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Editorial on the Special Issue: New Horizons in Plant Cell Signaling

Responding to environmental stimuli with appropriate molecular mechanisms is
essential to all life forms and particularly so in sessile organisms such as plants. To this end,
plants have evolved both rapid early mechanisms such as the activation of channels and
kinases directly or indirectly through protein sensors [1–6], as well as the slower systemic
adaptive responses that include changes in their transcriptomes and proteomes [7–12].
To enable these processes and concomitantly tune their responses to the environment,
complex cellular-signaling mechanisms have evolved, some of which have no homologues
in animals [13–21]. This Special Issue aims to broaden the current understanding of
plant cell signaling, specifically highlighting recent and exciting discoveries such as the
identification of novel signaling molecules and mechanisms that participate across all
stages of plant growth and development, and in cellular and biological processes triggered
by abiotic and biotic stresses.

One such signaling molecule is the cyclic mononucleotide phosphodiesterases (PDEs),
which, together with nucleotide cyclases, regulate the cellular concentrations of the sec-
ond messengers, cyclic nucleotide monophosphates (cNMPs), cAMP and cGMP. While
well-defined in bacteria, yeast and animals, the components of cNMP signaling pathways
in plants are still poorly characterized [22–26]. The use of manually curated amino acid
motifs based only on the catalytic centers of the corresponding enzymes in organisms
across species have enabled the identification and concomitantly also the characterization
of several novel adenylate cyclases (ACs) and guanylate cyclases (GCs) [27,28]. The latter
is reviewed by Turek and Irving 2021 [29] within the context of moonlighting roles in
modulating signal cascades. The authors discussed how the GC activities that moonlight
within complex plant proteins, such as the receptor-like kinases and lipid kinases, can
potentiate localized cGMP-enriched niches surrounding their primary domains and interac-
tomes [30–32]. Such effects include the downregulation of kinase activity, the modulation of
other components or complexes in the signaling pathway and the triggering of degradation
cascades leading to signal termination [25,33]. The authors proposed that these moonlight-
ing GCs which generate cGMP-enriched nanodomains in complex proteins form a new
paradigm in homeostatic responses that enable a highly precise, spatially differentiated
and stimulus-specific cellular signaling in plants [21,29,34,35].

While the generating enzymes of cyclic mononucleotides are being increasingly char-
acterized, the degrading enzymes, the phosphodiesterases (PDEs), have remained elusive
in vascular plants until recently. Previously, a novel protein harboring both AC and PDE
activities known as CAPE (COMBINED AC with PDE) that may be involved in spermatoge-
nesis and sperm motility, has been identified in the liverwort Marchantia polymorpha [36,37].
Adopting a motif-based approach similar to the one mentioned above, Kwiatkowski et al.,
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2021 [38] reported that a monocot Brachypodium distachyon (BdPDE1) can hydrolyze cNMPs
to 5′NMPs but with a preference for cAMP over cGMP. Much like the PDE activities of
other systems [39], BdPDE1 activity was significantly enhanced by Ca2+-calmodulin. Muta-
genesis studies also identified and revealed the importance of several key residues in the
catalytic center. Based on the biochemical, mutagenesis and structural analyses, as well
as cross-species sequence analyses, the authors have deduced an amino acid consensus
sequence that can be applied in eukaryotes and prokaryotes. Identifying functional PDEs
in monocots is a significant step towards crop biotechnology, e.g., enabling the design of
specific inhibitors with a view to developing improved crops. Previously, a tandem motif
and structural approach has identified a functional PDE moonlighting at the C-terminal
of a potassium transporter from the model plant Arabidopsis thaliana (AtKUP5) which also
harbors a functional AC at the N-terminal [40,41]. The discovery of such dual moonlighting
AC-PDE architecture in complex proteins raises the exciting possibility of providing an
intricate and dynamic localized spatiotemporal fine-tuning mechanism for signal inten-
sity [30,31,42,43]. Recent discoveries of PDEs in both monocots and dicots suggest that this
PDE architecture may well be a common feature in higher plants and that this motif-based
strategy can be used to identify novel PDEs in model and crop plants.

The non-cyclic form of cAMP, adenosine monophosphate (AMP), is present in all life
forms and is central for energy metabolism achieved through the enzyme 5’ adenosine
monophosphate-activated protein kinase (AMPK). As an energy sensor, AMPK is activated
by decreasing ATP or increasing AMP and ADP [44–46]. AMP is a direct agonist for AMPK
and its activation by AMP has been observed through allosteric regulation in various
organisms [47]. In this regard, Clark et al., 2020 [48] reviewed the enzymes that generate
AMP through the hydrolysis of ATP in plants. They are known as apyrases (APYs). The
authors provided a historical account of plant APYs with a particular focus on the progress
that has been made in their biochemistry, structures, and functions, reported between
2015 and 2020. Among the recent studies described were reports on how APY expression
is linked to growth through extracellular ATP (eATP) treatments and how APY exerts a
protective role in plant biotic and abiotic stress responses through the induction of gene
expression changes while also appearing to crosstalk with hormones such as ethylene
and auxin [49–53]. The authors noted that the initial discovery of plant eATP receptor in
Arabidopsis thaliana, AtAPY1 [54], has encouraged research on APYs and despite several
contradictory reports [55,56], recent data supported the ability of AtAPY1 to bind and
hydrolyze ATP [57]. Additionally, new data on APY functions in multiple plant species
such as peas, Brassica, and poplar assign the important role of APYs in plant defense
responses [58–60]. These, and other major recent advances including the availability of
new crystal structures, offer insights on the NTP-binding domain [57], the ability of APYs
to hydrolyze ATP in the ECM and nuclei [60], and the identification of APY-binding
partners [61]. The findings are summarized in a table. The authors also reviewed the
prospect of using APY-specific inhibitors and their value in future research that focuses on
how APY regulates cellular activities. The state of the current field is also framed in the
form of outstanding major questions that serve to guide research in the field of plant APYs.

Salicylic acid (SA), a phenolic plant hormone found in many plant species, functions
as a critical signaling molecule in local and systemic disease resistance pathways [62].
Responding to a broad spectrum of pathogens and abiotic stresses, SA also crosstalks
with many signaling pathways ranging from reactive oxygen species, lipids, and circa-
dian clock to other hormones such as jasmonic acid and ethylene [63–67]. Plant defense
signaling by SA is initiated when it binds to target proteins such as the nonexpresser of
pathogenesis-related protein 1 (NPR1) which is a well-established transcriptional regula-
tor of SA signaling [68]. Pokotylo et al., 2020 [69] proposed that SA could bind to many
other proteins, some of which are enzymes involved in primary metabolism such as the
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) which was previously shown to
bind SA in both humans and plants [70–72]. The authors reported that GAPDH activity
was inhibited by SA and showed in surface plasmon resonance studies that SA binds to
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the A1 isomer of a chloroplastic glyceraldehyde 3-phosphate dehydrogenase (GAPA1)
from Arabidopsis thaliana with a KD of 16.7 nM. The authors further revealed two putative
binding pockets through molecular docking and molecular dynamics simulations on the
apoprotein and protein–ligand complex, but only one pocket around Asn35 could bind
SA when simulated in an aqueous environment. This pocket is also the binding site of the
NADP+ cofactor and the binding of SA to GAPA1 inhibited NADH in a dose–response
manner. Mutagenesis simulations assigned key roles to Asn35 and Arg81 for binding of SA
to GAPA1 which the authors then used as a guide for the subsequent in vitro biochemical
validations. Mutations of these two residues markedly reduced the ability of GAPA1 to
bind SA. Taken together, this research offers novel insights into how SA controls energy
fluxes in stressed plants while also providing a new dimension to the current paradigm of
SA signaling through its interaction with proteins which have not normally been associated
with SA [73,74].

Another signaling molecule, Ca2+, has long been known to have a significant role in
many cellular activities in both plant and animal systems signaling for cell division, cell
movement, cell death, fertilization, and metabolism [75,76]. Ca2+ ions in the cytosol of
a resting cell are maintained at very low levels typically about 10,000 times lower than
that at the extracellular space, or in the vacuole and the lumen of intracellular stores. As
such, cytosolic Ca2+ must be tightly regulated by the presence of various Ca2+ ion pumps,
exchangers, and channels. Ca2+ entry can be activated by membrane hyperpolarization
among other possible mechanisms, but unlike the more common depolarization activation,
membrane hyperpolarization would mean that hyperpolarization-activated Ca2+ channels
(HACCs) are normally kept open in the resting state of the membrane [77–79]. If not
regulated, HACCs, which are also permeable to Ba2+ and Mg2+, would leak Ca2+ into cells.
Lemtiri-Chlieh et al., 2020 [80] showed that Mg-ATP, but not ATP on its own, significantly
reduces HACC activity especially at −200 mV or lower in Vicia faba guard cells and this
effect is specifically due to Mg2+. It led the authors to conclude that Mg2+ prevents the
continuous leakage of Ca2+ into the cells through the inactivation of HACCs and that
the opening of these channels would require high negative voltages or displacement
of Mg2+. Through structural analysis of other Mg2+-sensitive K+ channels, the authors
proposed that the particular HACCs responsible for this result in the guard cell are the
cyclic nucleotide-gated channel (CNGCs) which harbor a conserved Mg2+-binding motif
within their pores [81–83]. In the guard cell, HACCs can be activated by the sesquiterpene
hormone ABA and H2O2 [84,85]. Therefore, this study establishes an important role for
Mg2+ in Ca2+ signaling and in plant physiological processes including ABA-dependent
responses which might bridge existing gaps concerning Ca2+ homeostasis in the current
literature [75].

Being immobile, plants are constantly exposed to biotic and abiotic stresses and must
also respond to a changing external environment. As the boundary between the plant and
the external environment, the plant epidermis is not just a barrier that protects the plant
against pathogens, but it also regulates exchange of water, nutrients, and gases crucial for
growth and development processes [86,87]. The mechanisms involved in transcriptional
regulation of epidermal cells in processes such as shoot growth, lipid metabolism and cuticle
synthesis, as well as defense responses, are largely unknown [88]. Wang et al., 2020 [89]
dissected the promoter of Triticum aestivum lipid transfer protein 1 (TaLTP1) by generating
multiple deletion constructs and studying their activities in transgenic Arabidopsis thaliana
and Brachypodium distachyon. Through histochemical GUS and quantitative fluorometric
analyses, the −400TaLTP1::uidA construct was able to confer full activity at the vegetative
stage. A separate construct, −343TaLTP1::uidA, caused a loss of quantitative GUS activity
by about 90% in transgenic plant leaves which is associated with pavement cells but not
trichomes. Another construct, −297TaLTP1::uidA, resulted in a complete loss of GUS
activity in true leaves but the activity was not altered in cotyledon until the promoter
region was shortened to position −247 bp. Through mutagenesis studies, the authors
also identified the specific cis-elements which they named as GC(N4)GGCC at positions
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−380 bp to −372 bp, that are responsible for pavement-cell-specific expression. Using
electrophoretic mobility shift and transgenic reporter assays, the authors found a CCaacAt
motif at −303 bp that regulates trichome-specific expression while a conserved CcATC
motif at −268 bp was found to be involved in regulating pavement-cell-specific expression.
In summary, this study identified the specific promoter regions of TaLTP1 responsible for
tissue-specific expression as well as the cis elements responsible for epidermal-cell-specific
expression in shoots, thus contributing to the broader understanding of gene transcription
regulation in plant epidermis of aerial tissues [90,91].

Another exciting development related to the regulation of gene expression are the
microRNAs. Present in both animals and plants, these single-stranded non-coding RNAs
are involved in silencing and post-transcriptional regulation of RNAs [92,93]. Han and
Zhou (2022) [94] reviewed the recent progress of one such group of RNAs, the microRNA171
(miR171) in plants. The authors described that miR171 is ancient and conserved in land
plants and exerts its regulatory effects by repressing the HAIRYMERISTEM (HAM) gene
family [95–98]. In Arabidopsis thaliana, miR171 acts as a mobile short-range signal that
initiates the epidermal layer of shoot meristems and affects the patterning of apical–basal
polarity of gene expression and stem cell dynamics [99]. Besides providing a brief account
of miRNA171 and its targets, the authors also discussed its function as a regulatory hub in
diverse plant developmental processes, as well as their expression patterns and regulations
in response to abiotic stresses such as light. The authors noted that miR171 family members
are conserved and have lineage-specific functions in land plants. Thus, they proposed,
among other research directions, to focus on how miR171 connects environmental factors
to plant development not just in seed plants but also in in non-seed vascular plants such
as the fern Ceratopteris richardii. This may well provide a better account of its evolution
in land plants and could potentially make miR171 a target for crop improvement and
protection [100–102].

Contributions in this Special Issue have revealed novel signaling molecules, signaling
mechanisms, and regulations that broaden our view on how plants signal for growth
and development, and their responses to environmental stresses. The body of research
presented in this series will hopefully inspire hypothesis generation as well as encourage
and guide experiments that will collectively advance our understanding in the rapidly
evolving field of plant cell signaling.
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