-mm coverslip (Paul
Marienfeld GmbH & Co., Lauda-Konigshofen, Germany). The embryos at E10.5-13.5 were
covered in nRIMS and sandwiched between two 24 x 60-mm coverslips with small 1-mm
thick magnets.

4.11. Image Processing

All clear images were captured using a digital camera (iPhone-X; Apple Inc., Elk Grove,
CA, USA) and a stereoscopic microscope (SMZ745T; Nikon, Tokyo, Japan). Fluorescent mi-
croscopy was performed with an EVOS FL Cell Imaging System (Thermo Fisher Scientific,
Waltham, MA, USA) at 4x magnification. Confocal microscopy was performed with an
LSM-780 confocal microscope (Carl Zeiss, Oberkochen, Germany) at 10 x magnification
using the associated Zeiss software. Three-dimensional images and videos were edited
into serial images using Imaris v8.01 software (Bitplane, Belfast, United Kingdom).

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/6/2892/s1. Figure S1: Comparison of optical transparency achieved in mouse embryos
processed via IMPACT-Basic and IMPACT-Advance; Figure S2. Fluorescence images in E9.5 mouse
embryos via IMPACT-Basic; Figure S3: Comparison of optical transparency in E13.5 mouse embryos
achieved by iDISCO+, BABB, CUBIC, RTF, and ClearT; Figure S4: Blood vessel imaging in mouse
embryos at E10.5 and E13.5; Table S1: Antibodies and dyes used in this study; Table S2: An outline
of PRDM10 and PRDM13 mouse embryonic expression; Video S1: Three-dimensional images of
PRDM10 immunostaining in a cleared E9.5 mouse embryo; Video S2: Three-dimensional images of
PRDM13 immunostaining in a cleared E9.5 mouse embryo; Video S3: Three-dimensional images of
PRDM10 immunostaining in focused midbrain in a cleared E13.5 mouse embryo.
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Abbreviations

PACT Passive clearing technique

mPACT Modified passive clearing technique

IMPACT  Initial embedding passive clearing technique

CNS Central nervous system

PRDM PR domain

Clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in

CLARITY situ-hybridization-compatible tissue-hydrogel

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Chung, K.; Wallace, J.; Kim, S.Y.; Kalyanasundaram, S.; Andalman, A.S.; Davidson, T.J.; Mirzabekov, ].J.; Zalocusky, K.A.; Mattis,
J.; Denisin, A.K,; et al. Structural and molecular interrogation of intact biological systems. Nature 2013, 497, 332-337. [CrossRef]
[PubMed]

Yang, B.; Treweek, ].B.; Kulkarni, R.P; Deverman, B.E.; Chen, C.K.; Lubeck, E.; Shah, S.; Cai, L.; Gradinaru, V. Single-cell
phenotyping within transparent intact tissue through whole-body clearing. Cell 2014, 158, 945-958. [CrossRef] [PubMed]

Woo, ].; Lee, M.; Seo, ] M.; Park, H.S.; Cho, Y.E. Optimization of the optical transparency of rodent tissues by modified PACT-based
passive clearing. Exp. Mol. Med. 2016, 48, e274. [CrossRef]

Woo, ].; Lee, E.Y,; Park, H.S.; Park, ].Y.; Cho, Y.E. Novel Passive Clearing Methods for the Rapid Production of Optical Transparency
in Whole CNS Tissue. J. Vis. Exp. 2018. [CrossRef]

Woo, J.; Kang, H.; Lee, E.Y.; Park, S.; Cho, Y.E. Investigation of PRDM7 and PRDM12 expression pattern during mouse embryonic
development by using a modified passive clearing technique. Biochem. Biophys. Res. Commun. 2020, 524, 346-353. [CrossRef]
Sharpe, J.; Ahlgren, U.; Perry, P,; Hill, B.; Ross, A.; Hecksher-Sorensen, J.; Baldock, R.; Davidson, D. Optical projection tomography
as a tool for 3D microscopy and gene expression studies. Science 2002, 296, 541-545. [CrossRef] [PubMed]

Sharpe, J. Optical projection tomography as a new tool for studying embryo anatomy. J. Anat. 2003, 202, 175-181. [CrossRef]
[PubMed]

Hohenauer, T.; Moore, A.W. The Prdm family: Expanding roles in stem cells and development. Development 2012, 139, 2267-2282.
[CrossRef] [PubMed]

Fog, C.K,; Galli, G.G.; Lund, A.-H. PRDM proteins: Important players in differentiation and disease. Bioessays 2012, 34, 50—60.
[CrossRef] [PubMed]

Hofvander, J.; Puls, E; Pillay, N; Steele, C.D.; Flanagan, A.M.; Magnusson, L.; Nilsson, J.; Mertens, F. Undifferentiated pleomorphic
sarcomas with PRDM10 fusions have a distinct gene expression profile. J. Pathol. 2019, 249, 425-434. [CrossRef]

Hofvander, J.; Tayebwa, J.; Nilsson, J.; Magnusson, L.; Brosjo, O.; Larsson, O.; Vult von Steyern, F.; Mandahl, N.; Fletcher, C.D.;
Mertens, F. Recurrent PRDM10 gene fusions in undifferentiated pleomorphic sarcoma. Clin. Cancer Res. 2015, 21, 864—869.
[CrossRef] [PubMed]

Zamanian Azodi, M.; Rezaei Tavirani, M.; Rezaei Tavirani, M.; Vafaee, R.; Rostami-Nejad, M. Nasopharyngeal Carcinoma Protein
Interaction Mapping Analysis via Proteomic Approaches. Asian Pac. ]. Cancer Prev. 2018, 19, 845-851. [CrossRef]

Chen, N.; Hu, T,; Gui, Y.; Gao, |.; Li, Z.; Huang, S. Transcriptional regulation of Bcl-2 gene by the PR/SET domain family member
PRDM10. Peer] 2019, 7, €6941. [CrossRef] [PubMed]

Sorrentino, A.; Federico, A.; Rienzo, M.; Gazzerro, P.; Bifulco, M.; Ciccodicola, A.; Casamassimi, A.; Abbondanza, C. PR/SET
Domain Family and Cancer: Novel Insights from the Cancer Genome Atlas. Int. . Mol. Sci. 2018, 19, 3250. [CrossRef] [PubMed]
Behrends, U.; Schneider, I.; Rossler, S.; Frauenknecht, H.; Golbeck, A.; Lechner, B.; Eigenstetter, G.; Zobywalski, C.; Muller-
Weihrich, S.; Graubner, U.; et al. Novel tumor antigens identified by autologous antibody screening of childhood medulloblastoma
cDNA libraries. Int. ]. Cancer 2003, 106, 244-251. [CrossRef]

Bessodes, N.; Parain, K.; Bronchain, O.; Bellefroid, E.J.; Perron, M. Prdm13 forms a feedback loop with Ptfla and is required for
glycinergic amacrine cell genesis in the Xenopus Retina. Neural. Dev. 2017, 12, 16. [CrossRef] [PubMed]

Goodson, N.B.; Nahreini, J.; Randazzo, G.; Uruena, A.; Johnson, J.E.; Brzezinski, ].A.T. Prdm13 is required for Ebf3+ amacrine cell
formation in the retina. Dev. Biol. 2018, 434, 149-163. [CrossRef]

Mona, B.; Uruena, A.; Kollipara, RK.; Ma, Z.; Borromeo, M.D.; Chang, ].C.; Johnson, J.E. Repression by PRDM13 is critical for
generating precision in neuronal identity. Elife 2017, 6. [CrossRef] [PubMed]

Hanotel, J.; Bessodes, N.; Thelie, A.; Hedderich, M.; Parain, K.; Van Driessche, B.; Brandao Kde, O.; Kricha, S.; Jorgensen, M.C.;
Grapin-Botton, A.; et al. The Prdm13 histone methyltransferase encoding gene is a Ptfla-Rbpj downstream target that suppresses
glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev. Biol. 2014, 386, 340-357. [CrossRef]
[PubMed]

Casamassimi, A.; Rienzo, M.; Di Zazzo, E.; Sorrentino, A.; Fiore, D.; Proto, M.C.; Moncharmont, B.; Gazzerro, P.; Bifulco, M.;
Abbondanza, C. Multifaceted Role of PRDM Proteins in Human Cancer. Int. . Mol. Sci. 2020, 21, 2648. [CrossRef]
Gomez-Gaviro, M.V,; Balaban, E.; Bocancea, D.; Lorrio, M.T.; Pompeiano, M.; Desco, M.; Ripoll, J.; Vaquero, ].J. Optimized CUBIC
protocol for three-dimensional imaging of chicken embryos at single-cell resolution. Development 2017, 144, 2092-2097. [CrossRef]
[PubMed]


http://doi.org/10.1038/nature12107
http://www.ncbi.nlm.nih.gov/pubmed/23575631
http://doi.org/10.1016/j.cell.2014.07.017
http://www.ncbi.nlm.nih.gov/pubmed/25088144
http://doi.org/10.1038/emm.2016.105
http://doi.org/10.3791/57123
http://doi.org/10.1016/j.bbrc.2019.12.133
http://doi.org/10.1126/science.1068206
http://www.ncbi.nlm.nih.gov/pubmed/11964482
http://doi.org/10.1046/j.1469-7580.2003.00155.x
http://www.ncbi.nlm.nih.gov/pubmed/12647867
http://doi.org/10.1242/dev.070110
http://www.ncbi.nlm.nih.gov/pubmed/22669819
http://doi.org/10.1002/bies.201100107
http://www.ncbi.nlm.nih.gov/pubmed/22028065
http://doi.org/10.1002/path.5326
http://doi.org/10.1158/1078-0432.CCR-14-2399
http://www.ncbi.nlm.nih.gov/pubmed/25516889
http://doi.org/10.22034/APJCP.2018.19.3.845
http://doi.org/10.7717/peerj.6941
http://www.ncbi.nlm.nih.gov/pubmed/31143550
http://doi.org/10.3390/ijms19103250
http://www.ncbi.nlm.nih.gov/pubmed/30347759
http://doi.org/10.1002/ijc.11208
http://doi.org/10.1186/s13064-017-0093-2
http://www.ncbi.nlm.nih.gov/pubmed/28863786
http://doi.org/10.1016/j.ydbio.2017.12.003
http://doi.org/10.7554/eLife.25787
http://www.ncbi.nlm.nih.gov/pubmed/28850031
http://doi.org/10.1016/j.ydbio.2013.12.024
http://www.ncbi.nlm.nih.gov/pubmed/24370451
http://doi.org/10.3390/ijms21072648
http://doi.org/10.1242/dev.145805
http://www.ncbi.nlm.nih.gov/pubmed/28432219

Int. J. Mol. Sci. 2021, 22, 2892 15 of 15

22.

23.

24.

25.

26.

27.

28.

29.

30.

Park, J.A.; Kim, K.C. Expression patterns of PRDM10 during mouse embryonic development. BMB Rep. 2010, 43, 29-33.
[CrossRef] [PubMed]

Kolesova, H.; Capek, M.; Radochova, B.; Janacek, J.; Sedmera, D. Comparison of different tissue clearing methods and 3D imaging
techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 2016, 146, 141-152.
[CrossRef] [PubMed]

Hama, H.; Kurokawa, H.; Kawano, H.; Ando, R.; Shimogori, T.; Noda, H.; Fukami, K.; Sakaue-Sawano, A.; Miyawaki, A. Scale: A
chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 2011, 14, 1481-1488.
[CrossRef] [PubMed]

Kuwajima, T.; Sitko, A.A.; Bhansali, P.; Jurgens, C.; Guido, W.; Mason, C. ClearT: A detergent- and solvent-free clearing method
for neuronal and non-neuronal tissue. Development 2013, 140, 1364-1368. [CrossRef] [PubMed]

Ke, M.T.; Fujimoto, S.; Imai, T. SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruc-
tion. Nat. Neurosci. 2013, 16, 1154-1161. [CrossRef] [PubMed]

Renier, N.; Wu, Z; Simon, D.J.; Yang, ].; Ariel, P,; Tessier-Lavigne, M. iDISCO: A simple, rapid method to immunolabel large
tissue samples for volume imaging. Cell 2014, 159, 896-910. [CrossRef]

Dodt, H.U.; Leischner, U.; Schierloh, A.; Jahrling, N.; Mauch, C.P.; Deininger, K.; Deussing, ].M.; Eder, M.; Zieglgansberger, W.;
Becker, K. Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 2007,
4,331-336. [CrossRef]

Yu, T,; Zhu, J.; Li, Y.; Ma, Y.; Wang, J.; Cheng, X,; Jin, S.; Sun, Q.; Li, X.; Gong, H.; et al. RTF: A rapid and versatile tissue optical
clearing method. Sci. Rep. 2018, 8, 1964. [CrossRef]

Susaki, E.A.; Tainaka, K.; Perrin, D.; Yukinaga, H.; Kuno, A.; Ueda, H.R. Advanced CUBIC protocols for whole-brain and
whole-body clearing and imaging. Nat. Protoc. 2015, 10, 1709-1727. [CrossRef] [PubMed]


http://doi.org/10.5483/BMBRep.2010.43.1.029
http://www.ncbi.nlm.nih.gov/pubmed/20132732
http://doi.org/10.1007/s00418-016-1441-8
http://www.ncbi.nlm.nih.gov/pubmed/27145961
http://doi.org/10.1038/nn.2928
http://www.ncbi.nlm.nih.gov/pubmed/21878933
http://doi.org/10.1242/dev.091844
http://www.ncbi.nlm.nih.gov/pubmed/23444362
http://doi.org/10.1038/nn.3447
http://www.ncbi.nlm.nih.gov/pubmed/23792946
http://doi.org/10.1016/j.cell.2014.10.010
http://doi.org/10.1038/nmeth1036
http://doi.org/10.1038/s41598-018-20306-3
http://doi.org/10.1038/nprot.2015.085
http://www.ncbi.nlm.nih.gov/pubmed/26448360

	Introduction 
	Results 
	Generation of Transparent Mouse Embryos Using a PACT-Based Modified Tissue Clearing Method 
	Profiling of PRDM10 and PRDM13 Expression in Early-Stage Mouse Embryos via IMPACT-Basic 
	Development of Embryo-Specific IMPACT-Advance to Achieve Tissue Clarity and Retain Intact Organs in Large Embryo Section 
	Profiling of PRDM10 and PRDM13 Expression in E13.5 Mouse Embryos via IMPACT-Advance 

	Discussion 
	Materials and Methods 
	Animal 
	Isolation of Mouse Embryo and Tissue 
	Original PACT and mPACT 
	IMPACT-Basic and IMPACT-Advance 
	RTF 
	CUBIC 
	BABB 
	iDISCO+ 
	ClearT 
	Immunostaining 
	Image Processing 

	References

