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Abstract: An advanced understanding of sperm function is relevant for evidence-based male fertility
prediction and addressing male infertility. A standard breeding soundness evaluation (BSE) merely
identifies gross abnormalities in bulls, whereas selection based on single nucleotide polymorphisms
and genomic estimated breeding values overlooks sub-microscopic differences in sperm. Molecular
tools are important for validating genomic selection and advancing knowledge on the regulation
of male fertility at an interdisciplinary level. Therefore, research in this field is now focused on
developing a combination of in vitro sperm function tests and identifying biomarkers such as sperm
proteins with critical roles in fertility. The Na+-K+ ATPase is a ubiquitous transmembrane protein
and its α4 isoform (ATP1A4) is exclusively expressed in germ cells and sperm. Furthermore, ATP1A4
is essential for male fertility, as it interacts with signaling molecules in both raft and non-raft fractions
of the sperm plasma membrane to regulate capacitation-associated signaling, hyperactivation, sperm-
oocyte interactions, and activation. Interestingly, ATP1A4 activity and expression increase during
capacitation, challenging the widely accepted dogma of sperm translational quiescence. This review
discusses the literature on the role of ATP1A4 during capacitation and fertilization events and its
prospective use in improving male fertility prediction.
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1. Introduction

The sustainability of a burgeoning world population demands a concomitant rise in
the efficiency of global food production [1]. Increased animal productivity substantially
contributes to the World Health Organization’s sustainable development goals of zero
hunger, good health, and wellbeing, which require the improved genetic selection of
elite animals and widespread dissemination of their germplasm through reproductive
technologies such as artificial insemination and embryo production. Furthermore, the
success of these reproductive technologies is heavily dependent on fertility. Artificial
insemination has substantially increased the rate of genetic gains using germplasm from
one bull to breed numerous cows, making the fertility of an individual bull relatively more
important than an individual cow [2].

Although a breeding soundness examination (BSE) can identify bulls that are grossly
abnormal, this procedure is inadequate to identify sub-fertile bulls or predict variations in
fertility among bulls that are considered fertile. A standard BSE investigates bull fertility
based on conventional semen analysis, without considering submicroscopic differences in
sperm characteristics affecting fertility [3]. The evaluation of one or more sperm functions in
fertility prediction has been reported in various species. However, knowledge regarding the
most suitable combination of parameters in fertility prediction is debatable [4], indicating
the need to produce new knowledge on the molecular regulation of sperm functions. Bulls
considered satisfactory based on a traditional BSE may differ in their fertility by 20–25% [5].
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Therefore, it is desirable to use multi-parametric in vitro and in vivo tests to predict fertility,
providing an impetus for research to decipher the molecular regulation of sperm function.

In recent decades, semen evaluation has shifted towards an objective multi-parametric
analysis using advanced techniques and multi-omic studies. This could assist in eluci-
dating the reasons behind compromised semen quality in sub-fertile or infertile males,
identifying biomarkers of fertility, and perhaps developing methods for early diagnosis
of male subfertility/infertility. It could also be of interest in selecting young fertile bulls
for commercial semen production and culling bulls with compromised fertility. Sub-fertile
bulls cause considerable economic losses in terms of reduced conception rates, delayed
calving-to-conception intervals, increased culling of females, etc. [2]. In several species,
assisted reproductive techniques such as semen cryopreservation, artificial insemination,
and in vitro embryo production have been extensively used for improving reproductive
efficiency. However, technologies, where semen from a selected bull is extensively used for
breeding, may propagate subfertility [6–8], and reduce genetic variability from the overuse
of males with desirable traits [8].

During transit through the male and female reproductive tracts, dynamic microen-
vironments affect sperm function. For example, studies in rabbits [9,10], pigs [11], and
cattle [12] demonstrated that temperature gradients in the female reproductive tract regu-
late sperm motility, capacitation, and fertilization. Similarly, sperm motility, viability, and
glycolysis were modulated by pH and dissolved oxygen content in rabbits, rats [13,14], and
humans [15]. During this transit, sperm functions are regulated by the dynamic regulation
of ions along the sperm membrane. In the epididymis, mammalian sperm are quiescent
and undergo maturational changes, where sperm-specific ion channels have an important
role in attaining sperm motility during ejaculation (reviewed by [16]). Ion channels regulate
sperm membrane potential, cytoplasmic Ca2+ concentration, and intracellular pH, aiding
molecular events such as capacitation, acrosome reaction, and hypermotility [17,18]. Sev-
eral sperm-specific ion channels such as CatSper, Na+-K+-ATPase (NKA), Ca2+-activated
Cl− channels, and voltage-gated H+ channels have been studied for their roles in sperm
physiology. The role of NKA in attaining sperm-fertilizing potential is crucial and well
documented in cattle [3,19,20], rats/mice [21–23], and humans [24,25]. During the capaci-
tation of hamster sperm, hyperactivated motility is chiefly regulated by extracellular Na+

concentrations [26]. In addition to NKA, the Na+/Ca2+ (NCX) ion channel also participates
in Na+ homeostasis; however, NCX (voltage-dependent channels) functionality is reliant on
the electrochemical gradient created by NKA [21]. This review discusses the literature on
sperm-specific NKA α4 isoform (ATP1A4) and its role in signal transduction, the regulation
of sperm functions, and male fertility across species.

2. Na+-K+ ATPase (NKA) Ion Channel

A ubiquitous heterodimeric transmembrane protein first described by Jens Chris-
tian Skou [27], NKA has two amphipathic α and β subunits. The α subunit contains
~1012 amino acids (110 kDa) with almost identical sequences across species and tissues [28].
In vertebrates, three isoforms of α subunit have been identified: isoform α1 is ubiquitous in
all mammalian tissues, α2 predominates in skeletal muscle, α3 is in the brain and nervous
tissues together with α1 and α2 [28], and α4 (ATP1A4) is only in male germ cells [29–32].
The other β subunit contains ~300 amino acids (35 kDa) and has three isoforms (β1, β2,
and β3), with a low homology in amino acid sequences across species and tissues [33].

The NKA exists in cell membranes as an (αβ)2 diprotomer; the two subunits are
difficult to separate without the loss of enzymatic activity [34]. The α subunit governs
the ATP hydrolytic activity of NKA for Na+ and K+ transport and comprises the ouabain
binding site that specifically inhibits the enzymatic function and stimulates the signaling
task of NKA [35]. In addition, the β subunit provides a structural role in the dimeric form
and regulates the number of sodium pumps transported to the plasma membrane through
α and β heterodimer assembly [36].
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3. NKA in Somatic Cells

NKA exists in the plasma membrane in two functionally distinct pools, with one
involved in Na+ and K+ transport across the plasma membrane (pumping pool) and the
other involved in cell signaling (non-pumping pool) [37]. NKA (pumping pool) helps
to maintain the resting membrane potential and action potential through ionic gradients
across the plasma membrane, with three Na+ exchanged from inside to the outside and
two K+ from outside to inside the cell. These gradients also facilitate cell homeostasis, such
as regulating cell volume and cytoplasmic pH through Na+/H+ antiport, Cl−/HCO3

−

exchange, and Na+-HCO3
− co-transport, while regulating intracellular Ca2+ concentrations

through the Na+/Ca2+ antiport [38].
The NKA α subunit has a ouabain-binding site in the extracellular side of the trans-

membrane cleft where ouabain binds to both pumping and non-pumping pools [37];
however, the physiological manifestation of its binding is dose-dependent. Ouabain in-
hibits the actions of the pumping pool at higher (millimolar) concentrations, whereas the
non-pumping pool is inhibited by lower (nanomolar) ouabain concentrations [39]. The
ouabain concentration necessary to activate the signaling pathways varies with species,
as evidenced by a lower ouabain concentration (two to three times) eliciting equivalent
effects in human cell lines compared to rodent cell lines [40–42]. Moreover, ouabain binds
to various isoforms of NKA α subunits with differential affinity, i.e., α1 being 100-fold
more resistant to ouabain binding than α2 and α3 isoforms in rats [43–45]. The dimeric
state of various isoforms of α and β subunits affected ouabain binding in a murine fibrob-
last cell line, with α3β1 and α3β2 having a high sensitivity to ouabain, α2β1 and α2β2
intermediate, and α1β1 low [46].

The ouabain inhibition of NKA pump increases [Ca2+]i without affecting signal trans-
duction, indicating the NKA non-pumping pool function is independent of intracellular
Na+ and Ca2+ ion concentrations [47]. The NKA non-pumping pool apparently resides in
cholesterol-rich membrane microdomains, i.e., lipid rafts and caveolae [48], where it directly
interacts with protein kinases, ion transporters, and structural proteins to exert its non-
pumping functions. Lipid rafts could be planar/non-caveolar rafts with non-invaginated
microdomains or caveolae with tube-like invaginations in the plasma membrane, act-
ing as a platform for protein endocytosis and trafficking [49]. Ouabain binding to the
non-pumping NKA pool induces protein and lipid kinase cascades and generates several
secondary messengers [50–53]. Ouabain interacts with the NKA α subunit to activate the
EGFR/Src-Ras-ERK [40,50,53] or PI3K1A-PDK-Akt pathway [54,55], thereby stimulating
tyrosine phosphorylation of downstream effectors, activating protein kinase cascades and
generating secondary messengers. NKA α1 isoform knockdown reduced the size of a pool
of Src-interacting Na/K-ATPase, implying loss of the “non-pumping” pool involved in cell
signaling while preserving the pumping pool [37]. With the disruption of lipid rafts and
caveolae, interacting proteins (or factors) are removed and a portion of non-pumping NKA
is converted to a pumping fraction [37].

4. Distribution of ATP1A4 in the Testis and Sperm

Various NKA isoforms of α subunit have been identified in the epithelium of the
seminiferous and epididymal tubules, and germ cells in the male reproductive tract. Testes
in rats, humans, and cattle contain exclusively α1 and α4 isoforms [19,29,56], whereas
sperm differ in the presence of α1, α2, α3, and α4 isoforms in a species-dependent manner.
During rat germ cell differentiation, α1 expression displays only a modest change; however,
its relative contribution to total NKA activity is significantly decreased [22]. In contrast,
ATP1A4 expression and activity are significantly increased throughout spermatogenesis.
The ATP1A4 mRNA levels peaked in pachytene spermatocytes and round spermatids,
whereas protein levels peaked in rat sperm [22], indicating distinct regulation of each NKA
isoform during gametogenesis.

ATP1A4 localization on the sperm plasma membrane is species-specific, primarily in
the flagellum in most species with distinct head compartmentalization in bovine sperm. In
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rat and human sperm, ATP1A4 is mainly localized in the mid-piece and principal piece
of the flagellum, respectively, with no or little α4 isoform in the head [29,30,57]. In bulls,
ATP1A4 is mainly expressed in the sperm head; however, it localizes differentially with
capacitating conditions [20]. This protein is re-localized from the acrosomal region in
fresh (uncapacitated) sperm to the equatorial segment and post-acrosome region during
capacitation. The other subunits, α1 and α3, are present primarily in the equatorial region
and post-equatorial regions, respectively, of bovine sperm [58]. In contrast, α2 and α3
isoforms are not expressed in rat, mouse, or human sperm [58].

5. Role of NKA α4 Isoform in Sperm Physiology

The discovery of proteins specific to the testis and sperm has advanced understanding
of sperm functions and regulation of male fertility. A sperm-specific protein, ATP1A4, has
a crucial role in the regulation of mouse sperm motility [19,52], capacitation [59] and oocyte
binding and activation by Phospholipase C zeta (PLC ζ) in bull sperm [60]. ATP1A4 is less
influenced by changes in extracellular Na+ and temperature than the α1 subunit; perhaps
ATP1A4 can regulate ionic gradients during capacitation without being strongly inhibited
by hyperpolarization and extracellular sodium [61]. ATP1A4 is essential for fertility, as
evidenced by the complete sterility in knockout mice [21]. Moreover, ATP1A4 activity
exceeded α1 isoform by at least twofold in rats [22]. The in vivo fertility of high-fertility
(HF) and low-fertility (LF) bulls has been associated with ATP1A4 content and enzymatic
activity, which were higher in HF versus LF bulls [62]. Immunoblots of ouabain-induced
capacitated sperm from HF bulls had a higher band intensity of tyrosine phosphorylation
than LF bull sperm, suggesting a differential predisposition in the capacitation-associated
signaling mechanism [62]. It was presumed that either sperm from LF bulls have a lower
inherent ATP1A4 content, or they incur higher plasma membrane damage during freeze–
thawing, thereby experiencing higher ATP1A4 loss than sperm from HF bulls [3].

5.1. ATP1A4-Associated Signaling Pathways Involved in Bull Sperm Capacitation

Capacitation is a maturation process undergone by ejaculated sperm in the female re-
productive tract for a species-dependent interval to achieve fertilizing ability [63]. Multiple
physiological and biochemical changes occur in sperm during capacitation viz. increased
membrane fluidity, lateral cholesterol migration to the apical area of the sperm head, and
cholesterol efflux from the plasma membrane [64], remodeling of actin, hyperactivated
motility [65], etc. During capacitation, sperm have a high amplitude, asymmetrical flagellar
beating pattern called hyperactivation [63].

Several biomolecules in secretions of the female reproductive tract viz. albumin [66],
heparin, ouabain [67], sterol sulphatase [68], progesterone [69], and uterine and oviduct
proteins (reviewed by [70]) modulate sperm physiology to acquire fertilizing capacity.
Characteristics of NKA channel inhibition by ouabain, a cardiac glycoside, have been
explored across species to understand the role of ATP1A4 in sperm functions. However,
this section focuses on ouabain-induced ATP1A4 signaling in bovine sperm. The presence
of ouabain in bovine vaginal fluid in nanomolar concentrations [67] indicates its association
with sperm NKA, thereby modulating sperm physiology in the female reproductive tract
during biochemical events such as capacitation.

Ouabain binds to various isoforms of NKA α subunits with differential affinity [39].
The NKA subunit contains two ouabain binding sites: a low-affinity binding site between
transmembrane (TM) regions TM 1 and TM 2, and a high-affinity binding site between
TM 4 and TM 6, which differ only by a few amino acids [71]. A recent study modified the
ouabain affinity of ATP1A4 and NKA α1 in mice and detected no effect on the reproductive
phenotype, concluding the high-affinity ouabain binding sites of NKA to be insignificant
for mouse sperm fertility [23]. This might be due to the lack of a direct relationship between
high-affinity sites and ouabain-induced signaling in mouse sperm; however [23], the same
should also be investigated in livestock species.
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The testis-specific NKA α4 isoform has a higher sensitivity to ouabain than other
isoforms [30], e.g., the ouabain affinity of α4 isoform is approximately 1000-fold higher
than that of α1 isoform in rat sperm [22]. This differential sensitivity to ouabain has been
used for a dose-dependent ATP1A4 inhibition in understanding its specific role in sperm
functions. ATP1A4 is the predominant catalytic subunit of NKA, which accounts for two-
thirds of the total sperm NKA activity [22]. However, the α2 isoform has recently been
reported to be the predominant isoform on the raft fractions in bovine sperm head plasma
membrane during ouabain-induced capacitation [72].

In bull sperm, ouabain interacts with NKA to induce the tyrosine phosphorylation
of intracellular proteins and capacitation [20,59]. ATP1A4 activates the specific down-
stream signaling molecules caveolin-1 and EGFR in the raft fraction (Figure 1) and Src,
EGFR, and ERK1/2 in the non-raft fraction of the sperm plasma membrane under ouabain-
induced capacitating conditions [73]. As a result, during mammalian sperm capacitation,
signaling pathways viz. the cAMP/PKA pathway, PLC/PKC pathway [74,75], PI3K/Akt
pathway [76], and ERK 1/2 pathway [20,77] are activated. Ouabain interacts with NKA
and induces protein tyrosine phosphorylation by activating the ERK1/2 (potentially ERK2)
signaling pathways, which essentially require ATP binding to Src. In contrast, heparin
induces capacitation and activation of the ERK1/2 signaling pathway primarily through
the cAMP/PKA pathway in an Src-independent manner [78]. Moreover, ouabain competes
with progesterone to bind low-affinity ouabain binding sites on the NKA α1 subunit in
bull sperm [79] and amphibian oocytes [80]. Ouabain induces capacitation and tyrosine
phosphorylation more effectively than progesterone; however, it has a lower binding affin-
ity (in vitro) to these sites than progesterone [79]. Moreover, the capacitation-associated
changes were higher in HF versus LF bulls. This variation may be attributed to the stimula-
tion of various signaling pathways involved in capacitation. Like ouabain, progesterone
also stimulates Ca2+-induced PLC-DAG/IP3-PKC and MAPK pathways; however, the
cAMP/PKA pathway is not activated [81]. It also indicates that the amount/distribution
of various NKA isoforms (α1, α2, α3) may vary with bull fertility and warrants further
investigation [82]. Contrary to ouabain, the use of another NKA inhibitor, digoxin, was
observed to have a temporal effect in inducing bovine sperm capacitation, where 2 h of in-
cubation with digoxin concomitantly reduced the sperm protein tyrosine phosphorylation
state and percentage of full-type hyperactivated sperm [83]. The addition of cAMP analog
cBiMPS and protein phosphatase inhibitor calyculin A reduced this temporal effect and
significantly increased the percentages of full-type hyperactivation for semen samples with
low survivability [83]. However, the effects of digoxin on intracellular Ca2+-dependent
signaling cascades during capacitation need further investigation.

5.2. ATP1A4 Interactome in Sperm Raft and Non-Raft Fractions during Capacitation

Cholesterol is an integral component of the plasma membrane, which significantly
affects its physical properties. Cholesterol orders the lipid bilayer in one dimension and
reduces its permeability; however, the lateral diffusion rate of lipids and proteins in
the plane of the bilayer is minimally affected [84]. The plasma membrane in somatic
cells contains lipid rafts, which are domains within lipid bilayer enriched in cholesterol,
sphingomyelin, glycosphingolipids, and saturated phospholipids [85]. The lipid raft
mediates signal transduction between proteins from the exoplasmic leaflet to the inner
leaflet on the plasma membrane, resulting in a cellular response [86]. Moreover, it is argued
that lipid rafts allow activated receptors enhanced access to specific downstream signaling
proteins involved in signal transduction, and interactions with unrelated proteins [87].
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Figure 1. Schematic diagram of events during ouabain-induced signaling during bovine sperm
capacitation. (1) Ouabain binding to its sites on ATP1A4 induces capacitation, where ATP1A4
interacts with caveolin-1 and EGFR in the raft fraction. (2) Simultaneous sperm surface alterations
such as cholesterol efflux and increased membrane fluidity result in sequential raft migration from
sperm tail to head. (3) Consequently, there is raft aggregation in the post-acrosome and equatorial
segment of the sperm head, enriching proteins involved in fertilization events and providing a
platform for signaling molecules to activate downstream effects. (4) Various signaling pathways are
activated and polymerize G-actin to F-actin with concomitant tyrosine phosphorylation of proteins
and sperm hyperactivation. (5) ATP1A4 interactome on sperm surface interacts with zona pellucida
to facilitate sperm–oocyte adhesion and fusion.
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The presence of raft and non-raft fraction in sperm plasma membrane has been widely
reported in sperm from mice [88], pigs [89], bulls [20], chickens [90], and humans [91].
Although cholesterol helps in lipid raft stabilization, regulated low-level cholesterol efflux
from the sperm plasma membrane during capacitation does not affect the raft composi-
tion [92,93]. However, a polarized migration of lipid rafts takes place sequentially from
sperm tail to head during capacitation in boars [89], with the concomitant phosphorylation
of intracellular proteins in bull, boar, and ram sperm [94]. Interestingly, this polarized
lipid raft migration did not cross the boundary between the post-acrosome and equatorial
segment in the sperm head, indicating the presence of a molecular filter allowing the free
movement of single molecules, but not larger complexes such as lipid rafts [94]. The lipid
raft migration is preferentially stimulated by the regulated loss of cholesterol from the
non-raft pool, which promotes the coalescence of microdomains into large micrometer-scale
domains [95]. This is crucial to place lipid rafts in the appropriate position in the sperm
head to activate the downstream signaling pathways involved in the capacitation and exo-
cytosis of acrosome vesicles. Similarly, a cholesterol loss-dependent shift of GM1 and CD59
proteins (lipid raft markers) from the raft to the non-raft fraction was reported during the
capacitation of human sperm [91]. These changes activate the signal transduction pathway
involving protein kinase A and tyrosine kinase second messenger systems, subsequently
resulting in protein tyrosine phosphorylation [96]. Moreover, raft reordering in the boar
sperm surface generates the protein complexes involved in zona pellucida binding [92,97].
When excessive cholesterol is removed from the sperm plasma membrane, it disrupts the
lipid rafts and decreases tyrosine phosphorylation [94].

In addition to signaling molecules, lipid rafts in sperm contain several proteins that
regulate sperm functions and fertilization events. Previous studies reported a differential
protein enrichment in raft and non-raft fractions of sperm membranes that mediate sperm-
oocyte interactions in vertebrates [98,99] and invertebrates [100], such as acrosin, PH-20,
basigin, and the cysteine-rich secretory protein 1 [101–103]. The presence of egg–zona
binding proteins in the sperm raft fraction such as CD59, fertilin-β, AQN-3/spermadhesin,
and P47/SED-1 suggests that they have major roles in fertilization events [92,97]. Other
proteins with zona-binding affinity such as arylsulphatase A [104], testis-specific isozyme
of angiotensin-converting enzyme (tACE) [105], acrosomal vesicle protein 1 [106], zon-
adhesin [107], and Zona Pellucida Binding Protein-1 (ZPBP1) [108] also aggregate in raft
fractions in the head of capacitated sperm. Moreover, lipid rafts enrich a variety of ion trans-
porters/channels. For instance, plasma membrane Ca2+ ATPase is enriched in sperm lipid
raft fractions from chickens [90], bulls [109], mice [98], and humans [99], which significantly
contributes to the induction of an acrosome reaction and hyperactivated motility [110].

Another vital ion transporter in the sperm plasma membrane is NKA, which mainly
resides in lipid rafts, facilitating cell signaling due to its proximity to other signaling
molecules within these microdomains/rafts [30]. Ushiyama et al. [90] reported that lipid
rafts in the chicken sperm membrane were enriched in NKA isoforms (α1, α3, β1). Various
NKA isoforms involved in capacitation-associated signaling have been demonstrated in
both raft and non-raft fractions of the plasma membrane of bull sperm. All of the NKA iso-
forms are present in the raft and non-raft fractions of head plasma membrane in bull sperm,
and among various isoforms (α1, α2, α3, β1, β2, and β3) in the raft fraction, α3 and β1 were
the most abundant isoforms [72]. The existence of α4 isoform has also been demonstrated
in sperm raft and non-raft fractions, where its content increases during capacitation [20].
During ouabain-induced capacitation in bovines, ATP1A4 interacted with caveolin-1 and
EGFR in the raft fraction, and Src, EGFR, and ERK1/2 in the non-raft fraction; however,
ATP1A1 only interacted with caveolin-1 in both fractions of capacitated and uncapacitated
sperm [73]. Several proteins viz. hexokinase 1, plakophilin 1, desmoglein 1, 14-3-3 protein/,
cathepsin D, and heat-shock protein 1 (HSP1) were specific to the non-raft component of
the ATP1A4 interactome, whereas glutathione S-transferase and annexin A2 were exclusive
to the raft interactome. However, ADAM32, histone H4, actin, acrosin, serum albumin, and
plakoglobin were common to both raft and non-raft fractions [73]. These proteins in the
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ATP1A4 interactome are involved in various biological processes, e.g., fertilization, signal
transduction, cell–cell adhesion, metabolism, and motility, and their roles in sperm–oocyte
adhesion and fusion are discussed in subsequent sections. Interestingly, ATP1A4 translo-
cated from the anterior acrosome to the equatorial segment and post-acrosomal regions
following capacitation, and merged with the plakoglobin signal in the equatorial segment,
implying interactions during downstream capacitation events [73].

5.3. ATP1A4 Function in Sperm Motility and Capacitation-Associated Hyperactivation

The NKA generates an electrochemical potential gradient across the plasma mem-
brane that is utilized by NCX channels [111] and Na+/HCO3

− cotransporter [112] to
increase intracellular Ca2+ and HCO3

−, respectively. The Ca2+ and HCO3
− coordinate

the stimulation of soluble adenylyl cyclase and subsequent synthesis of cAMP, the ac-
tivation of protein kinase A, phosphorylation of tyrosine residues, and hyperactivation.
Ouabain-induced ATP1A4 inhibition (at a dose of 10−6 M) inhibited hyperactivation with-
out affecting the percentage of motile sperm in hamsters [113], implying ATP1A4 primarily
regulates capacitation-associated hypermotility [57]. ATP1A4 increases flagellar bending
and decreases flagellar beat frequency during hypermotility; however, it does not affect
the total sliding of microtubules in hamster sperm [113]. Conversely, the Na/K-ATPase α1
isoform maintains basal motility, i.e., an impulse produced by the transverse waves along
the flagellum in a proximal–distal direction, assisting sperm to traverse the female genital
tract [113,114]. However, an indirect role of ATP1A4 in regulating basal motility has also
been reported. ATP1A4 indirectly regulates a rise in intracellular H+ during active sperm
movement via the Na+/H+ exchanger (NHE) [115]. The sperm flagellar bending pattern
and its response to cAMP and Ca2+ are modulated by intracellular [H+] [116]. Ouabain-
induced selective ATP1A4 pump inhibition decreased intracellular pH and eliminated rat
sperm motility [21], which was regained by inducing H+ movement out of cells with the
ionophores nigericin and monensin [30]. Moreover, the co-localization of NHE1 and NHE5
with ATP1A4 supports its role in maintaining rat sperm motility [30].

The maintenance of [Ca2+]i in a limited range is also vital for sperm motility [117] and
is indirectly regulated by NKA through NCX channels [21]. The curvature and symmetry
of the sperm flagellum are affected by changes in free (intracellular) calcium [116], thereby
affecting motility. The N-terminal of the NKA α subunit directly interacts with IP3 receptors,
indicating ouabain-induced conformational changes can directly increase intracellular
Ca2+ concentrations [118,119].

The differential sensitivity of various NKA isoforms to ouabain and its dose-dependent
effect on sperm functions have been widely explored to understand ATP1A4 role in sperm
motility. Ouabain inhibits the NKA enzymatic activity at higher concentrations (milli-
molar) but stimulates signaling pathways at lower (nanomolar) concentrations [39]. The
ouabain-mediated ATP1A4 inhibition increased [Ca2+]i through a reduced cation clearance,
and decreased sperm kinematics in rats in a time-dependent manner [21]. Interestingly,
NCX is expressed concurrently with ATP1A4 in the mid-piece of rat sperm [30,57,117].
The NCX and ATP1A4 activity were reported to be lower in asthenozoospermic infer-
tile couples than normozoospermic couples. In the latter, ATP1A4 was localized in both
sperm head and tail; however, in asthenozoospermic couples, its localization was only
detected in the sperm head and was absent in the tail, indicating that ATP1A4 is associated
with a sperm motility disorder [120]. In contrast, the ouabain-induced inhibition of NKA
activity decreased progressive motility without any effect on [Ca2+]i in bull sperm [59].
Moreover, hyperactivation [113], tyrosine phosphorylation, and capacitation are not af-
fected by ouabain-induced NKA inhibition [59]. This variation may be due to the calcium-
independent activation of MAPK signaling and tyrosine phosphorylation similar to somatic
cells [54], differences in ouabain concentrations, or incubation time among experiments or
species-specific differences.
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5.4. AT1A4 in Sperm–Oocyte Interaction and Activation

During capacitation, ATP1A4 interacts with several sperm proteins in raft and non-
raft fractions of the plasma membrane (e.g., hexokinase, actin, and plakoglobin), which
are assumed to facilitate sperm–oocyte interaction and activation. In this direction, Raja-
manickam et al. [73] proposed a model explaining possible molecular interactions during
sperm–oocyte interaction. Ouabain-induced sperm capacitation activates the EGFR signal-
ing pathway, followed by Src activation, which in turn results in tyrosine phosphorylation,
co-localization of PLC ζ and ATP1A4 to the post-acrosomal region of the sperm head,
and PLC ζ activation [3,60]. Concurrently, ATP1A4 binds to ankyrin (an anchor protein),
which mediates its interaction with the actin cytoskeleton, thereby facilitating contact
with F-actin–plakoglobin–E-cadherin complex on sperm membrane [73]. Thereafter, the
complementary E-cadherin molecules on sperm in the equatorial region of the sperm head
and the microvillar region on oolemma [121] would bind and augment sperm–oocyte
interaction [3]. This would promote PLC ζ entry from the perinuclear theca region of the
sperm [122,123] to the oocyte, which would catalyze the hydrolysis of PIP2 to DAG and
IP3, thereby releasing intracellular calcium from the endoplasmic reticulum, leading to
calcium oscillations [124]. Consequently, metaphase II-arrested oocyte resumes meiosis,
the second polar body is extruded, and a female pronucleus is formed [125]. The sperm
nucleus decondense and result in male pronucleus formation. The fusion of male and
female pronuclei results in zygote formation. Lestari et al. [25] reported low sperm NKA
activity to significantly affect embryo development and cleavage (two-cell and eight-cell
stages) following intracytoplasmic sperm injection (ICSI) and suggested the use of NKA
activity in screening sperm for ICSI. Moreover, the under-expression of ATP1A4 and other
proteins in testicular cancer seminoma was associated with a decreased fertilizing ability of
affected men [126]. The proposed mechanism of sperm–oocyte interaction may assist in
investigating pathological and unexplained male subfertility/infertility.

6. De Novo ATP1A4 Translation during Capacitation

Sperm are considered transcriptionally and translationally inactive; however, several
studies have provided insights into de novo protein synthesis. Capacitation involves a
complex set of highly regulated molecular and physiological events and is an extensively
studied phenomenon in sperm biology. Sperm may require a new set of proteins or more
of the existing proteins for capacitation, indicating protein synthesis in sperm from existing
transcripts. During capacitation, the redistribution of Angiotensin II and progesterone
receptors to various sperm regions and its association with changes in total sperm protein
was demonstrated in humans [127]. Another observation of an increase in the total content
of ATP1A4 in both raft and non-raft fractions of the sperm plasma membrane provided
evidence of de novo protein synthesis in mature bull sperm during capacitation [20].

The incorporation of the fluorescent amino acid (lysine transfer RNA labeled with
fluorophore BODIPY-FL and [35S] Met–[35S] Cys) during capacitation into nascent proteins
was clear evidence that sperm are translationally active [20,128]. Recently, the incubation
of sperm in capacitating medium changed the relative abundance of the sperm proteins
involved in motility, fertilization, energy production, and signaling [129]. Moreover, the
induction of an acrosome reaction also reduced the abundance of proteins involved in
sperm–oocyte recognition, binding, and fusion [129]. There was a debate as to whether
the change in the relative abundance of proteins was due to dynamic molecular changes
such as protein modification, degradation, or translocation, and did not involve sperm
translational activity. However, the argument was not validated by investigating protein
synthesis in sperm. Another study reported boar sperm capacitation to induce differential
expression of microRNAs and mRNAs than uncapacitated sperm [130], suggesting that
sperm may require a new set of proteins for this physiological event.

In contrast to somatic cells, mature sperm are devoid of cytoplasm [131], and therefore,
the existence of translational machinery (i.e., ribosomes) is questionable. However, the
evidence of sperm protein synthesis indicates a gap in understanding the mechanisms
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underlying sperm translation. In preliminary studies, translation in mature bovine sperm
was mitochondrial in origin and did not require transcription and translation of nuclear
information [132]. Furthermore, this indicated the importance of existing sperm tran-
scripts and challenged the view that mature sperm have all of the proteins required for
successful fertilization.

7. ATP1A4 as a Potential Candidate Biomarker in Male Fertility Prediction

Male fertility is regulated by several factors and, therefore, a BSE or conventional
semen analysis is inefficient in predicting fertility variations among bulls. It is also notewor-
thy that a bull’s ejaculate does not represent a uniform, homogeneous sperm population;
rather, it consists of subpopulations with different functional characteristics such as motil-
ity [133–135], morphology [136,137], energetics (substrate use, mitochondrial activity, or
ATP content) [138], protein, and RNA content [139,140], etc. Interestingly, single-cell se-
quencing revealed that each spermatozoon in an ejaculate has a unique genome, which
accounts for its exclusive functional characteristics in an ejaculate [141]. Therefore, an
improved understanding of physiological events such as capacitation and sperm–oocyte
interaction could reveal potential biomarkers that could not only predict male fertility,
but also the fertilizing potential of a spermatozoon, thereby improving the efficiency of
ARTs such as ICSI. Single-nucleotide polymorphism markers, differential protein and RNA
expression, and metabolite composition have been investigated in high- and low-fertility
bulls using a multi-omics approach; however, we have only discussed here the literature
regarding protein biomarkers.

Male fertility prediction is investigated either as a negative or positive biomarker-
based approach. A negative biomarker-based approach is based on identifying proteins
or ligands unique to defective spermatozoa and aims to identify and remove infertile and
sub-fertile bulls from the breeding herd, whereas the positive biomarker-based approach
involves the selection of HF breeding bulls. Proteins such as TMEM95 [142], Postacrosomal
Sheath WWI Domain Binding Protein (PAWP) [143–146], ubiquitin [144], and ubiquitinated
arylsulfatase A [104] are associated with poor fertility and can be used to monitor breeding
programs with low pregnancy rates. In contrast, proteins like phosphatidylethanolamine-
binding protein 4 (PEPB4), which is absent in infertile bulls [147], or testis-specific isozyme
of angiotensin-converting enzyme (tACE), whose activity and content was higher in HF
bulls than LF bulls [105], can serve as candidate biomarkers for a positive biomarker-
based approach. Several factors strengthen ATP1A4 as a potential candidate for male
fertility prediction, such as its germ cell-specific nature of ATP1A4, essential role in sperm
capacitation, oocyte binding, and interaction with other proteins involved in fertilization
events such as t-ACE [148] and PLC ζ [60] higher ATP1A4 activity and content in HF than
LF bulls [62]. Since fertility regulation is multifactorial, a combination of biomarkers can
increase the accuracy of male fertility prediction.

8. Conclusions and Future Directions

The prediction of male fertility requires a multifactorial approach, with an assessment
of submicroscopic differences in sperm essential to improve our precision. The significance
of ATP1A4 in sperm physiology associates well with the current focus on identifying sperm
proteins as biomarkers for improved fertility prediction and addressing male infertility.
During capacitation, lipid raft aggregation enriches the proteins involved in fertilization
events where ATP1A4 interacts with signaling molecules to regulate capacitation-associated
events such as sperm motility, tyrosine phosphorylation, and hypermotility, and potentially
contributes to the PLC ζ-mediated activation of oocytes. ATP1A4 re-localization in the lipid
rafts of the sperm head is essential for interacting raft/non-raft fraction proteins to activate
signaling pathways; however, further investigation of the specific mechanisms of action of
ATP1A4 in the male gamete physiology leading to fertilization is needed. Moreover, an
increase in ATP1A4 protein during capacitation challenges the widely accepted dogma
of sperm translational quiescence. The exclusion of translational machinery (ribosomes)
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with cytoplasm at the end of spermatogenesis demands investigating the underlying
mechanisms regulating the translation of this protein during capacitation. An improved
understanding of proteins regulating sperm functions at the molecular level may assist in
differentiating apparently normal sperm through conventional semen evaluation methods.
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PI3K phosphoinositide 3-kinase
PDK 3-phosphoinositide-dependent kinase
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