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Abstract: There is little understanding of the underlying molecular mechanism(s) involved in the
clinical efficacy of antipsychotics for schizophrenia. This study integrated schizophrenia-associated
transcriptional perturbations with antipsychotic-induced gene expression profiles to detect potentially
relevant therapeutic targets shared by multiple antipsychotics. Human neuronal-like cells (NT2-N)
were treated for 24 h with one of the following antipsychotic drugs: amisulpride, aripiprazole,
clozapine, risperidone, or vehicle controls. Drug-induced gene expression patterns were compared
to schizophrenia-associated transcriptional data in post-mortem brain tissues. Genes regulated by
each of four antipsychotic drugs in the reverse direction to schizophrenia were identified as potential
therapeutic-relevant genes. A total of 886 genes were reversely expressed between at least one
drug treatment (versus vehicle) and schizophrenia (versus healthy control), in which 218 genes
were commonly regulated by all four antipsychotic drugs. The most enriched biological pathways
include Wnt signaling and action potential regulation. The protein-protein interaction (PPI) networks
found two main clusters having schizophrenia expression quantitative trait loci (eQTL) genes such
as PDCD10, ANK2, and AKT3, suggesting further investigation on these genes as potential novel
treatment targets.

Keywords: transcriptomics; gene expression; schizophrenia; antipsychotics; psychiatry; mental
disorders

1. Introduction

Despite pharmacological advances, drug discovery for schizophrenia remains a formidable
challenge due to the fact that the etiopathogenesis of the disease is poorly understood. To
accelerate novel drug discovery, identifying potential molecular targets from the expanding
genetic and transcriptomic data is a promising approach, especially given the rise of high
throughput sequencing technologies and datasets. Schizophrenia is highly heritable, and
several genome wide association studies (GWAS) have identified risk loci related to the
disease [1-3]. Similar to schizophrenia pathogenesis, the molecular mechanisms of widely
used antipsychotic drugs are likely polygenic, with probable overlap between schizophrenia
risk loci and antipsychotic drug target genes [4]. Hence, mechanistic insights into how
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antipsychotic drugs ameliorate symptoms may be gained by investigating antipsychotic-
induced alterations in gene expression, especially in schizophrenia risk genes. Importantly,
drugs with a supported genetic mechanism tend to perform better in clinical development
than those without such evidence, with an estimated doubling in success rate from phase I
to approval [5,6].

While transcriptional profiling of psychotropic drug treatments offers a comprehensive
view of cellular response at molecular level [7], identification of the relevant perturbations
driving the beneficial therapeutic effects can be challenging. However, the integration
of post-mortem transcriptional profiles with gene expression changes induced by widely
prescribed antipsychotic drugs (i.e., amisulpride, aripiprazole, clozapine, risperidone)
enable us to focus on latent potential molecular targets underlying the drugs’ therapeutic
effects. Since these drugs are expected to alleviate at least some of the aberrant perturbations
in schizophrenia, genes that are regulated by the drug in the opposite direction from the
disease phenotype may be therapeutic targets. Identifying such genes with reversed
regulation by the drug compared to the disease in their expression has been applied
successfully for drug discovery in oncology, in which it was shown that the extent of
reversed disease gene expression correlated with the drug efficacy [8]. While this approach
is new in psychiatry, a study has shown overexpressed genes in schizophrenia patients
reverting to normal expression levels after antipsychotic drug treatment [9], supporting
the use of transcriptomic reversal to identify molecular targets underlying the efficacy of
antipsychotic drugs.

In this study, antipsychotic-induced gene expression profiles were obtained using
RNA-sequencing in an in vitro human neuronal cell model and examined with respect
to schizophrenia-associated transcriptional data in post-mortem brain tissues. A sum-
mary of our investigative strategy is shown in Figure 1. The four widely-used atypical
antipsychotics were selected from four different groups based on their receptor binding
profiles: the serotonin and dopamine antagonists (risperidone), the multiple-acting recep-
tor targeted antipsychotics (clozapine), the D, partial agonists (aripiprazole), and others
(amisulpride) [10,11]. Capitalizing on their different binding profiles, we aimed to evaluate
their potential common effects at the transcriptional level and how they might interact in
the protein-protein interaction networks, as well as their relevant biological processes.

SCZ post-mortem brain NT2 cells treated antipsychotics
RNA-seq RNA-seq
Y Y
Differentially-expressed genes Differentially-expressed genes
SCZ vs. healthy Each drug treatment vs. vehicle

Overlapped genes with reversed logFCs?

Genes reversed by all 4 antipsychotics

Protein-protein interaction networks Pathway analysis

Figure 1. Flowchart of the analytical approach of the current study. Schizophrenia-associated transcrip-
tional perturbations were compared against drug-induced gene expression profiles to identify potential
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therapeutic-relevant genes that were reverse regulated by all four antipsychotic drugs (i.e., amisul-
pride, aripiprazole, clozapine, risperidone). Pathway analysis on these genes then found enriched
pathways potentially relevant to the molecular mechanism(s) of antipsychotics. Protein-protein
interaction analysis was also applied for the commonly reversed genes by all antipsychotics to find
their potential functional connections. Abbreviations: LogFC, log fold change relative to healthy
control brains or vehicle treated cells; SCZ, schizophrenia.

2. Results
2.1. Most Reversed Gene Expressions Were Changed by All Four Antipsychotic Drugs Rather than
by a Single Antipsychotic Drug

In comparisons between transcriptional profiles of antipsychotics and schizophrenia
post-mortem brains, 886 genes were found to be expressed in the opposite direction between
at least one drug treatment (as compared to vehicle) and schizophrenia (as compared to
healthy control). Figure 2 shows the number of genes reverse regulated by each drug and
their intersections (i.e., shared by two or more drugs). Amisulpride reverse regulated the
greatest number of genes (n = 528), while risperidone reverse regulated the least number
of genes (n = 479). Interestingly, most gene expression reversals were driven by all four
antipsychotic drugs (n = 218) rather than by any one antipsychotic.
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Figure 2. The number of genes whose expression levels were reversed by the individual and com-
bination of antipsychotic drugs relative to the differential expression in post-mortem brains. The
total number of genes with reverse regulated expression by each drug is shown on the leftmost
horizontal axis. The vertical axis from the top panel demonstrates the unique sets of genes reversed
by individual drugs or the intersection of these sets, indicated by the connected lines and dots along
the horizontal axis.

2.2. Reverse Regulation of Genes Was Enriched for Pathways Related to Action Potential, Signal
Transduction and Response to Insulin

The biological functions of 218 reverse regulated genes by all four drugs were evalu-
ated based on functional enrichment analysis of gene sets from Gene Ontology (GO). GO
enrichment analysis found 16 significantly enriched biological processes with p-values
adjusted for multiple testing (FDR) < 0.05 (illustrated in Figure 3, full results provided in
Supplementary Table S1). The results highlighted the involvement of action potential (e.g.,
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Figure 3. Gene ontology biological processes enriched by the list of genes reversed by all antipsy-
chotic drugs.

2.3. Gene Networks Identified Two Main Clusters Related to Wnt Signalling and Action Potential

While pathway analysis offered useful insights on the enriched biological functions,
it lacks the consideration of interactions between genes. We used the STRING database
of protein-protein interactions (PPI) to find the potential intergenic interactions between
protein-coding genes, filtering for only interactions with high confidence. The PPI net-
work had a significant enrichment p-value of 0.00027, suggesting that commonly reversed
genes have meaningful connections and are not a random set of genes. As shown in
Figure 4, two major clusters were identified (fully constructed networks can be found
in Supplementary Figure S1). Cluster 1 comprised of proteins related to signaling path-
ways: Wnt signaling pathway (TLE1, APC, WNT3, FZD1, FZD9, WNT9A, AXIN1, USP34,
PPP3CA), Akt signaling pathway (AKT3, RHEB, PPP3CA) and the striatin-interacting phos-
phatase and kinase (STRIPAK) signaling complex (PDCD10, PPP2R1A, STK25). Cluster 2
contained solely upregulated proteins involved with action potential regulation: potassium
channel (KCNIP2, KCNB1, KCNA1, KCNA?2), sodium channel (SCNAT1), calcium channel
(RYR2) and ion channel stabilization (ANK2, ANKS3).

Expression quantitative trait loci (eQTL) are single nucleotide polymorphisms (SNPs)
that account for some of the variance in RNA expression across conditions, and integration
of eQTLs with genome-wide association studies (GWAS) data has identified risk genes for
schizophrenia [12]. To complement the robustness of finding therapeutic relevant gene
targets, we compared with evidence from GWAS and found three schizophrenia-associated
eQTL genes in the two main clusters of the PPI networks (i.e., PDCD10 [13] and AKT3 [14]
in cluster 1, ANK2 [14] in cluster 2).
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Figure 4. Clusters of protein-protein interaction networks of the commonly reversed genes by four
antipsychotic drugs. Cluster 1 and 2 are the two largest connected components of biologically
related proteins. Triangular nodes are genes upregulated by all studied antipsychotics, whilst
v-shaped nodes represent downregulated genes. Nodes are colored based on mean log fold change
(red: downregulation, blue: upregulation). Edge width represents the confidence of the STRING
interaction score graded by supporting evidence (from cut-off minimum score 0.7 to maximum
score 1). Proteins without interactions are not shown.

3. Discussion

In this study, we highlighted the common targets and pathways regulated by four
commonly prescribed antipsychotic drugs. We used the integration of our RNA-sequencing
results from in vitro treatments with expression profiling datasets of post-mortem brain
samples from people with schizophrenia. Despite the unique transcriptional features
of each antipsychotic drug, our study pinpointed the common reversal effects versus
schizophrenia phenotypes of 218 genes by all four antipsychotic drugs. Through our multi-
stepped bioinformatics analyses, signaling pathways and action potential regulation were
highlighted as the major biological processes underlying the common mechanisms of the
studied antipsychotic drugs.

STRING protein-protein interaction (PPI) network of proteins encoded by genes
reversely regulated by all four antipsychotic drugs implied association with signaling
pathways (Figure 4—Cluster 1), including elements of the Wnt pathway and the Akt
pathway. Abnormal Wnt pathway signaling in schizophrenia is documented, together
with its association with the Akt pathway [15-17]. One major element of the Akt path-
way found in the network is AKT3 (AKT Serine/Threonine Kinase 3), which is also an
eQTL gene implicated in schizophrenia via GWAS [1,18]. AKT3 was upregulated by all
four antipsychotics, potentially reversing the downregulation seen in post-mortem brains
from people with schizophrenia. AKT3 is a member of the AKT family that play roles in
many biological processes such as cell proliferation and apoptosis [19]. AKT3 is the most
abundant AKT isoform in the brain during neurogenesis [20,21]. It has a major role in
brain development and the AKT3 knock-out mice exhibited a phenotype reminiscent of
psychiatric manifestations including schizophrenia [22-24].

In cluster 1 of the PPI network, the STRIPAK signaling complex could be highly rele-
vant to the common mechanisms of the studied antipsychotics, given its association with
elements of the Wnt pathway and the Akt pathway. We found three genes of STRIPAK
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which were reversely regulated by all four antipsychotic drugs. These were the scaffolding
subunit (PPP2R1A), germinal center kinase GCKIII (§TK25) and GCKIII tether (PDCD10).
While STRIPAK has not been researched in schizophrenia, a variety of proteins can be
phosphorylated by STRIPAK complexes to regulate multiple cellular processes including
signaling pathways such as Hippo signaling [25,26], whose modulation by antipsychotic
drugs has been previously described [27]. Among these STRIPAK genes of the PPI network,
PDCD10 (Programmed Cell Death 10) is an eQTL gene associated with schizophrenia
risk [13]. This was upregulated by all four antipsychotics, reversing the downregulation
seen in post-mortem brains from people with schizophrenia. In JM-Jurkat T-lymphocytes,
PDCD10 was up-regulated by both acute and subacute treatment of clozapine in a microar-
ray experiment as well as qPCR [28]. Evidence so far suggests PDCD10 has pleiotropic
involvement in apoptosis, oxidative metabolism, Golgi complex polarization, and espe-
cially in cerebral cavernous malformation disease [29,30]. However, it remains unknown
how this gene might contribute to the pathology of schizophrenia.

Action potential regulation was another major common mechanism of antipsychotic
drugs in this study. The PPI network identified a cluster of upregulated genes involved
in action potential (Figure 4—Cluster 2), in which most are elements of potassium chan-
nels, concurring with its major significance in GO enrichment analysis enriching relevant
processes such as “action potential” and “regulation of potassium ion transmembrane
transporter activity”. Ion channel stabilizers (i.e., ANK2 and ANK3), might play an inter-
connected role affecting multiple ion channels in the cluster. Indeed, ANK3 (Ankyrin 3)
binds to sodium channels and potassium channels, and is required for the organization
of these elements at the axon initial segment for normal action potential firing [31,32].
While the function of ANK? in brain has not been as well researched as ANK3, ANK2 is a
schizophrenia-related eQTL gene [14]. Its antipsychotics-induced upregulated expression
was reversed compared to the downregulation trend observed in post-mortem brains
from people with schizophrenia. ANK2 tends to be co-expressed with ANK3 in many cell
types including neurons, and both ANK2 and ANK3 might play important roles in axonal
trafficking [33]. However, the biological functions in schizophrenia of both ankyrins remain
to be fully characterized.

While the evaluation of antipsychotic drug effects on gene expression have been re-
ported in some studies [34,35], these results were acquired from limited drug treatments
and gene coverage. The strength of this study was the usage of RNA sequencing for
multiple drugs, enabling us to compare different drugs on a more comparable level due to
our same experimental protocol and obtain a higher level of coverage of gene expression
levels from high-throughput sequencing. The integrative analyses with transcriptional
profiles from schizophrenia individuals also add clinical corroboration to the identification
of molecular targets underlying the efficacy of antipsychotic drugs via transcriptomic
reversal. Whilst the evaluation of the exclusive transcriptional features of each antipsy-
chotic drug may yield interesting results, this study did not aim to examine these specific
expression changes and hence they should be considered separately. We acknowledge
some limitations of this study. The NT2-N in vitro model is an imperfect representation
the disease phenotype. In our NGS analyses, we administered a single dose for each drug
with acute measurement, which limits our ability to assess long-term pharmacological
regulation. There is a possibility that the post-mortem brain dataset used in this study
was influenced by drug treatments. However, Fromer et al. has examined enrichment of
differential expression and directional concordance for drug treatment signatures derived
from studies using monkeys and rodents and found genes highlighted by the contrast of
subjects with schizophrenia versus control subjects do not largely trace their differential
expression to antipsychotic medications [36]. The most ideal study design would be pre-
and post-treatment measurement in drug naive schizophrenia patients versus healthy
controls. To our knowledge, one study by Benedicto et al. has characterized differentially
expressed genes in blood between schizophrenia patients before and after treatment with
atypical antipsychotics using next-generation sequencing data [9]. Despite its accessibility,
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human whole blood is a limited substitute for brain tissue, affecting the characterization of
transcriptional dysregulation in mental disorders [37,38]. Nevertheless, post-mortem brain
tissues from schizophrenia subjects still offer most acceptable reflection of gene expression
associated with the disorder [39].

4. Materials and Methods
4.1. Post-Mortem Brain Gene Expression Datasets

The gene expression dataset from Fromer et al. [36] was utilized, in which dorsolat-
eral prefrontal cortex post-mortem brain tissues of people diagnosed with schizophrenia
(N =258) and controls (N = 279) were sequenced by RNA-seq. A total of 56,632 genes were
sequenced and among them, there were 16,423 genes passing the expression-level threshold
of >1 CPM in >50% of the samples. Applying a significant cut-off FDR of 0.1, we extracted
794 genes that were differentially expressed with their corresponding logFCs.

4.2. Cell Culture

The model of human neurons used in our study was NTera2/cloneD1 (NT2)—a hu-
man teratocarcinoma cell line, which was differentiated into post-mitotic neuronal cells
(NT2-N) after being treated with retinoic acid [40,41]. The NT2-N cells share many char-
acteristics of human embryonic stem cells and of neuronal progenitor cells [42] and have
been an efficient proxy for the study of central nervous system biology in various disorders
such as Lesch-Nyhan disease and Parkinson’s disease [43,44]. The cell culture and differ-
entiation processes were conducted as previously described [45]. Briefly, NT2 cells were
maintained in Dulbecco’s modified Eagle’s Medium (DMEM,; Life Technologies, Melbourne,
Australia), 10% fetal bovine serum (FBS; Thermo Fisher Scientific, Melbourne, Australia)
and 1% antibiotic-antimycotic solution (Life Technologies, Thermo Fisher Scientific, Mel-
bourne, Australia). NT2-N cells were induced from NT2 cell cultures by treating with
10> M retinoic acid (Sigma-Aldrich, Sydney, Australia) for 28 days with media refreshed
every 2-3 days. For experiments, cells were seeded onto plates coated with 10 pg/mL
poly-D-lysine (Sigma-Aldrich, Sydney, Australia) and 10 pg/mL laminin (Sigma-Aldrich,
Sydney, Australia) at 2 x 10° cells/well (24-well plates) with further addition of mitotic
inhibitors (1 uM cytosine and 10 uM uridine; Sigma-Aldrich, Sydney, Australia) for a total
of 7 days, and the media was refreshed every 2-3 days to generate an enriched culture of
differentiated neuronal cells (NT2-N).

4.3. Drug Treatments

The differentiated neuronal cells were treated with one of the antipsychotic drugs:
amisulpride (10 uM), aripiprazole (0.1 uM), clozapine (10 uM), risperidone (0.1 uM) for
24 h (4-6 replicates for each group). All drugs were purchased from Sigma-Aldrich (Sydney,
Australia). Vehicle control cells were treated with an equal volume of 0.1% dimethyl
sulfoxide (DMSO; Sigma-Aldrich, Sydney, Australia). These drug doses were chosen
to maintain the exposure level within the therapeutic index according to previous dose
response studies in our laboratory (data not shown).

4.4. Gene Expression Measurement

After the 24-h drug treatment, cells were harvested for RNA analysis. Total RNA
was extracted using RNeasy® mini kits (Qiagen, Melbourne, Australia), then checked
for quality and quantity using an Agilent 2100 Bioanalyzer (Agilent Technologies, Mel-
bourne, Australia) and NanoDrop 1000 (Thermo Fisher Scientific, Melbourne, Australia)
respectively.

RNA-seq libraries were prepared for all samples from 1 ng total RNA using a TruSeq
RNA Sample Preparation Kit (Illumina, Victoria, Australia) as per the manufacturer’s
instructions. Samples were analyzed on an Illumina HiSeq platform (HiSeq 2500 rapid
50 bpSE; 1 flow cell, 2 lanes) to measure genome wide mRNA expression.
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4.5. Gene Expression Analysis

The raw data yielded in FASTQ format were aligned to reference genomes using the
Deakin Genomics Centre RNA-Seq alignment and expression quantification pipeline (https:
/ /github.com/m-richardson/RNASeq_pipe, accessed on 1 July 2017). Briefly, the pipeline
included raw read quality filtering and adapter trimming (ILLUMINACLIP:2:30:10:4,
SLIDINGWINDOW:5:20, AVGQUAL:20 MINLEN:36) with Trimmomatic v35 (Usadel Lab,
Jiilich, Germany) [46], and alignment to the reference genome using STAR v2.5 (Cold
Spring Harbor Laboratory, New York, USA) in 2-pass mode (Human genome version
GRCh38) [47].

The expression was quantified at the gene level, and individual sample counts were
collated into a m X n matrix for differential abundance testing. Low expressed genes were
removed (<1 cpm in n samples, where n is the number of samples in the smallest group for
comparison), and the data was normalized using the weighted trimmed mean of M-values
(TMM) using edgeR in R [48]. Differential gene expression was assessed using edgeR, and
statistical significance was corrected for multiple testing to generate false-discovery-rate
(FDR) adjusted g-values via the Benjamini-Hochberg method [49].

4.6. Functional Enrichment Analysis and Protein-Protein Interaction Analysis

Using the differentially expressed genes identified from drug exposures and schizophre-
nia post-mortem brains, we identified overlapped genes with opposite directions of ex-
pression regulation (i.e., log fold change—logFC) between disease phenotypes and drug
exposures (e.g., differentially expressed genes up-regulated in schizophrenia post-mortem
brains but down-regulated by drug treatment in NT2-N cells). In order to find enriched
pathways that might play a role in the molecular mechanism of antipsychotic drugs, we
then filtered genes that were reverse regulated by all antipsychotic drugs, and applied over-
representation analysis using the R package ClusterProfiler [50] with pathway reference
from the gene ontology (GO) database [51].

The list of the commonly reversed genes induced by all antipsychotic drugs was also
evaluated for protein—protein interactions (PPI) using the STRING database [52]. The
interaction score minimum cut-off was set at 0.7 to filter only high-confidence connections.

5. Conclusions

In our study, we identified the main biological pathways involved in the beneficial
effects of antipsychotic drugs and common linked genes. The highlighted pathways include
Wnt signaling and action potential regulation. Some schizophrenia eQTL genes such as
PDCD10, ANK2 and AKT3 with highly connected functions to these pathways should be
further investigated to find out how they and their related pathways are involved with the
disease, which might potentially enable the finding of novel treatment targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/1jms23147508 /s1.
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