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Figure S1. The assigned 13C-1H HSQC of free thymosin (Tβ4) in D2O. 2048 and 512 data points were collected in proton and carbon dimensions, 

respectively, which correspond to 125 ms and 18 ms acquisition time in the respective dimension. The data were apodized with sine function and zero 

filled with 4096 and 1024 points in proton and carbon dimensions, respectively. The recycle delay was kept for 1 second. The total measurement time 

was 300 minutes. 

Figure S2. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe2+/Thymosin molar ratio 0.2:1 (yellow). 

Peptide concentration 1.48 mM. The upfield shifted carbon region are shown here. The highlighted residues in the blue dotted circles shows intensity 

change. No change in chemical shifts were observed. 

Figure S3. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe2+/Thymosin molar ratio 0.2:1 (yellow). 

The downfield shifted carbon region is shown here. The highlighted residues in the blue dotted circles show intensity change. No change in chemical 

shifts were observed. 

Figure S4. The percentage change in intensities from apo to molar ratio 0.2:1  Fe(II)/Thymosine are plotted for the distinct residues from the two-

dimensional 13C-1H HSQC spectra. The red line represents the mean + standard deviation value. Beyond this, the existing residues are considered as 

major changes. 

Figure S5. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe3+/Thymosin molar ratio 0.2:1  (yellow). 

The upfield shifted carbon region are shown here. The highlighted residues in the blue dotted circles show intensity changes. No changes in chemical 

shifts are observed. 

Figure S6. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe3+/Thymosin molar ratio 0.2:1 (yellow). 

The downfield shifted carbon region are shown here. The highlighted residues in the blue dotted circles show intensity change. No change in chemical 

shifts were observed. 

Figure S7. The percentage change in intensities from apo to molar ratio 0.2:1 Fe(III):Thymosine are plotted for the distinct residues from the two-

dimensional 13C-1H HSQC spectra. The red line represents the mean + standard deviation value. Beyond this, the existing residues are considered as 

a major change. 

Figure S8. EPR spectra of free Tb4 (0.3 mM) and A) iron (II) and B) iron (III) in water; pH=7.4 (fixed by the addition of NaOH); metal to peptide 

molar ratio 1:1.  

Figure S9. CD spectra of free Tβ4 and its iron (II) and iron (III) adducts in Tris buffer (pH 7.5).   

Figure S10. The assigned 13C-1H HSQC of free thymosin Tβ4 in D2O. 2048 and 360 data points were collected in proton and carbon dimensions 

respectively, which correspond to 125 ms and 12.7ms acquisition time in the respective dimension. The data were apodized with sine function and 

zero filled with 4096 and 1024 points in proton and carbon dimensions, respectively. The recycle delay was kept for 1 second. The total measurement 

time was 110 minutes. 

Figure S11. The assigned 13C-1H TOCSY-HSQC of free thymosin Tβ4 in D2O. Mixing time was kept at 16ms. 2048 and 360 data points were 

collected in proton and carbon dimensions, respectively, which correspond to 125 ms and 16.2ms acquisition time in the respective dimension. The 

data were apodized with sine function and zero filled with 4096 and 1024 points in proton and carbon dimensions, respectively. The recycle delay 

was kept for 1.5 seconds. The total measurement time was 240 minutes. 

Figure S12. The overlay of the one dimension proton spectra with different Thymosin:Al ratios.  
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Figure S13. The intensities are plotted for the 48 distinct residues from the two-dimensional 13C-1H HSQC spectra as a function of the Thymosin:Al 

ratio. 

Figure S14. The chemical shift perturbation (CSP) plot for the distinct Cα-Hα residues from the overlay of the two-dimensional 13C-1H HSQC 

spectra in free form and  with Thymosin:Al ratio 1:5. 

Figure S15. The chemical shift perturbation (CSP) plot for the distinct C -H  and other side chainsfrom the overlay of the two-dimensional 13C-1H 

HSQC spectra in free form and  with Thymosin:Al ratio 1:5. 

Table S1. Average structural parameters for the three MD simulations. 

Table S2. Occupancies and average number of residues involved in eight different secondary structure motifs. 

Table S3. Multistep equilibration scheme with decreasing force constants employed in the molecular dynamics study. FC: Force constants. The 

subscript bb refers to backbone force constants. 

Figure S16. Secondary structure analysis according to the DSSP definitions of Tβ4N-C. 

Figure S17. Secondary structure analysis according to the DSSP definitions of Tβ4N-mid.  

Figure S18. Secondary structure analysis according to the DSSP definitions of Tβ4N-N.  

Figure S19. Electron micrographs of a mitotic J774 cell. Arrows indicate the condensed packed chromatin of the chromosomes.  
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Figure S1. The assigned 13C-1H HSQC of free thymosin (Tβ4) in D2O. 2048 and 512 data points were collected in proton and carbon dimensions, 

respectively, which correspond to 125 ms and 18 ms acquisition time in the respective dimension. The data were apodized with sine function and zero 

filled with 4096 and 1024 points in proton and carbon dimensions, respectively. The recycle delay was kept for 1 second. The total measurement time 
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was 300 minutes. 

 

 

 

Figure S2. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe2+/Thymosin molar ratio 0.2:1 (yellow). 

Peptide concentration 1.48 mM. The upfield shifted carbon region are shown here. The highlighted residues in the blue dotted circles shows intensity 

change. No change in chemical shifts were observed. 
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Figure S3. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe2+/Thymosin molar ratio 0.2:1 (yellow). 

The downfield shifted carbon region is shown here. The highlighted residues in the blue dotted circles show intensity change. No change in chemical 

shifts were observed. 
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Figure S4. The percentage change in intensities from apo to molar ratio 0.2:1  Fe(II)/Thymosine are plotted for the distinct residues from the two-

dimensional 13C-1H HSQC spectra. The red line represents the mean + standard deviation value. Beyond this, the existing residues are considered as 

major changes. 
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Figure S5. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe3+/Thymosin molar ratio 0.2:1  (yellow). 

The upfield shifted carbon region are shown here. The highlighted residues in the blue dotted circles show intensity changes. No changes in chemical 

shifts are observed. 
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Figure S6. The overlay of the two-dimensional 13C-1H HSQC spectra in free Tβ4 form (red) and with Fe3+/Thymosin molar ratio 0.2:1 (yellow). 

The downfield shifted carbon region are shown here. The highlighted residues in the blue dotted circles show intensity change. No change in chemical 

shifts were observed. 
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Figure S7. The percentage change in intensities from apo to molar ratio 0.2:1 Fe(III):Thymosine are plotted for the distinct residues from the two-

dimensional 13C-1H HSQC spectra. The red line represents the mean + standard deviation value. Beyond this, the existing residues are considered as 

a major change. 
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Figure S8. EPR spectra of free Tb4 (0.3 mM) and A) iron (II) and B) iron (III) in water; pH=7.4 (fixed by the addition of NaOH); metal to peptide 

molar ratio 1:1.  

 

Figure S9. CD spectra of free Tβ4 and its iron (II) and iron (III) adducts in Tris buffer (pH 7.5).   
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Figure S10. The assigned 13C-1H HSQC of free thymosin Tβ4 in D2O. 2048 and 360 data points were collected in proton and carbon dimensions 

respectively, which correspond to 125 ms and 12.7ms acquisition time in the respective dimension. The data were apodized with sine function and 

zero filled with 4096 and 1024 points in proton and carbon dimensions, respectively. The recycle delay was kept for 1 second. The total measurement 

time was 110 minutes. 
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Figure S11. The assigned 13C-1H TOCSY-HSQC of free thymosin Tβ4 in D2O. Mixing time was kept at 16ms. 2048 and 360 data points were 

collected in proton and carbon dimensions, respectively, which correspond to 125 ms and 16.2ms acquisition time in the respective dimension. The 

data were apodized with sine function and zero filled with 4096 and 1024 points in proton and carbon dimensions, respectively. The recycle delay 

was kept for 1.5 seconds. The total measurement time was 240 minutes. 
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Figure S12. The overlay of the one dimension proton spectra with different Thymosin:Al ratios.  
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Figure S13. The intensities are plotted for the 48 distinct residues from the two-dimensional 13C-1H HSQC spectra as a function of the Thymosin:Al 

ratio. 
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Figure S14. The chemical shift perturbation (CSP) plot for the distinct Cα-Hα residues from the overlay of the two-dimensional 13C-1H HSQC 

spectra in free form and  with Thymosin:Al ratio 1:5. 
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Figure S15. The chemical shift perturbation (CSP) plot for the distinct C -H  and other side chainsfrom the overlay of the two-dimensional 13C-1H 

HSQC spectra in free form and  with Thymosin:Al ratio 1:5. 

  



18 
 

Table S1. Average structural parameters for the three MD simulations. 

Al-thymosin 

complex 
RMSD (Å) Rg (Å) 

End to end 

distance (Å) 
H-bonds 

TB4N-C 0.92 1.15 22.27 12.06 

TB4N-mid 0,89 1.11 24.37 15.28 

TB4N-N 1.07 1.29 28.03 12.62 

Table S2. Occupancies and average number of residues involved in eight different secondary structure motifs. 

 TB4N-C TB4N-mid TB4N-N 

Motif (%) n. res. (%) n. res. (%) n. res. 

Random Coil 100 22.5 100  100  

β-sheet 16.8 4.4 17.6 4.4 2.5  

β-bridge 62.6 2.7 52.0  26.1  

Bend 100 11.8 100  99.9  

Turn 89.3 4.8 92.7  87.4  

α-helix 18.3 4.7 26.4 5.0 26.5 4.8 

π-helix 0.07 5.0 0.9 5.0 0 0 

310-helix 31.5 3.63 38.7 3.5 94.1 4.8 
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Table S3. Multistep equilibration scheme with decreasing force constants employed in the molecular dynamics study. FC: Force constants. The 

subscript bb refers to backbone force constants. 

 

Equilibration 

Step 

FCbb 

(kJ/mol nm2) 
NPT/NVT 

Time 

(ns) 

    

Step 1 4000.0 NVT 0.6 

Step 2 2000.0 NVT 0.6 

Step 3 1000.0 NPT 0.6 

Step 4 500.0 NPT 0.6 

Step 5 200.0 NPT 0.6 

Step 6 50.0 NPT 0.5 

Step 7 0.0 NPT 0.5 
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Figure S16. Secondary structure analysis according to the DSSP definitions of Tβ4N-C. 
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Figure S17. Secondary structure analysis according to the DSSP definitions of Tβ4N-mid.  
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Figure S18. Secondary structure analysis according to the DSSP definitions of Tβ4N-N.  
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Figure S19. Electron micrographs of a mitotic J774 cell. Arrows indicate the condensed packed chromatin of the chromosomes.  
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Scheme S1. Stacked bar chart listing twenty tissues with the highest Tβ4 mRNA expression (http://biogps.org/) and their iron content[71]. *Tissues with the 

highest incidence of cancer. 
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Table S4. List of some independent research data and reviews describing Tβ4 and ferroptosis involvement in human pathologies. 

 

Pathology Tβ4 involvement Ferroptosis involvement 

Cancer 

Pancreatic In pancreatic cancer cell lines and in intraductal pancreatic 

mucinous neoplasms with high grade dysplasia, overexpression 

of Tβ4 mRNA was found with increased secretion of 

proinflammatory cytokines[1] 

Ferroptosis controls the growth of pancreatic 

cancer, and the regulatory mechanisms 

associated with ferroptosis in pancreatic 

cancer are summarized in a recent review[2].  

Hepatocellular carcinoma 

(HCC) 

Immunoreactivity for Tβ4 was detected in 30% of HCC samples. 

Immunostaining was homogeneous and diffusely distributed 

over the entire cytoplasm. In the tumor mass, no zonation pattern 

was observed[3]. 

Ferroptosis showed tremendous promise as a 

therapy, especially in HCC. The role of 

ferroptosis in HCC, and in the diagnosis and 

treatment of HCC are summarized in a recent 

review[4]. 

Gastric  Increased expression of Tβ4 was observed in 43.3% of 

gastrointestinal stromal tumors, and significantly associated with 

tumor size and increased mitosis[5]. 

The role of ferroptosis in gastric cancers, and 

the proteins involved in ferroptosis regulation, 

were recently reviewed[6]. 

Colorectal Tβ4 is overexpressed in a side population of cancer stem cells 

and CD133-positive colorectal cancer stem cells[7]  

Ferroptosis inducer RSL3 initiated cell death 

and ROS accumulation in HCT116, LoVo, and 

HT29 CRC cells over a 24 h time course. This 

effect was reversed by overexpression of 

GPX4[8]. 

Breast The cellular distribution of Tβ4 in breast cancer is heterogenous; 

multiple cell types within the tumor microenvironment produce 

Tβ4 and expression varies between tumors[9]. In addition, 

hypoxia-induced Tß4 is strongly associated with expression of 

hypoxia inducible factors (HIF-1 and HIF-2) and is also 

clinicopathologically involved in the lymph node metastatic 

potential of breast cancer[10]. 

Siramesine and Lapatinib treatment induce 

ferroptosis in breast cancer cells. The 

ferroptotic process could be used as a new 

therapeutic strategy to overcome apoptotic 

resistance in breast cancer[11]. 

Lung Tissue microarray analysis showed that Tβ4 was highly 

expressed in lung cancer[1], and Tβ4 gene silencing in A549 and 

H1299 cells inhibited cell proliferation, migration, and invasion 

in vitro, and decreased tumor growth in vivo[12].  

Suppression of NFS1 cooperates with 

inhibition of cysteine transport to trigger 

ferroptosis in vitro and slow tumor growth. 

Therefore, lung adenocarcinomas upregulate 

pathways that confer resistance to high oxygen 

tension and protect cells from undergoing 

ferroptosis in response to oxidative 

damage[13]. 

Ovarian Tβ4 is overexpressed in primary ovarian cancers when compared 

with normal controls. Tβ4 expression was also co-localized with 

CD133 expression in primary ovarian carcinomas, metastatic 

ovarian cancers from stomach cancers, 

and primary stomach cancers[7]. 

Ferroptosis as a new promising anti-tumor 

strategy in Epithelial ovarian cancer (OVCA), 

together with various genetic determinants of 

ferroptosis and their underlying mechanisms 

in OVCA are described in a recent review[14]. 

Melanoma Suppression of Tβ4 expression leads to decreased metastatic 

potential in murine B16 melanoma cells[15]. Moreover, Tβ4 is 

crucial for melanoma adhesion and invasion[16]. 

Ferroptosis has been described as an efficient 

strategy in melanoma therapy[17]. 

Head and neck Higher TMSB4X expression is found in head and neck 

squamous cell carcinoma both at the RNA and protein levels. 

Overexpression of TMSB4X was significantly associated with 

poor prognosis of overall survival and recurrence-free survival. 

Silencing of TMSB4X expression in a HNSCC cell line 

reduced proliferation and invasion ability in vitro, as well as 

inhibited cervical lymph node metastasis in vivo[18]. 

Induction of ferroptosis in head and neck 

cancer cells overcomes cisplatin 

resistance[19]. 

Neurodegenerative disorders 

Alzheimer’s Disease In human Huntington’s and Alzheimer’s disease brains, Tβ4 was 

found markedly elevated in the cell bodies and processes of 

Inhibitors of ferroptosis, such as ferrostatins 

and liproxstatins, protect from ischemic injury 
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reactive microglia distributed to regions of 

neurodegeneration[20]. 

in mouse models in the liver, kidney, brain, 

and heart[21-26]. These inhibitors are also 

protective in models of degenerative brain 

disorders, including Parkinson’s, 

Huntington’s, and Alzheimer’s diseases, as 

well as in other forms of neurodegeneration 

and traumatic and hemorrhagic brain 

injury[24, 27-33]. 

Huntington’s Disease The detailed analysis of Huntington’s brains revealed that Tβ4 

immunoreactivity in reactive microglia was particularly 

increased during the early stages of pathology[20]. 

Other pathologies 

Stroke After injury, Tβ4 is released by platelets, macrophages, and 

many other cell types to protect cells and tissues from further 

damage and reduce apoptosis, inflammation, and microbial 

growth[34]. Tβ4 promotes remodeling of the CNS/PNS post-

neural injury and thereby improves neurological recovery[35-

38] 

The role of ferroptosis in stroke has been 

recently reviewed[39-41]. 

Traumatic brain injury (TBI) Tβ4 may have a role in the repair and remodeling of injured 

tissues following a hypoxic insult as indicated by a study of focal 

brain ischemia following occlusion of the middle cerebral artery 

in rats[42]. Tβ4 may also have a role in neuronal development 

and remodeling, and  

transcription of the gene that encodes Tβ4 is upregulated during 

hypoxia[43] 

The role of ferroptosis in TBI is described in 

recent reviews[44-46]. 

Myocardial infarction Administered immediately following a myocardial infarction in 

mice, Tβ4 protects heart tissue from cell death and enables heart 

myocytes to survive after hypoxia[47] 

GPX4 downregulation during myocardial 

infarction contributes to ferroptosis in 

cardiomyocytes[48]. Moreover, ferroptosis is 

involved in diabetes myocardial 

ischemia/reperfusion injury through 

endoplasmic reticulum stress[49] 

Ischemia/reperfusion (I/R) Intervention with Tβ4 after ischemia can reduce the neurological 

deficits in rats[50]. Tβ4 reduced damage after ischemic heart 

injury, protected post hypoxic cardiac tissue, decreased infarct 

size, reduced scar volume, decreased inflammation, promoted 

angiogenesis, and improved ventricular function, and 

survival[47, 51, 52]. 

Inhibitors of ferroptosis, e.g., Galangin[53] 

and Carvacrol[54]) mitigate ferroptosis and 

have a neuroprotective effect in I/R. 

Liver injury and fibrosis Patients with liver diseases have serum Tβ4 levels negatively 

correlated with liver function[55]. Exogenous Tβ4 

administration ameliorated ischemia reperfusion-induced 

hepatic injury in mice[56], and prevented in vitro acute liver 

injury and subsequent fibrosis through alleviating oxidative 

stress and inflammation[57, 58]. 

Ferroptosis plays a crucial role in chronic 

intermittent hypoxia -induced liver injury[59]. 

The connection between ferroptosis and non-

cancer liver diseases are intricate and 

compelling[60] 
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