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Abstract: Skeletal muscle regeneration is highly dependent on the inflammatory response. A wide
variety of innate and adaptive immune cells orchestrate the complex process of muscle repair. This
review provides information about the various types of immune cells and biomolecules that have
been shown to mediate muscle regeneration following injury and degenerative diseases. Recently
developed cell and drug-based immunomodulatory strategies are highlighted. An improved under-
standing of the immune response to injured and diseased skeletal muscle will be essential for the
development of therapeutic strategies.

Keywords: inflammation; myogenesis; mesenchymal stem cell; T cell; macrophage; immunomodula-
tory therapy

1. Introduction

Skeletal muscle injury or disease can result in an inflammatory response in which
phagocytes and lymphocytes rapidly invade the tissue to influence satellite cell activation,
proliferation, and terminal differentiation (Figure 1) [1,2]. Immediately after injury, the
muscle cells begin to undergo necrosis. A compromised sarcolemma causes the cellular
contents to be released into the extracellular space. Infiltrating immune cells, such as
neutrophils and macrophages, start clearing out the necrotic cell debris and also secrete
various growth factors and cytokines to recruit more immune cells to the site of injury [3].
Neutrophils appear to play a transient role and are quickly replaced by macrophages,
which persist for weeks to months (Figure 2). Macrophages exhibit diverse phenotypes
and can promote either muscle injury or repair depending upon the severity of the injury
and the timing of phenotypic (M1/M2) transition [4–6].
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Figure 1. Skeletal muscle regeneration is dependent on the inflammatory response. Following 
acute injuries, the pro-inflammatory cells support satellite cell proliferation, while anti-inflamma-
tory cells support differentiation (top). In chronic injuries, persistent inflammation impairs satellite 
cell activity resulting in muscle wasting and fibrosis (bottom). Adapted from [7].  

 
Figure 2. Inflammatory cells of the innate and adaptive immune system participate in the process 
of muscle regeneration and repair. Blue arrows indicate immune cells recruiting each other 
through the secretion of various soluble mediators. 

Macrophages are also believed to be responsible for recruiting T cells to the site of 
muscle injury [8]. The two main T cell types—helper (CD4) and cytotoxic (CD8) can be 
detected in the wound site as early as three days post-injury [9–11]. Similar to macro-
phages, T cells have been shown to persist at the site of injury for several weeks after 
trauma. The sustained presence of these cell types at the site of injury suggests that they 
are critically involved in the regenerative process. 

Figure 1. Skeletal muscle regeneration is dependent on the inflammatory response. Following acute
injuries, the pro-inflammatory cells support satellite cell proliferation, while anti-inflammatory cells
support differentiation (top). In chronic injuries, persistent inflammation impairs satellite cell activity
resulting in muscle wasting and fibrosis (bottom). Adapted from [7].
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Figure 2. Inflammatory cells of the innate and adaptive immune system participate in the process of
muscle regeneration and repair. Blue arrows indicate immune cells recruiting each other through the
secretion of various soluble mediators.

Macrophages are also believed to be responsible for recruiting T cells to the site of
muscle injury [8]. The two main T cell types—helper (CD4) and cytotoxic (CD8) can be
detected in the wound site as early as three days post-injury [9–11]. Similar to macrophages,
T cells have been shown to persist at the site of injury for several weeks after trauma. The
sustained presence of these cell types at the site of injury suggests that they are critically
involved in the regenerative process.
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In this work, we review various experimental studies that have attempted to distin-
guish between the features of the inflammatory response that promote muscle damage,
fibrosis, or repair. Several cell types and biomolecules have emerged as targets for therapy
design and the development of immunomodulatory strategies is an active area of research
for skeletal muscle trauma. While it has been suggested that a heightened and prolonged
inflammatory response is detrimental for muscle regeneration, it has also been shown that
ablating inflammation is not an effective approach for muscle repair. The precise conditions
in which inflammation results in a functionally beneficial regenerative response are unclear.
Nevertheless, the activity of invading immune cell types and their actions on resident
muscle stem cells largely dictate the regenerative outcome, and the purpose of this review
is to highlight and describe the activity of key cellular players in the immune response to
injured and diseased muscle tissue.

2. Innate Immune Cells Influence Muscle Regeneration
2.1. The Role of Neutrophils in Muscle Regeneration

Muscle damage is common and can result from sports-related injuries or diseases, such
as muscular dystrophy. Mechanical changes that cause trauma or stress to muscle mem-
branes, resulting from injury or overload, initiate a cascade of events that ultimately lead
to granulocyte, primarily phagocytic neutrophil infiltration into the site of injury [12–14].
Perturbations of skeletal muscle propagates the release of pro-inflammatory cytokines such
as tumor necrosis factor α (TNF-α) and interleukin (IL)-1β [12]. These cytokines act on the
endothelium of adjacent vasculature causing the release of IL-6 and IL-8 (also known as
CXCL8 or neutrophil chemotactic factor) [3,12]. These cytokines, especially IL-8, serve as
chemoattractants for neutrophils and cause their migration from circulation into areas of
damage [3]. Neutrophils can appear as early as one hour after muscle injury [15,16] and
persist for up to a week [17,18].

Their primary role in injured tissue is to remove cellular debris through phagocytosis
and recruit macrophages to the wound environment [12,14]. Once activated, neutrophils
generate a robust inflammatory response through the release of cytokines (e.g., TNF-α,
IL-1, and more IL-8) [19], proteases, and reactive oxygen species (ROS; ex: O2

-, H2O2, OH-,
HClO) [20]. The removal of cellular and fiber debris facilitates muscle regeneration and
connective tissue deposition [12]. Additionally, neutrophils can secrete chemoattractants
to recruit macrophages to the site of damage. Macrophage infiltration can influence
various steps in the process of muscle regeneration, which are described in detail below.
Interestingly, macrophage mediated clearance of apoptotic neutrophils stimulates the
secretion of TGF-β1 and IL-10, and polarizes the macrophages to an anti-inflammatory
phenotype [21]. Besides muscle fiber regeneration, neutrophils can also impact nerve
healing and removal of neutrophils may be detrimental to reinnervation [22]. The role of
neutrophils is not fully understood, but there is some evidence from a variety of systems to
suggest that they can also promote tissue regeneration through regulating angiogenesis
and lymphangiogenesis [23,24].

Further evidence for the critical role of neutrophils in muscle regeneration is provided
by studies where neutrophils were depleted. For instance, mice injected with a snake
venom toxin had significant necrosis and an impaired regenerative response in the absence
of neutrophils [25]. Other studies have suggested that neutrophils do not significantly
impact muscle recovery. In one research study, animals were subjected to ten days of
hind limb unloading, followed by depletion of neutrophils (using the Ly6G/Ly6C (Gr-1)
antibody) and then subsequent reloading [26]. The results showed that neutrophil depletion
had no impact on the loss of force or recovery of the atrophied fibers [26]. However,
it should be noted that incubating soleus muscle after unloading/loading with LPS, a
neutrophil activator, led to a 20% greater deficit in force, as well as increased muscle damage,
when compared to muscle with depleted neutrophils. The potential for neutrophils to
worsen muscle damage and exacerbate injury has also been studied extensively. For
example, neutrophil-derived mediators can cause myofiber lesions, membrane lysis, and
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the oxidative degradation of lipids [2,12,27,28]. While muscle cells will release protective
factors and antioxidants such as superoxide dismutase 2 (SOD-2), glutathione peroxidase
(GPX), catalase (CAT), and thioredoxin (TRX) which will shield them from the detrimental
effects of neutrophil oxidants, overproduction of cytolytic and cytotoxic compounds by
neutrophils can further injure the already damaged surrounding tissue [2,29,30].

Substantial research focused on the impact of neutrophils in muscle damage began
in the 1980s, and strong evidence suggests that they hinder rather than help muscle re-
generation. One of the earliest studies conducted on the topic demonstrates that blocking
neutrophil adhesion activity with the anti-CD11b antibody M1/70 reduces oxidant produc-
tion and myofiber damage after stretch injury at early time points [31]. Blocking CD11b or
CD11a has had beneficial effects in a traumatic skeletal injury model induced by a needle
puncture as well, with a general reduction in myofiber damage [32]. Other methods of
inhibiting neutrophil activity after exercise also mitigate overall muscle cell damage. For
example, inhibiting neutrophil activity by mutating the gp91-phox gene, which ultimately
leads to superoxide production, protects fibers from damage after hind limb unloading,
with a significant reduction in membrane lysis [33]. In a similar study of loading and
unloading exercise, mice deficient in neutrophil-derived myeloperoxidase enzyme (MPO)
enzyme had significantly less myofiber lysis [34].

Further support for the detrimental role of neutrophils came from a study that report-
edly depleted them through with a Ly6G antibody to block activity after exhaustive exercise,
and this resulted in reduced myofiber lesions [35]. These observations were correlated with
a reduction in TNF-α, IL-6, and macrophage infiltration providing evidence that these are
some of the mediators by which neutrophils can cause tissue damage [35]. Neutrophils also
mediate destruction through the β2 integrin receptor CD18 and inhibiting this receptor led
to a decrease in force deficit and overall oxidative damage with a concomitant increase in
the proportion and cross-sectional area of regenerating fibers [15].

The role of neutrophils in exacerbating ischemia reperfusion (I/R) injuries has been
well documented [36]. At the site of I/R injury, neutrophils release ROS, proteinases,
proinflammatory cytokines and chemokines [2]. Together, these mediators can increase
the immune response and lead to tissue necrosis. Once again, the depletion of neutrophils
reduced the extent of injury [37,38] and functional deficits [39] following I/R injury.

Besides injuries, neutrophil-mediated muscle damage is also heavily implicated in my-
opathies, such as muscular dystrophy that show chronic and persistent inflammation [29].
Neutrophil elastase and ROS were found elevated in an animal model of muscular dys-
trophy (mdx) and contribute to a reduction in myoblast survival and differentiation [40].
Depleting neutrophils in young mdx mice reduced muscle breakdown and blocking TNF-α
activity with etanercept decreased exercise-induced muscle damage in adult mdx mice [41].
Utilizing other TNF-α blockers, such as infliximab, also proved beneficial and reduced
muscle damage, as evidenced by reduced inflammation and necrosis, along with increased
myotube formation [42]. Collectively, these results suggest that either removing neutrophils
or blocking mediators of inflammatory activity, such as TNF-α, has beneficial effects on
muscle regeneration and supports the hypothesis that neutrophils harm muscle.

Neutrophils have also been implicated in the age-associated decline in muscle re-
generation. Neutrophils and macrophages often work in concert to promote the immune
response following injury [43]. Similar correlation has been found in aged animals follow-
ing contusion injury, where an increase in macrophage and neutrophil populations was
found [44,45]. However, some studies have highlighted a decline in cellular activity with
aging. For instance, a lower phagocytic capacity of macrophages was implicated in the
slowing down of the regenerative process [46].

Based on the review of published literature, it appears that neutrophils play dual roles
in the muscle regeneration process where they can promote muscle damage and contribute
to muscle repair through different mechanisms.
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2.2. Macrophages

Macrophages are highly versatile innate effector cells that play a critical role in the
mounting and resolution of inflammatory responses [47,48]. Monocytes, originating in
the bone marrow, differentiate into macrophages once they reach the tissue and are influ-
enced by the inflammatory milieu and pathogen-associated pattern recognition receptors
(PRR) [49,50]. Both tissue-resident and recruited macrophages play important roles in
skeletal muscle tissue repair following injury [1,51,52]. While resident macrophages act as
initial sensors of pathological events, recruited macrophages amplify the inflammatory re-
sponse and form a link between innate and adaptive immunological responses [53]. Recent
studies further highlight that resident and recruited macrophages are developmentally
and functionally distinct [54,55]. Macrophages have several functions in muscle repair
and remodeling, including phagocytosis, enzyme secretion, cytokine and growth factor
production, antigen presentation, and immune cell recruitment.

Macrophages exhibit complex and hybrid phenotypes as a result of the wide range of
activation states they experience [56]. According to a nomenclature introduced in 2000 [57],
macrophage activation states may include “classically activated” (M1) macrophages that are
pro-inflammatory and “alternatively activated” (M2) macrophages that are
anti-inflammatory [52]. Under in vitro conditions, the activation state of macrophages
was observed to be analogous to the helper T cell type 1 (Th1) and type 2 (Th2) observed
for T lymphocytes (T cells); however, in vivo macrophages demonstrate a wide variety of
phenotypes based on the complexity of signals present in the tissue [52,56,58]. In response
to LPS treatment or interferon γ (IFN-γ), macrophages become classically activated. M1
macrophages are characterized by the expression of inducible nitrogen oxide synthase
(iNOS), pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, IL-12), CD68, and Toll-like
receptor (TLR) ligands. In response to IL-4 and IL-13 acting on common receptor chain,
IL-4Rα, macrophages become alternatively activated [59]. M2 macrophages are charac-
terized by the expression of arginase-1 (ARG1), scavenger receptors (CD163), mannose
receptors (CD206), and/or anti-inflammatory cytokines (e.g., IL-10) [5,47,48,60–62]. Manto-
vani et al. further subdivided M2 macrophages into M2a, M2b, M2c, and M2d subtypes
based on their function and how they are induced by different stimulatory factors. The
M2a phenotype is obtained when macrophages are stimulated with IL-4 and IL-13 and
are also named wound-healing macrophages for their anti-inflammatory function. M2b
macrophages, named regulatory macrophages, play a role in immunoregulation by moni-
toring the extent of the immune response and the inflammatory reaction. M2b macrophages
are induced when exposed to immune complexes (IC) and TLR agonists or IL-1 receptor (IL-
1R) agonists. Stimulating macrophages with IL-10 and glucocorticoids induces the M2c phe-
notype aiding in immunosuppression, phagocytosis, and tissue remodeling [4,62–66]. M2d
macrophages, a novel subset of macrophages considered tumor-associated macrophages
(TAMs) and are induced by the co-stimulation of TLR ligands and A2 adenosine receptor
(A2R) agonists or IL-6. TAMs have been found to contribute to angiogenesis and cancer
metastasis while also playing a critical role in the inflammatory response of neoplastic
tissue [63,67,68]. While these macrophage phenotypes have been extensively characterized
in vitro, their role in regulating tissue regeneration in vivo is unclear. It should also be
noted that the M1 and M2 polarization states are hypothetical ends of a spectrum of activa-
tion states in which macrophages can exist. The in vivo polarization state of macrophages
can be highly complex and heterogeneous with a high degree of plasticity.

Skeletal muscle has remarkable regenerative capabilities following injury. After an
injury, a plethora of events occurs, including the activation of satellite cells (MuSC) (Pax7+)
and the infiltration of immune cells, such as neutrophils and macrophages [47,69]. Sev-
eral studies have demonstrated the importance of macrophages in the regeneration of
skeletal muscle using various injury models (e.g., hind limb ischemia, freeze-injury, un-
loading/loading sequences, myotoxic agent injection) [1,48,51,59,69–72]. After the initial
neutrophil influx at the site of injury, macrophages become the dominant inflammatory
cell type with peak levels at day 3 post injury [1,47,71].
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The recovery of skeletal muscle requires macrophages to phagocytize and remove
cellular debris from necrotic muscle tissue, while also producing a vast array of chemokines
and cytokines for recruitment of stem cells and coordination of the repair process. The
activation state of macrophages influences the myogenic process by acting on myogenic
precursor cells. In co-cultures, pro-inflammatory M1 macrophages were more influen-
tial in enhancing myogenic precursor cells proliferation, whereas anti-inflammatory M2
macrophages enhanced differentiation, indicated by myogenin expression and myotube
formation [59]. Another study demonstrated the supportive role pro-inflammatory M1
macrophages can play in vivo when injected together with myoblasts. The study found
that the co-delivery of these cells increased the efficiency of myoblast engraftment and
played a role in muscle regeneration by increasing migration and proliferation events but
delaying differentiation [73].

Besides paracrine influence on cellular function, macrophages can also have direct
cell-to-cell interactions. One study demonstrated that myogenic precursor cells were
rescued from apoptosis through direct contact with macrophages in vitro and in vivo [74]
via adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1; CD54) and
platelet endothelial cell adhesion molecule-1 (PECAM-1; CD31) [75].

2.3. Role of Macrophages in Muscle Injury

Muscle repair and regeneration following an acute muscle injury rely on an inflamma-
tory response which activates a series of interactions between immune cells and muscle
cells. The initial response mimics a Th1-like inflammatory response, with an influx of neu-
trophils, followed by CD68+ macrophages [1]. The presence of IFN-γ and TNF-α promotes
classical activation of Ly6C+ monocytes into the M1 phenotype macrophages [1,60]. Mono-
cytes are recruited to the site of injury by cells of both the innate and adaptive immune
system, such as neutrophils and CD8+ T cells, and are classified by the expression level of
Ly6C [76]. The interaction of CCR2/CCL2 and CX3CR1/CX3CL1 aids in the recruitment
and differentiation of monocytes into macrophages [59,77–79].

Cytotoxic (CD8+) T cells facilitate the expression of CCL2 by resident macrophages in
injured muscle, aiding in the recruitment of inflammatory monocytes [80]. Murine models
deficient in CCR2 experienced decreased monocyte infiltration impairing angiogenesis and
muscle regeneration whilst promoting adipocyte accumulation following a cardiotoxin-
induced injury [81]. Another study showcased that the presence of CCR2 is essential to
muscle regeneration, independent of TLR signaling, age, and sex in murine models as the
decreased infiltration of monocytes/macrophages promoted a pro-inflammatory microen-
vironment [82]. Another study using CD8 knockout mice showed decreased expression
of CCL2 resulting in impaired muscle regeneration and increased fibrosis [80]. Studies
in mice lacking CCR2 or CCL2 have shown that monocyte/macrophage infiltration is
impaired, altering the regenerative process directing myogenic precursor cells to promote
an adipogenic phenotype [83–87]. The role of CX3CR1/CX3CL1 in skeletal muscle regener-
ation is still not well studied; however, one study found that a CX3CR1 deficiency rescues
impaired muscle regeneration in CCL2 deficient mice following a notexin-induced muscle
injury [77]. Another study also found that a CX3CR1 deficiency affected macrophage
phagocytic functions, decreased insulin-like growth factor 1 (IGF-1) and IL-6 expression by
macrophages, and may have impaired myogenic precursor cell differentiation [70].

The differentiation of monocytes to macrophages is critical to an appropriate healing
response. In one study, the monocyte/macrophage population was depleted at various
stages before and after cardiotoxin-induced muscle injury using the CD11b-diphtheria
toxin receptor (DTR) transgenic mice. The results suggested that early ablations (days
0–2) resulted in greater impairment in regeneration, whereas later ablation (day 4) had
a minimal effect [48]. Early ablation resulted in deficient muscle regeneration due to
a decreased number of macrophages present at days 2 to 4, highlighting a role of pro-
inflammatory macrophages in tissue repair [48]. M1 macrophages are typically associated
with exacerbating tissue damage, with the potential of provoking a fibrotic healing re-
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sponse [88,89]. However, a study found that treatment of lacerated mouse muscles with
exogenous M1 macrophages reduced fibrosis and enhanced muscle regeneration, highlight-
ing a beneficial role for M1 macrophages in tissue repair [90]. In support, another study
also showed that in vitro polarized M1 (LPS/IFN-γ) macrophages may positively influence
muscle regeneration when injected into the gastrocnemius muscles after a tourniquet-
induced ischemia-reperfusion (TK-I/R) injury. It was shown that the early delivery of
M1 macrophages improved functional recovery, accelerated myofiber repair, decreased fi-
brotic tissue deposition, and increased whole muscle expression of IGF-1 following TK-I/R
injury [91].

As mentioned earlier, macrophage phenotypes (M1/M2) play distinct but comple-
mentary roles in skeletal muscle healing. In vitro and in vivo, M1 macrophages promote
muscle damage through the release of ROS and production of nitric oxide (NO) [2,12,92].
The concentration of NO present at the site of injury plays a role in its function; at high
concentrations, apoptosis may be induced, while at low concentrations it can help protect
cells against oxidative damage [93–95]. One study showed that NO activation was critical
in the early phases of skeletal muscle repair in a murine muscle crush injury, as it increased
MuSC proliferation and quantity [96,97]. The study demonstrated that the released NO
may play a role as a regulator between skeletal muscle regeneration and fibrosis [97].

Once pro-inflammatory (or M1-like) macrophages reach their peak concentration,
the pro-inflammatory microenvironment begins to convert into an anti-inflammatory
microenvironment with a higher concentration of M2-like macrophages. Recently, studies
have found that Forkhead box p3 (Foxp3+) CD4+ regulatory T cells (Treg) play a role in
inducing the M2 phenotype and aid in the shift from M1 macrophages to M2 macrophages
by producing IL-10 [98,99]. The study also showed that Tregs are recruited to the site
of injury by CCL2, similar to monocytes [99]. Studies show that the switch from M1
macrophages to M2 macrophages is a crucial step in skeletal muscle regeneration. The role
of IL-10 in mediating the transition between M1 to M2 macrophages was investigated in
mice experiencing muscle reloading after the induction of disuse atrophy due to hindlimb
unloading. IL-10 ablation significantly reduced the expression of M2 macrophage markers
(i.e., CD163 and Arg 1) following 4 days of reloading, indicating a key role in inducing
M2 polarization. The study also found that, without the induction of M2 macrophages,
muscle regeneration was reduced, and muscle fiber growth was significantly slowed [100].
The beneficial effect of M2 macrophages has also been demonstrated following endurance
exercise training in humans [101]. A significant increase in M2 macrophage quantity after
12 weeks of endurance exercise training was associated with myofiber hypertrophy and
satellite cell accumulation.

Therefore, the transition to an M2 macrophage phenotype is believed to be essential
for effective and complete tissue regeneration. A great deal of effort is being made to tissue
engineer therapies that will rapidly elicit an M2 macrophage phenotype upon transplan-
tation. For instance, scaffolds that release IL-4 [102,103], IL-10 [104,105] or present large
enough pore-sizes [106], are being designed with the goal to promote an M2 macrophage
phenotype in vivo.

At least one study has highlighted the importance of timing at which the polarization
of M1 and M2 macrophages takes place. It was shown that introducing M1 macrophages
in a temporally coordinated manner can improve angiogenesis and skeletal muscle regen-
eration following hind limb ischemia [107]. The study further concluded that the persistent
activation of M1 macrophages may exacerbate muscle tissue damage; however, the prema-
ture introduction of M2 macrophages in the acute inflammatory phase can interfere with
muscle regeneration, impeding muscle repair while promoting fibrosis [107].

Regeneration of skeletal muscle following chronic muscle injuries varies greatly from
the healing response of an acute muscle injury. The inflammatory response following a
chronic muscle injury differs from the cellular response observed in muscle injuries such
as crush, freeze, or toxin-induced injuries. Genetic dystrophies are associated with an
inflammatory component, evoked by DAMP release due to muscle fiber damage sustained
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during muscle contraction, and this ultimately results in fiber degeneration and loss
of motor unit function [11]. In one study, IL-10 expression was ablated in mdx mice
resulting in increased muscle damage and decreased strength [108]. The results of this
study suggest that IL-10 plays a role in deactivating M1 macrophages, attenuating the
dystrophic pathology at early, acute stages of the disease [108]. One study demonstrated
that the depletion of macrophages in an mdx murine model at the early, acute peak of muscle
pathology resulted in large reductions of lesions in the sarcolemma of muscle fibers [109].
Taken together, these studies demonstrate that M1 macrophages play a detrimental role in
muscular dystrophy due to their highly cytolytic nature, but a reduction in muscle damage
may be observed through M2 phenotype switch [110–112].

A defective MPC response, infiltration of macrophages, and heightened prolifer-
ation of matrix-producing cells are characteristics of chronic inflammation. Similar to
muscular dystrophy, VML also exhibits chronic inflammation with repeated degeneration–
regeneration cycles [113]. Studies working with VML defects in both rats and pigs found
that macrophages persisted in the defects for weeks to months, unlike the immune response
associated with an acute injury [113,114]. The role of extracellular matrix (ECM) scaffolds in
modulating macrophage phenotypes (M1/M2) has been extensively studied in the context
of VML. While some studies have shown positive regenerative outcomes with the induction
of an M2 macrophage phenotype, others have highlighted that synergistic roles played
by both M1 and M2 phenotypes that are critical for regeneration [115,116]. Following
autograft treatment of VML injury, mixed upregulation of pro- and anti-inflammatory
macrophage phenotypes is observed for several weeks post-injury. This mixed macrophage
phenotype was associated with improved regenerative outcomes and muscle function.

2.4. Role of Macrophages in Aged Muscle

Skeletal muscle undergoes several cellular and metabolic changes with aging, but
the underlying mechanisms are poorly characterized. Skeletal muscle aging is strongly
influenced by the imbalance of the damage and regeneration processes, at the molecular
and cellular levels [45,117–119]. The immune system is known to experience changes in
function with aging, and one study showed that factors released by young but not old bone
marrow cells supported myoblast proliferation and differentiation in vitro [120].

The predominant phenotypes of cells could also change with aging. In a study
comparing subpopulations of macrophages in young (average 31.9 years) and elderly
individuals (average 71.4 years), the results showed that the quantity of pro-inflammatory
M1 macrophages (CD11b+) was lower in elderly muscle at baseline and also in response to
resistance exercise when compared to younger muscle, while M2 macrophages (CD163+)
were more prevalent [121]. M2 macrophages are the major type of macrophage in healthy
skeletal muscle, while M1 macrophages are typically lower in abundance. Due to the
low-grade chronic state of inflammation observed in aged muscle, one would expect to
see an increase in M1 macrophages and decrease in M2 macrophages; however, a study
found that M2 macrophages (CD206+) increased with age while M1 macrophages (CD80+)
declined with age [122]. Another study comparing young (21–33 years) and elderly indi-
viduals (70–81 years) showed similar results. Higher CD206 gene expression was observed
in the muscles of elderly individuals, while no difference in total macrophage content
(CD68+) was detected. CD206, a M2 macrophage marker, is suggestive of an increase in the
proportion of anti-inflammatory macrophages in senescent muscle [123,124]. One study
showed an increase in IL-4 driven M2a macrophages (CD163+) in aged muscles, which
were implicated in muscle fibrosis. Loss of NO production in aged muscle enabled the rise
of M2a macrophages, resembling the mechanism driving fibrosis in mdx mice [109,125,126].
Collectively, these studies highlight a shift in M1/M2 phenotype balance with age, and a
potential detrimental role of increased M2 macrophage accumulation.

Interestingly, it has also been shown that ECM scaffolds derived from animals show
different remodeling outcomes and macrophage polarization depending on the age of the
source animal. It was found that ECM scaffolds from younger pigs (3–12 weeks old) stimu-
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lated a predominantly M2 macrophage response compared to older pigs (26–52 weeks old).
An M2 macrophage response was associated with greater myogenesis and lower fibro-
sis [127]. Therefore, age as a biological variable should be accounted for when studying
macrophage polarization.

3. Adaptive Immune Cells Mediate Muscle Regeneration
3.1. Helper and Cytotoxic T Cells

T and B lymphocytes are two of the main cell families that comprise the adaptive im-
mune system, which generates hyper-specific memory responses to immunological threats.
This review focuses on the T cells, which consist of CD4+ (helper) and CD8+ (cytotoxic)
groups. The CD8+ group is important for clearance of intracellular pathogens (e.g., viruses,
mycobacteria, etc.) and emergent neoplasms by direct cell killing. The CD4+ population is
the most abundant, well-characterized, and impactful group on overall immune function
as their name, helper, indicates their coordination of all immune responses. This help to
all the other cells of the immune system is proffered by the cytokine milieu produced by
different effector phenotypes of CD4+ T cells, which includes Th1, Th2, Th17, Tfh, and Treg
subsets. The help these cells offer is tuned to the type of threat or stage/progress of immune
response. These phenotypes are well-characterized and detailed elsewhere [128]. Many
of the cytokine signals that potentiate or come from CD8+, Th1 and Th17 cells polarize
macrophages toward a pro-inflammatory M1 phenotype, while Th2 and Treg-inducing cy-
tokines promote an anti-inflammatory M2 phenotype. The timing and sources of cytokines
eliciting macrophage and Treg responses may be tissue-dependent and is an important line
of inquiry requiring further research [129–131].

CD8+ T cells develop into cytotoxic T cells which can directly destroy infected cells by
inducing apoptosis via release of contents from cytolytic granules and/or interaction with
death receptor Fas on target cells by Fas Ligand on the CD8+ [128]. The T cell granules
contain perforins, cytolysins, proteases, and granulolysins that are all designed to degrade
a cell [128]. The main focus of the review is pro-inflammatory CD8+ and CD4+ (Th1, Th2,
and Th17) and immunosuppressive regulatory CD4+ (Treg) cells as they relate to muscle
physiology; however, B cells and Natural Killer cells have been found in myopathies and
post-exercise, respectively [132–134].

3.2. T Cell Response to Muscle Injury

Growing evidence suggests that T cells can mediate tissue repair by influencing cell
types such as macrophages, stem cells, and myoblasts which act in concert to promote
muscle fiber regeneration. They also secrete a wide variety of factors that can skew the
healing environment towards either a pro-inflammatory or pro-regenerative response.

In a cardiotoxin model of muscle injury, T cells facilitated regeneration and their ab-
sence dramatically hindered recovery. Mice lacking CD8+ T cells (CD8-/-) after cardiotoxin
injury showed markedly less regeneration as evidenced by smaller cross-sectional area
(CSA) and heightened matrix deposition [80]. When T cells were then transplanted into
CD8-/- animals, regeneration was enhanced [80]. It is likely that the improvement is due
to the presence of Gr1High macrophages, which are recruited to the muscle by monocyte
chemoattractant protein 1 (MCP-1), released by CD8+ T cells [80]. As Gr1High macrophages
promote MuSC proliferation, the stem cell pool decreases in the absence of T cells leading
to diminished regeneration [80].

In another model of cardiotoxin injury, Rag1-/- mice, which lack T and B-cells, were
subjected to injury and displayed significantly delayed regeneration marked by a reduction
in fiber organization, size, and myofibers with centrally located nuclei (CLN) [135]. These
detrimental effects were recovered after transplanting activated CD3+ T and B-cells into
injured Rag1-/- mice [135]. In addition to mediating macrophage activity, the negative side
effects of removing T cells may be partly due to reduced stem cell and myogenic activity in
their absence. Activated T cells or T cell conditioned media cultured with muscle stem cells
caused an increase in the proliferation of stem cells that were Pax7high and MyoDlow [135].
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Likewise, conditioned media collected from IL-2 and CD3 activated lymphocytes was
cultured with myoblasts and they exhibited reduced differentiation, with downregulation
of myoblast determination protein 1 (MyoD) and myogenin [136].

Similar effects have been seen in multi-muscle injury models, in which the extensor
digitorum longus (EDL) and tibialis anterior (TA) are injured with a cardiotoxin injection.
In these injuries, blocking IFN-γ receptor signaling with an antibody negatively impacted
muscle regeneration [137]. CD4+ T cells, natural killer cells, macrophages, and myoblasts
express IFN-γ during muscle injury, and blocking the IFN-γ receptors on these cell types
resulted in decreased fiber regeneration, cellular proliferation, and MyoD+ cells [137].
In vitro, blocking the IFN-γ receptor on C2C12 cells caused a decrease in proliferation and
myoblast fusion providing further evidence of the positive impact that T cells contribute to
muscle regeneration through the release of their cytokines [137].

In composite injuries consisting of VML defects and open tibia fractures, the extent
of damage can prolong T cell presence past the 3-day mark where they are initially found
significantly elevated in VML injuries [138]. VML injury impaired bone regeneration and
maintained elevated levels of both CD4+ and CD8+ T cells at 3, 14, and 28 days post-
composite trauma [9]. Minced muscle graft (MMG) treatment attenuated the inflammatory
response generated by composite injuries and reduced CD4+ T cell but not CD8+ T cell
infiltration into the defect site 3 days post-injury [138]. MMG treatment had an overall
depressive effect on the inflammatory response and encouraged regeneration through
factor release (e.g., MCP-1, IL-10, and IGF-1) and satellite cell delivery [138].

It has also been shown that in treating muscle with bioengineered scaffolds, T cells are
necessary for proper healing. In a traumatic muscle injury model, in which a portion of the
quadriceps was excised and subsequently treated with either a bone or cardiac derived
ECM scaffold, T cells were significantly elevated in response to the scaffold [139]. The ECM
scaffolds reportedly modified the T cell composition towards a pro-regenerative CD4+ Th2
cell response [139]. Th2 cytokine IL-4 was also present in scaffold-treated wounds, while
Th1 cytokine genes Ifng, Fasl, Cd28, and Tbx21 were downregulated [139]. Associated with
the Th2 response was an inhibition of M1 macrophages and activation of M2 macrophages,
which are essential for muscle regeneration [139]. CD4+ T cells were also found to be
important in the healing of ischemia-induced muscle injuries. In a model of ischemia, the
gastrocnemius, plantaris, and soleus muscles were treated with alginate gels containing
conditioned media from different subsets of CD4+ T cells (Th1, Th2, Th17, and Treg) [140].
By mixing cytokines from the different subsets of cells, it was found that conditioned
media from differing combinations of CD4+ T cell subsets could regulate angiogenesis and
myogenesis [140]. For instance, Th2 and Th17 cytokines augmented angiogenesis while
Th1 cytokines induced vascular regression. A combination of Th1, Th2, and Th17 cytokines
supported MPC proliferation but not differentiation. Treg cytokines had little to no effect
on angiogenesis or myogenesis in vitro or in vivo in this model.

In support, other studies have also shown that T cells may play a supportive role
in muscle regeneration through interaction with MPCs. Activated T cells release several
growth factors that can influence MuSC activity, including but not limited to fibroblast
growth factor-2 (FGF-2), IFN-γ, TGF-β, TNF-α, IL-1, IL-4, and IL-13 [135,141,142]. One
study identified that the combination of IL-1, IL-13, TNF-α, and IFN-γ pro-inflammatory
cytokines, played a role in maintaining MPC potency and stimulating MPCs to proliferate
in vivo [135].

An over-abundance of T cell infiltrate can be detrimental to tissue regeneration. The
effects of this were illustrated in a study that induced TA injury via a cardiotoxin in
Cbl-b (ubiquitin ligase) deficient mice, which increased the activation and infiltration of
macrophages [8]. Cbl-b-/- mice displayed poor healing, as indicated by increased fibrosis
and inflammation [8]. As the ubiquitin ligase also helps regulate CD8+ T cells, the presence
of the T cells was increased in the injured muscle [8]. The authors also identified that
RANTES (CCL5), a chemokine secreted by macrophages, delayed T cell clearance and
allowed them to persist for up to two weeks after injury [8]. Blocking RANTES activity
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with a neutralizing antibody rescued regeneration, leading to reduced CD8+ T cell infiltrate
and fibroblast aggregation [8].

It should be noted that most of the models presented here are acute injuries, and in
more chronic injuries, as seen with composite bone and muscle damage [10], T cell presence
can be prolonged and potentially contribute to further damage. Therefore, when selecting
therapies for muscle, T cells may present a good target to reduce inflammation and aberrant
regeneration in chronic injuries.

3.3. T Cell Response to Exercise

Exercise-induced muscle damage can increase T cell presence in skeletal muscle.
However, the extent of T cell infiltration and activity appears to be highly dependent on
the type, intensity, and duration of exercise. For instance, strenuous eccentric cycling for
30 min did not increase T or B cell detection in skeletal muscle [143]. In another study,
human subjects undergoing 45 min uphill or downhill running exercises did not experience
significant differences in inflammation compared to non-exercised controls. Only the
downhill running group reported delayed-onset muscle soreness (DOMS) with elevated
T cells, neutrophils, and macrophages compared to the non-DOMS experiencing group.
However, neither group was significantly different from the control group [144]. In contrast,
other studies have reported heightened T cell presence following exercise. For example, T
cell levels were found elevated in experienced athletes participating in an ultra-endurance
exercise bout for 24 h. The numbers of total T cells, CD8+ cells, and macrophages (CD68+)
were found to be 2–3 fold higher after 28 h of exercise [145]. Along with an increase in
T cell populations, major histocompatibility class 1 (MHC I) expression was increased in
muscle fibers. As healthy skeletal muscle normally shows very low MHC class I expression,
it is possible that damaged muscle increases MHC class I expression to communicate
with CD8+ T cells [145]. In another study investigating lengthening contractions, human
participants underwent two sessions of exercise. It was found that CD8+ T cells and CD68+

macrophages infiltrated skeletal muscle only after the second session, with a concomitant
increase in cytokines such as MCP-1 and IFN-γ-induced protein 10 (IP-10) [146]. The
increased presence of CD8+ T cells was implicated in muscle adaptation to repeated
eccentric contractions [146,147]. The study used DOMS as an indirect indicator of muscle
damage, which was found significantly reduced after the second bout. As CD8+ T cells
were increased significantly only after a second bout of exercise when evidence of muscle
damage was reduced, it was suggested that CD8+ T cells do not exacerbate injury but
facilitate repair [147,148]. Interestingly, this study reported no significant increase in MHC
I following muscle damage.

Similar results were reported in another study with elite athletes that performed two
bouts of high-intensity endurance exercise [149]. Higher concentrations of neutrophils,
lymphocytes, T cells (CD4+ and CD8+) as well as natural killer (NK) cells (CD56+) were
reported after the second bout of exercise. The study also reported a reduction in the per-
centage of CD56+CD69+ cells suggesting reduced state of NK cell activation and cytolytic
activity.

In support, other studies have also indicated that NK cell cytolytic activity decreases
after prolonged, intense, and stressful exercise [150]. These effects are possibly due to a
temporary depression of the immune system post-exercise due to the presence of IL-6 in
combination with anti-inflammatory cytokines such as IL-10, and interleukin 1 receptor
antagonist (IL-1ra), which lead to decreased Th1 mediated responses [150]. However, there
is controversy over the conclusions from these results and an extensive review challenged
the role of exercise in immunosuppression [151]. Furthermore, in mouse models of skin and
lung cancer there was an enhanced NK cell response with exercise. While this model has
its challenges because the mice could wheel run ad libitum, there was a beneficial effect of
exercise, and it was dependent on IL-6 (presumably muscle-derived) and epinephrine [152].
A similar study using a breast cancer mouse model supports this immune-potentiating
effect by showing that exercise reduced myeloid-derived suppressor development [153].
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Taken together, these studies highlight the need to investigate the role of T cells and
their subsets not only in muscle repair following contraction induced injury but also in
mediating the repeated bout effect. As described in the previous section, T cell derived
factors can stimulate muscle stem cell proliferation. Therefore, future studies should
explore the regulation of muscle stem cell activity via specific T cell subsets as a potential
mechanism for muscle repair and adaptation following exercise.

3.4. Cytotoxic T Cells Mediate Continued Pathology Following Disease and Aging

Research confirming the deleterious role of T cells in dystrophy models is extensive
and studies focused on depleting T cells demonstrate that their removal can dramatically
improve muscle fiber regeneration. T cells account for roughly 3% of infiltrating cells in
mdx models of dystrophy, with CD4+ and CD8+ T cells making up almost half of that
proportion [154,155]. CD4+/CD8+ T cells have been found in dystrophic muscle at disease
onset, with activated (CD44high) T cells present in both muscle and blood [154,156]. Muscle
fibers invaded by CD8+ T cells typically express MHC-I, although the expression does not
seem to be necessary for T cell-mediated cytotoxicity [157]. CD4+ T cells tend to dominate
in dysferlinopathy, which is accompanied by the presence of membrane attack complex on
the sarcolemma of fibers [158].

In an A/J limb/girdle dysferlin dystrophy- severe combined immunodeficiency (SCID)
mouse model, the absence of T and B lymphocytes resulted in significantly improved
muscle regeneration along with a concomitant increase in force production [159]. In the
mdx/scid mouse model, depleting T and B lymphocytes led to a significant decrease in the
expression of transforming growth factor β (TGF-β), a growth factor heavily implicated in
fibrosis, accompanied by a decrease in fibrosis [160]. While these effects did not lead to any
differences in myofibers with CLN, necrosis, degeneration, or muscle force compared to
mdx controls, the research highlights the impact of T cells on fibrosis development [160].

Research targeting specific T cell populations for depletion has shown that CD8+ T cells
are the main culprits of continued muscle degeneration. Depleting CD8+ T cells in mdx mice
(by crossing them with perforin knockout mice) resulted in a marked reduction in apoptotic
myonuclei and necrosis [154]. Interestingly, mdx mice that also lacked perforin experienced
minimal apoptosis and macrophage invasion into the connective tissue, providing support
that T cells cause damage through perforin [154]. Depleting CD8+ T cells can also lead to a
reduction in muscle pathology as measured by areas of inflammation as well as necrotic
fibers [156]. CD4+ T cells are also found in mdx muscle, and antibody depletion resulted
in decreased muscle pathology similar to that seen after depleting CD8+ T cells [156]. In
another study, CD45RChigh T cell depletion through a monoclonal antibody resulted in
increased strength as measured through a grip test [161].

PKC theta, a regulator of T cell activation and proliferation, was knocked out in mdx
mice (mdx/θ-/-) and the deficiency attenuated muscle wasting in the diaphragm [162].
Specifically, there was an increase in myogenin/eMHC positive cells and functional activity
as seen by improved running ability [162]. Treating mdx mice subject to cardiotoxin injury in
the TA and quadriceps femoris with sphingosine-1-phosphate, a T cell inhibitor, increased
force production in the EDL. The increase in force is likely due to the reduced fibrosis and
fat accumulation seen in the EDL, with a simultaneous increase in myogenic cells and
regenerating fibers [163,164].

Lastly, treating mdx mice with rapamycin (an immunosuppressant) for six weeks
decreased effector CD4+/CD8+ T cells in the muscle while maintaining Foxp3+ Treg cells,
which were beneficial to muscle healing [165]. In contrast, one research study did report
that depleting CD4+ and CD8+ T cells at four weeks of age in an mdx mouse model had
no impact on fibrotic tissue development in the diaphragm, despite a decrease in TGF-β
after double CD4+/CD8+ depletion [166]. The authors suggested that the early time point
chosen may have impacted the results as the cells/environment that induce fibrosis could
have already been present.
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Perforin-expressing CD4+/CD8+ T cells are one of the main immune cell types found
in polymyositis (PM) and dermatomyositis (DM) [134,167,168]. In PM, the inflamma-
tory cells primarily reside in the endomysial space, whereas in DM they reside in the
perivascular/perimysial space, but similar levels of CD8+ cells are found in both condi-
tions [134]. Both cell types express Fas Ligand in PM, which is associated with high levels
of muscle apoptosis [167]. Increased levels of effector T cells, with CD8+ T cells being
predominant, have also been found infiltrating muscle tissues in patients with juvenile DM
syndrome where they localize around blood vessels [168]. In adult DM, while CD8+/CD4+

T cells are present, it has been suggested that humoral effector mechanisms are the main
driver of muscle degeneration, since activated B cells are found in the peripheral blood of
patients [134,169].

3.5. Role of Treg in Acute and Chronic Muscle Injury

Regulatory T (Treg) lymphocytes (Foxp3+CD4+) have been recognized for their abil-
ity to suppress and attenuate inflammation; phenotypically and functionally distinct
populations of Treg cells have been identified, such as muscle specific Treg [99,170–174].
Skeletal muscle Treg (mTreg) are considered distinct from their lymphoid-organ coun-
terparts by the following criteria: their prevalence, transcriptome, and T cell receptor
(TCR) repertoire [99]. mTreg were first documented in 2013 [99] and have a critical role
in muscle regeneration following both acute and chronic muscle injuries [99,175]. Expres-
sion of Helios and neuropilin-1 (Nrp-1) by mTreg cells showcases that this is a thymic
derived Treg cell [99,176,177]. However, mTreg cells have a distinct gene-expression pro-
file, notably upregulating genes encoding Treg mediated suppression (e.g., IL-10, Gzmb,
Ctla-4, Tim-3, Klrg1), tissue repair (e.g., Il1rl1, Areg, Pdgf ), and chemokine receptors (e.g.,
Ccr1, Ccr2, Ccr3), while downregulating genes encoding proteins implicated in the Wnt
signaling pathway (e.g., Tcf7, Lef1, Satb1), and certain chemokine receptors (e.g., Cxcr5,
Ccr7) [78,99,170,178,179]. Of the transcripts expressed or repressed by mTreg, amphiregulin
(Areg), special AT-rich sequence-binding protein-1 (SATB1), and suppression of tumori-
genicity 2 (ST2) are of interest due to their role in regenerative activities of the muscle.
Areg, a member of the epithelial growth factor family, can directly impact muscle regener-
ation by promoting MuSC myogenicity and enhancing Treg ability to suppress immune
responses [178,180]. SATB1, a chromatin organizer is capable of affecting Treg functional-
ity [99,181,182]. ST2, encoded by Interleukin 1 Receptor Like 1 (Il1rl1), binds interleukin-33
(IL-33) and affects mTreg accumulation and function, promoting effective repair. IL-33 is
also known as an alarmin and its levels spike within hours of injury, drive accumulation of
Treg in muscle [183]. Ablation of the Il1rl1 gene is known to prevent IL-33 from interacting
with ST2, resulting in impaired Treg recruitment and delayed regeneration [183,184].

Muscle regeneration following an acute muscle injury is influenced by the accumula-
tion of Treg cells at the site of insult. Treg influence macrophage phenotype, modulating
muscle regeneration. mTreg gather at the site of injury by day 4, just as the myeloid cell
infiltrate switches from a pro- to anti-inflammatory phenotype following acute injuries
(e.g., cardiotoxin-induced injury and cryo-injury) [99]. In vitro, macrophages co-cultured
with Foxp3+CD4+CD25+ Treg exhibited the ability of Treg to steer monocyte differentiation
towards the anti-inflammatory phenotype. Treg produce IL-10, IL-4, and IL-13, cytokines
critical in this context for resolving an inflammatory response. Macrophages upregulated
the expression of CD206 and CD163, increased the production of CCL18, and enhanced
phagocytic capacity when co-cultured with Tregs, these events, with the exception of CD206
upregulation, were partly dependent on IL-10 [98]. It is perhaps paradoxical that IL-4 and
IL-13 are critical for an effective Th2 response, but the timing, anatomic location and form of
stimulus, and concomitant cytokines (namely well-established immunosuppressive IL-10)
are important for this division of effector functions. Co-culture of monocytes with Treg also
inhibited the ability of monocytes to produce pro-inflammatory cytokines such as TNF-α
and IL-6 [185].
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In an acute injury model induced by cardiotoxin injection, ablation of Treg resulted
in increased production of pro-inflammatory cytokine IFN-γ by NK cells and effector T
cells, likely CD8+ and Th1. The production of IFN-γ led to increased accumulation of the
pro-inflammatory macrophage (MHCII+) subset and fibrosis. When Treg were present
at the injury site, IFN-γ production was limited, promoting the accrual of macrophages
and regulating their phenotypic switch [186]. Ablation of Treg in Foxp3-DTR transgenic
mice following cardiotoxin injury supported this: the cellular infiltrate was increased, and
myeloid cells failed to undergo the phenotypic switch from pro- to anti-inflammatory
macrophages. Histologically, Treg ablation led to a disorganized tissue structure with
several foci of inflammation, greater collagen deposition, and a decreased number of
centrally nucleated fibers [99].

In vitro exposure to activated Treg cells induced MuSC expansion and concomitantly
inhibited myogenic differentiation. In vivo studies revealed that the recruitment of Treg
cells to acutely injured muscle was limited to the time frame of MuSC expansion [187].
Local expansion of Treg cells is required for skeletal muscle repair, as observed with the
results aforementioned, and evident when treatment with an anti-CD25 mAb targeting
Foxp3+CD4+CD25hi Treg cells increased muscle damage in dystrophic mice. Similarly,
treatment with complexes of recombinant IL-2 with an anti-IL-2 mAb prevented muscle
damage in dystrophic mice while enhancing Treg activity and increasing IL-10 produc-
tion [99,175,180]. Osteopontin (OPN) is an immunomodulator in mdx muscle which pro-
motes fibrosis and expression of TGF-β. Studies ablating OPN concluded that myeloid
cells shifted to a pro-regenerative phenotype and led to an increase in intramuscular Treg
with reduction in fibrosis [188,189]. Protozoan parasite chronic muscle infections, such
as Toxoplasma gondii, led to impaired Treg-mediated immunomodulation which directly
contributes to macrophage-mediated muscle damage. As mentioned above, the restoration
of Treg activity rescues muscle regeneration; however, in the case of chronic infection, the
suppression of the Treg population promoted regeneration and increased the proportion of
M2 macrophages [180,190]. These findings show the complexity of Treg and their function
in muscle injury, infection, and disease.

3.6. Role of Treg in Aged Muscle

The aging of skeletal muscle is associated with a steady decline in bulk, function, and
regenerative capacity due to both intrinsic and environmental factors [191,192]. Poor re-
generation is associated with the age-associated decrease in MuSC frequency and function,
which can influence Treg recruitment to the muscle [187].

Treg cells increase in lymphoid organs with age; however, they are sparse in aged mus-
cle following injury [183,193]. Following a cardiotoxin-induced injury, Treg accumulation
was diminished in the muscle of aged mice, reflecting the poor recruitment, proliferation,
and retention of Treg in aged muscle. The exogenous administration of IL-33 restored the
Treg population in injured aged muscle, promoting regeneration. IL-33 did not affect the
recruitment of Treg to the site of injury; however, it enhanced Treg cell proliferation, these
results were observed in both a cardiotoxin-induced injury and cryo-injury [183]. These
findings highlight the importance of the IL-33:ST2 axis and its role in mTreg cell function
and expansion.

Overall, studies show that a lack of mTreg is partly responsible for the poor muscle
regeneration seen in older individuals. Future studies should investigate therapeutic
strategies to improve Treg quantity and function in aged muscle.

4. Immunomodulators in Skeletal Muscle Regeneration

The inflammatory response should be mitigated under certain conditions to encour-
age regeneration. Factors that can modulate the immune response have been explored
specifically in the context of muscle healing and they include, but are not limited to, mes-
enchymal stem cell (MSC) therapy with or without a scaffold delivery system and immune
suppressant drugs such as FK506 and FTY720 [194].
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4.1. Immunomodulatory Properties of MSCs

The immunomodulatory properties of MSC have been well documented in application
to many different tissues, including but not limited to skeletal muscle, bone, skin, peripheral
nerve, blood vessels, cartilage, and tendon [195,196]. Their role in regulating the immune
system comes from their ability to secrete a variety of growth factors (e.g., TGF-β1, HGF,
prostaglandin 2, SDF-1, NO) and cytokines (e.g., IL-4, IL-6, and IL-10) that suppress pro-
inflammatory responses to damage [195]. Specifically, these factors are released upon
stem cell activation from pro-inflammatory cytokines and they inhibit T cell proliferation,
encourage the shift from a Th1 to a Th2 response, and impair the maturation of dendritic
cells. The shift from a Th1 to a Th2 response may also cause a shift in macrophage phenotype
because the Th2 response skews macrophages to a pro-regenerative M2 phenotype [195,196].
They can also impact a significant number of other pro-inflammatory cells including B-
cells, and natural killer cells [195]. Collectively, inhibiting these cell types directly impacts
the level of inflammation found in the defect area. In a recent clinical study, allogeneic
placenta-derived, mesenchymal-like adherent cells were found to increase muscle strength
and volume in patients who underwent hip arthroplasty. The authors concluded that the
cell therapy was safe and the beneficial effects to injured skeletal muscle were attributed to
MSC induced immunomodulation [197].

The impact of MSCs on immune cells has been studied in several ways, including
in vitro, in vivo, and in disease models such as muscular dystrophy. When culturing
MSCs with CD8+ T cells, these cells decreased the expression of CD8, CD28, and CD44,
indicating a potential shift in cellular phenotype and function [198]. Additionally, MSCs
reduced the T cell release of IFN-γ and granzyme B, which required stimulation of CD8+ T
cells directly from monocytes, while increasing the release of IL-4 [198,199]. Phenotypic
changes were also seen in CD4+ T cells that were cultured with bone marrow derived
MSCs, and CD4+/CD8+ T cells downregulated CD25, CD38, and CD69, preventing their
activation [200].

In vitro studies involving the co-culture of M0, M1, and M2 macrophages with MSCs
demonstrated promising results. Naive macrophages cultured with MSCs were shifted
toward an M1 state and had an increased ability to kill pathogens via a boost in the
respiratory burst response. In contrast, M1s cultured with MSCs shifted towards an
M2 phenotype, as evidenced by increased M2 gene expression. Therefore, MSCs exhibit
diverse effects on of macrophages that are largely attributed to a prostaglandin E2 (PGE2)
dependent mechanism [201].

Animals with substantial skeletal muscle damage that were implanted with MSCs
showed a significant decrease in pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, TGF-β,
and IFN-γ) and an increase in an important anti-inflammatory cytokine IL-10 [202]. The
changes seen at the molecular level corresponded to histological differences in muscle
regeneration, with less collagen content and fibrosis in MSC treated animals coinciding
with improvements in microvasculature formation within the muscle [202]. In another
model of VML injury, MSCs were seeded onto an ECM scaffold, which upon implantation
led to a shift in macrophage polarization from an M1 to an M2 phenotype, resulting in
improved muscle regeneration and reduced fibrotic tissue deposition [203]. In contrast,
another study showed that the delivery of MSCs on an ECM scaffold supported functional
recovery following VML with little to no muscle fiber regeneration. The authors attributed
the improvement in function to a fibrotic scar mediated bridging effect that allowed for
increased force transmission vs. production [204].

δ-sarcoglycan null dystrophic hamsters that received an intramuscular injection of
MSCs showed a reduction in the upregulation of pro-inflammatory markers in the cir-
culatory system, including immunoglobulin A, vascular cell adhesion molecule-1, and
myeloperoxidase [205]. Other beneficial results were seen within the muscle itself, which
demonstrated that leukocyte antigens, oxidative stress, and NF-kB levels did not increase
in comparison to animals not receiving the MSC treatment [205]. MSC derived nuclei
were observed in both center and periphery of myofibers, suggesting their role in fiber
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growth via donation of nucleus or cell fusion. In another study, MSC administration into
dystrophic mice reduced inflammatory cytokines (such as TNF-α, IL-6) and oxidative
stress. Simultaneously, the MSC treatment increased VEGF, IL-10, and IL-4 release [206].

Immunomodulatory benefits can also be exhibited by MSC derived exosomes, which
are nanovesicles secreted by mammalian cells for intercellular communication [207]. These
vesicles contain bioactive molecules such as lipids, proteins, mRNAs and microRNAs
(miRNAs) unique to the cell of origin [208,209]. To evaluate the therapeutic potential of
MSC-derived exosomes, several clinical trials (http://clinicaltrials.gov, accessed on 10
February 2021) have been completed or are currently ongoing. Exosomes recapitulate
the broad therapeutic effects attributed to MSCs [210,211]. For instance, MSC exosomes
contain numerous anti-inflammatory and anti-fibrotic miRNAs [211] as well as several
cytokines and growth factors including IL-6, IL-10, TGF-β1, VEGF and HGF [212]. These
molecules can promote both immunomodulation and tissue regeneration. As an acel-
lular MSC byproduct, exosomes can readily circulate through organs, elicit a minimal
immune response, avoid phagocytosis and elicit cellular responses by binding to specific
receptors on the target cell [213]. In mice with cardiotoxin injury, MSC exosomes support
muscle regeneration, enhanced angiogenesis, and reduced fibrosis [214]. In another study,
MSC-derived exosome treatment following cardiotoxin injury increased the expression of
markers associated with an M2 macrophage phenotype (Arg1+ and Ym1+), which coin-
cided with improved muscle regeneration evidenced by increased quantity of myoblasts
and fibers with centrally located nuclei [215]. In a murine VML model, co-delivery of
muscle ECM and MSC extracellular vesicles (EV) enhanced angiogenesis and myogenesis
but reduced fibrosis. A decrease in M1-like markers (iNOS) with an increase in M2-like
markers (CD163 and Arg1) was also reported [216]. The same study created a co-culture
model with C2C12 cells with macrophages and introduced a cardiotoxin to mimic an
injured microenvironment in vitro. Treatment of the in vitro cardiotoxin injury with MSC
EVs elicited a protective action against cell apoptosis and increased cell survival as shown
by new laminin deposition and increased number of proliferating cells [216].

In conclusion, MSCs display a versatile ability to enhance the pro-regenerative envi-
ronment by reducing inflammation and encouraging myofiber formation. The molecular
impact of MSCs on the cellular niche of regenerating muscle has also improved functional
deficits seen with muscle damage.

4.2. Immunosuppressants as Therapies for Muscle Regeneration

Immunosuppressant drugs, such as FK506 and FTY720, have been used for modu-
lation of the immune response in skeletal muscle. FTY720 is a sphingosine-1-phosphate
receptor modulator that can regulate chronic inflammation and fibrosis deposition [217].
FK506, also known as tacrolimus, is a macrolide antibiotic that acts on T cells and can
suppress their immune response [218]. In a model of limb-girdle type 2C muscular dys-
trophy, FTY720 was administered for 3 weeks to mice aged 3 weeks and greatly reduced
muscle membrane permeability and fibrosis [219]. Additionally, it also increased the up-
regulation of sarcoglycan which could lead to the protection of the sarcolemma from shear
forces. Therefore, the drug could partly protect the muscle from the damaging effects
of inflammation commonly associated with the disease. In another study conducted on
FTY720, mice were subjected to hind limb ischemia-reperfusion muscle injuries and then
subsequently treated with the drug [220]. Although local effects of muscle regeneration
(i.e., cross sectional area of muscles, myofibers with CLN, etc.) were not measured, the
study revealed that FTY720 will reduce systemic inflammation by causing a decrease in
peripheral blood T cell levels. In conjunction with the T cell decrease, a significant reduction
in serum creatinine and important cytokines, such as TNF-α, IL-6, IL-10, and IL-18, were
also observed.

In complex models of VML that include bone fractures, or osteotomies, the use of
FK506 induced better healing in bone fractures that correlated with changes in cell types in
the overlying, injured musculature [10]. Bone defects compounded by VML of the TA are

http://clinicaltrials.gov
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difficult to treat. Introducing the FK506 drug reduced the numbers of T-lymphocytes and
macrophages found in the TA, with reduced T-lymphocytes in the callus of the bone [10].
Administering the drug did not improve TA force production, but it did restore mechanical
properties of the bone in the presence of the muscle defect [10]. These findings suggest that
the drug’s impact on the injured muscle, such as the reduction of T cell infiltration into all
areas of damage, strongly and positively impact the healing ability of the bone. Regulating
the immune response with FK506 delivered in conjunction with a MMG to a VML injury
in swine muscle led to a marginal improvement of force deficit with a higher fraction of
muscle fibers vs. fibrotic tissue [221].

5. Conclusions

The physiological repair mechanisms following skeletal muscle injury or disease
are currently under investigation. Cells of the innate and adaptive immune system play
diverse and complex roles in muscle healing, and the interplay between endogenous stem
cell populations and infiltrating immune cells likely determines the regenerative outcome.
Greater insight into these cellular interactions will pave the way for new therapeutic
strategies. Recent substantial progress in just identifying the cells present in healthy
muscle and regenerating skeletal muscle should help directing impactful hypotheses in
this area [222–225]. Mounting evidence indicates that immune cell subsets can have both
pro- and anti-reparative functions. The environmental cues and molecular triggers which
control the switch between pro- and anti-reparative functions need further investigation.
Some studies suggest that a transient and controlled immune response is critical to muscle
healing, but an overactive and persistent immune response can be detrimental to tissue
repair. Since the clinical treatment options for muscle injuries are scarce, modulation of
the immune response might present an effective approach to boost the innate regenerative
capacity of the skeletal muscle niche.
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