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Abstract: Anti-mucin1 (MUC1) antibodies have been widely used for breast cancer diagnosis and
treatment. This is based on the fact that MUC1 undergoes aberrant glycosylation upon cancer
progression, and anti-MUC1 antibodies differentiate changes in glycan structure. MY.1E12 is a
promising anti-MUC1 antibody with a distinct specificity toward MUC1 modified with an immature
O-glycan (NeuAcα(2-3)Galβ(1-3)GalNAc) on a specific Thr. However, the structural basis for the
interaction between MY.1E12 and MUC1 remains unclear. The aim of this study is to elucidate the
mode of interaction between MY.1E12 and MUC1 O-glycopeptide by NMR, molecular dynamics
(MD) and docking simulations. NMR titration using MUC1 O-glycopeptides suggests that the
epitope is located within the O-linked glycan and near the O-glycosylation site. MD simulations
of MUC1 glycopeptide showed that the O-glycosylation significantly limits the flexibility of the
peptide backbone and side chain of the O-glycosylated Thr. Docking simulations using modeled
MY.1E12 Fv and MUC1 O-glycopeptide, suggest that VH mainly contributes to the recognition
of the MUC1 peptide portion while VL mainly binds to the O-glycan part. The VH/VL-shared
recognition mode of this antibody may be used as a template for the rational design and development
of anti-glycopeptide antibodies.

Keywords: antibody; docking simulation; glycopeptide; MD simulation; modeling; MUC1; NMR

1. Introduction

It has been established that malignant transformation of cells involves abnormal
glycosylation of the cell surface molecules [1]. Mucin1 (MUC1) was discovered as a
carcinoma-associated mucin-like glycoprotein antigen and found to be peanut-agglutinin-
reactive [2]. So far, many anti-MUC1 antibodies have been developed, and some of them
are specific to cancer progression [3–7]. This specificity likely originates from the fact that
abnormal O-glycosylation occurs at MUC1 on cancer cells. MUC1 is therefore considered
the prime target of specific immunotherapy, including antibody-drug conjugates and CAR-
T therapy [8,9]. Currently, some anti-MUC1 monoclonal antibodies are widely used as a
clinical tool to detect and monitor breast cancer [10].
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Information is currently rather limited on the precise epitope and binding specificity
for many developed antibodies. So far, the binding modes of anti-MUC1 glycopeptide
antibodies have mainly been revealed by X-ray crystallography. A crystal structure of SM3
in complex with MUC1 glycopeptide revealed that the antibody mainly recognizes the
peptide part and the GalNAc residue points towards a solvent with a limited interaction
with the SM3 antibody [11]. Another example is anti-MUC1 antibody AR20.5, and the co-
crystal structure shows that the sugar moiety of the MUC1 glycopeptide does not directly
contact the antibody [12]. It seems that O-glycosylation induces a preferred conformation,
which is recognized for AR20.5 binding.

MY.1E12 (mouse IgG2a) is an antibody that was developed by immunizing mice with
human milk fat membrane. It has been shown that this MY.1E12 antibody binds to MUC1
in an O-glycan-dependent manner [13,14]. Yoshimura et al. synthesized a series of MUC1
peptides with different glycosylation patterns as ligands for anti-MUC1 antibodies and
investigated their affinity using an ELISA assay [15]. It was shown that MY.1E12 recognizes
NeuAcα(2-3)Galβ(1-3)GalNAc only when attached to Thr8 of MUC1. This suggests that
the binding of MY.1E12 is highly specific. Therefore, this antibody is a promising candidate
for the development of cancer therapeutics. However, the structural basis of this unique
binding mode has not yet been characterized.

In this study, we used NMR, MD simulations and docking simulations to analyze the
mode of interaction between MUC1 O-glycopeptide and MY.1E12.

2. Results and Discussion
2.1. NMR Titration Study

First, we conducted NMR titration studies using MY.1E12 and MUC1 O-glycopeptides
both to experimentally detect the interaction and to obtain information on the epitope
region. We used three O-glycopeptides with different peptide chain lengths, i.e., MUC1
(27AA), MUC1(20AA) and MUC1 (9AA) (Figure 1). All three peptides have a single O-
glycan (NeuAcα(2-3)Galβ(1-3)GalNAc) on Thr8. 1H-NMR signals originating from MUC1
O-glycopeptides were assigned by a series of 1D and 2D NMR experiments (Figure 2,
Supplementary Figures S1–S15, Supplementary Tables S1–S3).
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Figure 2. NMR titration experiments using MUC1 (27AA) and MY.1E12. (a) 1D-1H NMR spectra
(amide NH region) of MY.1E12 with increasing amount of MUC1 (27AA). Molar ratios (binding site)
are indicated for each spectrum. x: impurities. (b) 2D CLIP-COSY spectra (NH-Hα region) of 25 µM
MUC1 (27AA) in the absence (black) or presence (red) of equimolar amount of MY.1E12. A4, A16, A24,
S9 and A10 signals were not uniquely assigned. (c) Ratio of peak height (MUC1+antibody/MUC1
alone) for each NH-Hα cross peak in CLIP-COSY spectra. The ratios are normalized against the
highest value (T20). All experiments were performed on a 600 MHz spectrometer at 278 K.

Upon the addition of MUC1 (27AA) to MY.1E12 solution, line broadening was ob-
served in 1D 1H-NMR spectra for certain signals derived from MUC1 (27AA), e.g., NH
signal of T8, GalNAc and NeuAc (Figure 2a, Supplementary Figure S16). From this ob-
servation, the binding was experimentally confirmed in the solution between MY.1E12
and MUC1 (27AA). It was found that the NH signals from the C-terminus still showed a
sharp signal in the presence of excess MY.1E12 (antibody:ligand = 1:0.5), suggesting that



Int. J. Mol. Sci. 2022, 23, 7855 4 of 11

the C-terminal region of MUC1 (27AA) is not involved in the interaction with MY.1E.12.
Line broadening of His side chains is also indicative of an antibody-binding region. There
are two His residues in MUC1 (27AA), H5 and H25. H5 side-chain signals are broader than
those of H25. This implies that the H5 side chain is at or near the antibody binding site,
while that of H25 is not.

The binding was also monitored by 2D CLIP-COSY experiments to avoid signal over-
lapping (Figure 2b). In the presence of antibody, signals from the C-terminal region of the
glycopeptide (S19, T20, A21 and V27) were clearly observed and sharp (Figure 2b). Therefore,
it is likely that the C-terminal region of MUC1 (27AA) is not included in the binding epitope
of this antibody. To quantitatively analyze the data, the peak heights of each signal in the
CLIP-COSY spectra were measured and the ratio of peak height (MUC1+antibody/MUC1
alone) plotted (Figure 2c). This result supports the conclusion that the N-terminal region of
the MUC1 glycopeptide is indeed involved in binding to antibodies.

We performed a similar NMR titration experiment using a shorter glycopeptide MUC1
(20AA) that still contained a putative epitope (Figure 3, Supplementary Figures S17 and S18).
We observed that the signal from V7 Hγ is significantly broadened, while the T20 Hγ signal
remains sharp in the presence of an equimolar amount of antibody (antibody:MUC1 = 1:4)
(Figure 3). This suggests that the C-terminal region of MUC1 (20AA) is less involved in
MY.1E12 binding than the N-terminal region of the glycopeptide.
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Figure 3. NMR titration experiments using MUC1 (20AA) and MY.1E12. The methyl region is selected
to show T20 and V7 methyl signals (black; antibody:MUC1 = 1:10, red; antibody:MUC1 = 1:4). The
experiments were performed on a 600 MHz spectrometer at 278 K.

In addition, a 1D−1H NMR titration study of MUC1 (9AA) was performed, and
binding was evident from the line broadening of NH signals from GalNAc and Thr8 and the
acetyl signals from NeuAc, GalNAc and the N-terminus (Supplementary Figures S19–S21).
Overall, we established that antibody binding occurs near the O-glycosylation site in three
different MUC1 peptides (Supplementary Figure S22). Taken together, NMR titration
experiments suggest that MY.1E12 simultaneously recognizes the O-glycan and the peptide
region near the O-glycosylation site of the MUC1 glycopeptide.

2.2. MD Simulations of MUC1

The conformational dynamics and role of the O-glycan exhibited by the MUC1
polypeptides were studied by performing MD simulations of O-glycosylated MUC1(9AA),
unglycosylated MUC1 (9AA), and O-glycan alone (NeuAcα(2-3)Galβ(1-3)GalNAc).

First, a comparison was made between the MD simulations from O-glycosylated
and unglycosylated MUC1(9AA). For the peptide backbone, ϕ and ψ torsion angles were
defined according to the IUPAC definition, and χ1 of Thr was defined as N-Cα-Cβ-O. It
was found that the torsion angle distributions of ψ and χ1 are limited in the presence of
O-glycan at Thr8 (Figure 4 and Supplementary Figure S18). This observation is consistent
with previous reports, showing that O-GalNAc modification restricts the flexibility of
polypeptides through intramolecular GalNAc-peptide interactions [16–18].
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Figure 4. Distribution of dihedral angles of Thr8 of MUC1 obtained by MD simulation. O-
glycosylated MUC1 peptide (top) and unglycosylated peptide (below) were simulated. Symbol
nomenclature for glycans (SNFG) is used for presenting O-glycan [19].

Next, we examined the conformation of the O-glycan and the effect of peptide con-
jugation. The torsion angles of glycosidic linkages are as follows: NeuAc-Gal linkage is
defined by ϕ (O-C2-O-C3′) and ψ (C2-O-C3′-C2′) and Gal-GalNAc linkage is defined by
ϕ (O-C1-O-C3′) and ψ (C1-O-C3′-C2′). From our MD simulation, the torsion angle of the
NeuAc-Gal linkage was ϕ = 49◦ ± 14 and ψ = −127◦ ± 41. For the Gal-GalNAc linkage,
the angles were ϕ = −44◦ ± 31 and ψ = −148◦ ± 43 (Figure 5). The distribution of ϕ and ψ
torsion angles between NeuAc and Gal residues were previously reported asϕ = 69◦ ± 14 and
ψ = −125◦ ± 16 [20]. The distribution of torsion angles between Gal and GalNAc residues are
reported in the glycan fragment database as ϕ =−77◦ ± 18 and ψ =−150◦ ± 49 [21]. There-
fore, the distributions of torsion angles from the MD simulation are rather consistent with
previous reports. By comparing the glycosidic torsion angle distributions of O-glycosylated
MUC1(9AA) and O-glycan alone, it can be concluded that the conformational dynamics of the
O-glycan is slightly restricted in the presence of MUC1 polypeptide. This is consistent with
the MD simulation showing that O-glycosylation limits the conformational dynamics of the
MUC1 polypeptide (Figure 4, Supplementary Figure S23).
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2.3. Modeling of MY.1E12

To perform the docking study, we built a 3D model of the MY.1E12 Fv domain using
Discovery Studio 2021. CDRs were identified using the Annotate Sequence tool in the
Discovery Studio 2021 (Figure 6a), and the numbering scheme was based on IMGT [22].
A chimeric antibody (PDB ID: 3MBX IgG1) [23] was used as the template. It comprises
an H chain, which is an anti-human IL-13 antibody (IgG), and an L chain, which is an
anti-human EMMPRIN antibody (IgG). MY.1E12 shares a CDR sequence identity with
these templates of 66.7%. A Ramachandran plot of the 3D model (Figure 6b,c) [24] shows
that most of the amino acid residues except for Gly are located within the favored region,
validating the 3D model in terms of the main chain dihedral angles.
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Figure 6. Construction of a 3D model of MY.1E12 Fv region. (a) Amino acid sequences of MY.1E12
CDRs defined by IMGT. (b) A 3D model of MY.1E12 Fv fragment generated by homology modeling.
VH: variable region of H chain, VL: variable region of L chain. Orange: CDR. (c) Ramachandran plot
of the modeled MY.1E12 Fv region. Gly is shown as triangles, Pro squares, and the other amino acid
residues as circles. Green symbols are within the energetically favorable region (boundary line in
pink) and red symbols are located outside the region.

2.4. Docking of MUC1 Glycopeptide to MY.1E12

Docking poses of MUC1 O-glycopeptide and MY.1E12 antibody as well as that of
MUC1-MY.1E12 were built using ZDOCK software [25]. In the latter case, MUC1 (9AA) is
known to bind to MY.1E12. Docking was performed under conditions such that the entire
ligand and CDRs of MY.1E12 are involved in binding.

Since ZDOCK applies a rigid docking procedure, pseudo-flexible docking was per-
formed using three MUC1 conformers that were extracted from the MD trajectory. The
conformers were chosen at the simulation times of 8 ns, 9 ns, and 10 ns, and 30 docking
poses were obtained. Of these, 10 (33.3%) were categorized into one group sharing a
similar docking topology (Figure 7a). Solvent accessibility (ASA) was calculated from these
10 docking poses to identify the binding sites of the receptor and ligand. For the analysis of
binding sites (epitope and paratope), solvent accessibility was calculated in the presence
and absence of the binding partner. The results show that MY.1E12 uses CDR H1, H2 and
H3 for binding to MUC1 O-glycan, while CDR L1, L2, L3 and H3 are involved in binding
to the MUC1 peptide (Figure 7b). Paratope analysis shows that the N-terminal region of
the MUC1 peptide (A1-S6) interacts with the VH domain, while NeuAc is recognized by
the VL domain (Figure 7c). This NeuAc-VL interaction is consistent with previous reports
that sialic acid is essential for binding to MY.1E12 [14,15]. A 2D plot analysis indicates that
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heavy-chain CDR loops (H1, H2 and H3) interact with the peptide region, while the light
chain CDR1 loop (L1) binds to the glycan part (Figure 7d).
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Figure 7. Docking simulations and analysis of MUC1-MY.1E12 binding site. (a) Ten selected docked
poses that share a similar binding mode. VH is shown in green, VL in light blue, MUC1 O-glycan in
yellow, and the peptide region in orange. Schematic drawing of the docking pose is shown on the right.
(b) MUC1-binding region (epitope) of MY.1E12 based on difference in solvent accessibility (∆ASA) in
the presence and absence of MUC1 ligand. Contributions of MUC1 glycan and the peptide portion
to antibody binding are shown separately in yellow and orange, respectively. (c) Antibody-binding
region (paratope) of MUC1 based on difference in solvent accessibility (∆ASA) in the presence and
absence of antibody. Contributions of VH and VL to MUC1 binding are shown separately in green
and blue, respectively. (d) Schematic 2D plot showing the interaction between MUC1 glycopeptide
and antibody MY1E12. VH is shown in green, VL in light blue, CDR in red.

The electrostatic potential of MY.1E12 Fv was calculated for one of the docking poses.
The MUC1 glycan contains a negatively charged terminal NeuAc residue which may
interact with a positively charged residue(s) on the CDR of MY.1E12. Indeed, the L1 loop
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exhibits a positively charged area associated with a lysyl residue located near the NeuAc
residue (Figure 8).
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Figure 8. Electrostatic surface potential of MY.1E12 Fv domain. The surface model of MY.1E12 Fv is
colored according to the electrostatic surface potential (blue, positive; red, negative; scale from −50
to +50 kT/e). Putative ligand-binding areas are circled with red dotted line. Figures were prepared
using PyMol software.

3. Materials and Methods
3.1. NMR Analysis

Three MUC1 O-glycopeptides—MUC1 (27AA), MUC1 (20AA), and MUC1 (9AA)—were
prepared with the sequences, APPAHGVT8SAPDTRPAPGST-OH, APPAHGVT8SAPDTRPAPG
ST-OH, and Ac-AHGVT8SAPD. Glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase
1 (dC1GalT) and CMP-N-acetylneuraminate-β-galactosamide-α-2,3-sialyltransferase 1
(ST3Gal1) were used to build the NeuAcα(2-3)Galβ(1-3)GalNAc glycan onto Thr8 [15].
NMR analyses were performed using JNM-ECZ600R/S1 600 MHz spectrometer equipped
with a ROYAL probe (JEOL, Tokyo, Japan), or AVANCE III 600 MHz spectrometer equipped
with a TXI probe (Bruker, Billerica, MA, USA). The probe temperature was set to 278 K.
MUC1(9AA) (1.6 mg) and MUC1(20AA) (1.7 mg) were dissolved in 600 µL of 20 mM
sodium phosphate buffer, pH 6.8 (H2O:D2O = 9:1). MUC1(27AA) (0.48 mg) was dissolved
in 300 µL of 25 mM sodium phosphate buffer, pH 6.8 (H2O:D2O = 9:1). 1H chemical shifts
were reported by reference to the internal standard of 4,4-dimethyl-4-silapentane-1-sulfonic
acid (DSS, 0 ppm). NMR chemical shifts of MUC1 were assigned by analyzing 1D-1H,
2D DQF-COSY, CLIP-COSY, HOHAHA, and NOESY spectra. 1H titration study was
performed with 1024 scans for MUC1(27AA) and 128 scans for MUC1(20AA and 9AA).
Suppression of water signal was performed using a watergate sequence. The 1H pulse
length was typically 8–10 µs. NMR data processing was performed using Delta5. 3. 1
(JEOL, Tokyo, Japan), and NMR spectral analyses were performed using Mnova 14. 1. 1
(Mestrelab Research, Santiago, Spain). For MUC1 (9AA) and MUC1 (20AA) experiments,
the concentration (binding site) of MY.1E12 (mouse IgG2a, MW = 150,000) was 4.3 µM,
dissolved in 600 µL of 20 mM sodium phosphate buffer, pH 6.8 (H2O:D2O = 9:1). For
MUC1 (27AA), the concentration (binding site) of MY.1E12 was 25 µM, dissolved in 500 µL
of 25 mM sodium phosphate buffer, pH 6.8 (H2O:D2O = 9:1).

3.2. MD Simulation of MUC1

Coordinates of MUC1 glycan were created using Carbohydrate Builder in GLYCAM
(https://dev.glycam.org/) (accessed on 6 June 2021). Peptide coordinates were created
using Discovery Studio 2021 [24] The peptide and glycan were then attached using a
Glycoprotein Builder in GLYCAM. The coordinates of MY.1E12 were created by homology
modeling. CHARMm [26] was assigned as the force field. Simulation time was set to 10 ns.
Explicit periodic boundary was used as the solvation model. Orthorhombic cell shape was
used in explicit periodic boundary solvation model. The minimum distance from periodic
boundary was set to 7.0 Å. For each MUC1 coordinate, 439–1045 water molecules were

https://dev.glycam.org/
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explicitly placed and TIP3 [27] was used as the force field template. Minimization of the
initial coordinate was done in two steps. The first step eliminated the distortion of the
entire structure with the steepest descent algorithm. In the second step, minimization was
performed with adopted basis Newton–Raphson (NR). Heating was carried out at 310 K.
After equilibration, the time step was set to 2 fs and NAMD was carried out under an nPT
ensemble [28].

3.3. Modeling of MY.1E12 Fv Domain

The 3D structure of the antibody was generated by a homology modeling technique.
The amino acid sequences were as follows, with CDR underlined:

MY.1E12 VH

QVTLKESGPGILQPSQTLSLTCSFSGFSLSTLGMGVSWIRQPSGKGLEW
-LAHIYWNDDKHYNPSLKSRLTISKDSSINQVFLRITTVDTADAATYYCART
NYYGSSYDYWGQGTTLTVSS

MY.1E12 VL

DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLHSGNQKNYLTWYQQKPGQPPKLLI
YWTSTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSY
PFTFGSGTKLEIKR

Identification of suitable homologous template structures for the modeling of the tar-
get protein was carried out using the tool BLAST. CDRs were identified using the Annotate
Sequence tool. Then, Identify Framework Templates was used to search for candidate tem-
plates. CDR numbering scheme was based on IMGT [22]. As a result, chimeric antibodies
against IL-13 and EMMPRIN (PDB ID: 3MBX) were adopted as templates. Modeling was
performed with the Model Antibody Framework tool. The Model Antibody Loop was
subsequently performed to rebuild the CDR.

3.4. Docking Simulation of Glycopeptide and Antibody

Docking simulation of antibody–glycopeptide complex was performed using ZDOCK.
For MUC1-MY.1E12 docking, MY.1E12 was used as the receptor and MUC1 (9AA) as the
ligand. Stable structures for docking were derived from those at the end of MD simulation.
ZDOCK is a rigid body docking algorithm, and to create alternative ligand structures we
selected three MUC1 conformers in the middle of the MD simulation. The conformers used
were those at 8 ns, 9 ns, and 10 ns. In the docking simulations, all glycan regions and all
peptide regions were considered as active sites based on the NMR and MD simulation
results. The active site of MY.1E12 was defined as the CDR region, and the other sites were
defined as blocking sites. The contact surface area was calculated using ASA.

4. Conclusions

To gain an understanding of the structural basis of the O-glycan-dependent interaction
between MUC1 and MY.1E12 antibody, we used several approaches. NMR titration locates
the epitope to the O-glycan and nearby amino acid residues. MD simulation suggests
O-glycosylation limits the conformational flexibility of the O-glycosylation site. In silico
docking implicates both the O-glycan and peptide of the MUC1 ligand in binding to the
MY.1E12 antibody. The elucidation of the likely mode of recognition will help develop
novel glycopeptide-specific antibodies with desired sequence specificity. We are continuing
to clarify the detailed binding mode of this antibody.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23147855/s1.
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