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Abstract: Deficiency or excess of iron (Fe) and improper medium pH will inhibit the growth and
development of plants, reduce the transfer and utilization of energy from the root to the leaf, and
affect the utilization efficiency of inorganic nutrients. The most common symptom of Fe deficiency in
plants is chlorosis of the young leaves. In this study, the effects of the iron source, in combination with
the medium pH, on plant growth and development, plant pigment synthesis, and nutrient uptake
in a model plant Petunia hybrida cultured in vitro were investigated. Iron sulfate (FeSO4·7H2O) or
iron chelated with ethylenediaminetetraacetic acid (Fe-EDTA) were supplemented to the MNS (a
multipurpose nutrient solution) medium at a concentration of 2.78 mg·L−1 Fe, and the treatment
without any Fe was used as the control. The pH of the agar-solidified medium was adjusted to
either 4.70, 5.70, or 6.70 before autoclaving. The experiment was carried out in an environmentally
controlled culture room with a temperature of 24 ◦C with 100 µmol·m−2·s−1 photosynthetic photon
flux density (PPFD) supplied by white light emitting diodes (LEDs) during a photoperiod of 16 h a
day, 18 ◦C for 8 h a day in the dark, and 70% relative humidity. Regardless of the Fe source including
the control, the greatest number of leaves was observed at pH 4.70. However, the greatest lengths
of the leaf and root were observed in the treatment with Fe-EDTA combined with pH 5.70. The
contents of the chlorophyll, carotenoid, and anthocyanin decreased with increasing medium pH,
and contents of these plant pigments were positively correlated with the leaf color. The highest
soluble protein content and activities of APX and CAT were observed in the Fe-EDTA under pH 5.70.
However, the GPX activity was the highest in the control under pH 4.70. In addition, the highest
contents of ammonium (NH4

+) and nitrate (NO3
−) were measured in the FeSO4-4.7 and EDTA-

5.7, respectively. More than that, the treatment of Fe-EDTA combined with pH 5.70 (EDTA-5.7)
enhanced nutrient absorption, as proven by the highest tissue contents of P, K, Ca, Mg, Fe, and
Mn. The genes’ ferric reduction oxidase 1 and 8 (PhFRO1 and PhFRO8), iron-regulated transporter 1
(PhIRT1), nitrate transporter 2.5 (PhNRT2.5), and deoxyhypusine synthase (PhDHS) were expressed
at the highest levels in this treatment as well. In the treatment of EDTA-5.7, the reduction and
transport of chelated iron in P. hybrida leaves were enhanced, which also affected the transport of
nitrate and catalyzed chlorophyll level in leaves. In conclusion, when the medium pH was adjusted
to 5.70, supplementation of chelated Fe-EDTA was more conducive to promoting the growth and
development of, and absorption of mineral nutrients by, the plant and the expression of related genes
in the leaves.

Keywords: antioxidant system; chelate iron; chlorosis; iron chelate; nutrient absorption; Petunia hybrida;
plant pigment
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1. Introduction

Iron (Fe) is the fourth-most-abundant nutrient on earth, and one of the most important
nutrients for biological systems [1,2]. It is involved in the energy generation and utilization
of plants and plays an important role in many redox reactions, and the absorption, distri-
bution, and storage of Fe by plants are strictly regulated, so the transfer and absorption
of Fe in leaves is the focus of the metabolism of the photosynthetic mechanisms [3]. Fe is
primarily present in two forms: ferrous (Fe2+) and ferric (Fe3+). Fe2+ is more soluble and
more easily oxidized, forming sediment with inorganic anions [4]. The solubility of Fe3+

decreases with increasing pH, mainly due to the lower solubility of hydroxide polymers,
which in most cases cannot satisfy the needs of plants [5]. Since the concentration of free
OH– ions exceeds the Fe3+-OH formation threshold at neutral pH, maintaining a reduced
pH environment and, thus, providing accessible Fe2+ for metabolic processes is critical [6].
Thus, the variable pH circumstances in a biological system necessitate multiple strategies
for Fe–plant-species coordination [3]. Plants have devised two strategies to solubilize Fe.
The reduction-based strategy, or so-called strategy I, is observed in most flowering plants.
Graminaceous species display the chelation-based strategy, or strategy II [7]. The plants
of strategy I take up Fe in roughly three steps: the roots release protons to increase the
solubility of Fe3+, the Fe3+ is converted to Fe2+ by ferric chelate reductase (FCR), and then
the Fe2+ is absorbed by the roots through the iron-regulated transporters (IRT1) [8]. The
plant Fe-absorption system of strategy II synthesizes and secretes mugineic acid (MA)
by S-adenosylmethionine (SAM) through an enzymatic reaction [9,10], and the enzymes
involved in this synthesis mainly include nicotinamide synthase (NAS), nicotianamine
aminotransferase (NAAT), and deoxymugineic acid synthase (DMAS) [11]. The Fe3+ in
soils or media forms chelates with MA and is absorbed into cells through yellow stripe-like
(YSL) transport.

In the case of Fe deficiency, the photosynthesis of plants is affected, as well as the
absorption and accumulation of nutrients, and multiple signaling molecules, such as H2S,
ethylene, and nitric oxide (NO), are involved to modulate the deficiency [12–14]. As a
biologically active free radical, NO participates in and regulates the physiological functions
of plants. NO is closely related to the process of Fe absorption, transport, and reoxidation.
It can stimulate the Fe chelate reductase, significantly up-regulate the gene expression of
ferric reduction oxidase 1 (FRO1) of Fe3+ and transporter IRT1 of Fe2+, thereby increasing
Fe absorption and homeostasis [15]. Fe is reduced to the ferrous form at the root surface
and transferred to the leaf in a combined form via the xylem. This suggests that the
encoded membrane transporter is also active in the aerial parts of the plant, even though
MAs are predominantly found in the roots [4]. The acquisition in the plant of Fe and
other micronutrients starts in the apoplast of the epidermal cells in roots [16]. The Fe is
released into the xylem vessels on behalf of a transfer from symplasm to the apoplast [17,18].
Transporters of ferric–citrate, iron–nicotianamine, or other Fe complexes must moderate Fe
absorption from xylem vessels, and photoreduction of the xylem carrying Fe carboxylate
appears to play a key role in decreased Fe levels in the aerial parts [19]. The majority
of Fe that reaches the leaves are from the Fe absorbed by the roots. The sink-source Fe
distribution through the phloem is thought to provide the basis for Fe translocation towards
the youngest leaves [20,21].

When plants are Fe-deficient, photosynthesis is affected, and chlorophyll cannot be
produced normally; typical Fe-deficiency symptoms are the yellowing of young leaves [1].
In the tetrapyrrole biosynthesis pathway, Fe affects the development of coproporphyrin
as well as the formation of chlorophyll [22–24]. Moreover, Liu et al. [25] also found
that the expression of deoxyhypusine synthase (DHS) protein in P. hybrida was related
to photosynthesis, and the chlorophyll level was significantly reduced in DHS-silenced
leaves of P. hybrida, showing a chlorotic leaf phenotype. Moreover, Fe deficiency in plants
also affects the production and metabolism of carotenoids and anthocyanins. They are
synthesized in chloroplasts and play a vital role in the integrity of photosynthetic organs.
There is also an inseparable relationship between the anthocyanins and the pH of the
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substrate [26]. The anthocyanin-production pathway is regulated by transcription factors,
such as v-myb avian myeloblastosis viral oncogene homolog (MYB), basic helix-loop-
helix (bHLH), etc. [27–30]. Most of the main biochemical reactions that participate in Fe
metabolism are completed in the chloroplast, such that the chloroplast is the Fe pool in the
plant cell. Fe deficiency will inhibit the conduction of photosynthetic electron chains in the
chloroplast and cause optical damage [31].

More than 70% of the cations and anions absorbed by plants contain ammonium
(NH4

+) and nitrate (NO3
−) [32], and the absorption and accumulation of these two nitrogen

(N) sources affect the pH of the plant rhizosphere and apoplast [33], thus influencing the
absorption and utilization of Fe. Excessive accumulation of NH4

+ in plant cells results in
toxicity and decreased photosynthesis, and symptoms such as hindered growth, chlorosis,
etc., appear [34]. However, NO3

− accumulation in the rhizosphere increases the pH,
reduces the Fe reductase activity, and inhibits Fe transport from root to shoot. Plants possess
a regulatory system used for coordinating the uptake and distribution of these nutrients.
In the cultivation process of A. thaliana, the nitrate and/or glucose supplemented to the
medium has been shown to alter the levels of carbon (C) and N metabolic genes [35,36].
Therefore, in this study, the contents of NH4

+ and NO3
−, and the expression of transport

genes were analyzed to explore the indirect effects of Fe and pH on the absorption of NH4
+

and NO3
− in vitro. During the provision of different contents of NH4

+ and NO3
−, the

uptake and transport of Fe in plants were affected. However, the effects on plant uptake
and transport of nutrients in vitro were investigated when the same contents of NH4

+ and
NO3

− were provided, along with different Fe sources and pHs.
The bedding plant P. hybrida belongs to strategy I, has a short growth cycle, and

is extensively used as a model plant of developmental biology [37]. P. hybrida is an Fe-
inefficient plant that is sensitive to neutral and high pH [38] and responds by reducing
the Fe uptake, which generates chlorosis and growth retardation [39]. Moreover, petunia
is also very sensitive to the surrounding NH4

+ and NO3
− [40,41]. In some previous

studies, the effects of the Fe source and pH on the growth of shrub ornamental plants
Sorbus commixta [42] and Hydrangea macrophylla [43], as well as the regulation of Fe-handling
gene expressions, were studied. Moreover, in previous studies, more attention was paid
to the effects of the NH4

+ and NO3
− supply on the Fe absorption of plants, while studies

seldom discussed the effects of different Fe sources and pH on plant ammonium and
nitrate contents. Therefore, in this study, by providing different Fe sources and pH levels to
P. hybrida, we investigate the effects on the growth characteristics, pigment contents, NH4

+

and NO3
− contents, and their gene expressions.

2. Results
2.1. Plant Morphological and Growth Parameters

The P. hybrida plants were cultured in a growth container for 10 days. The morphology
of P. hybrida is shown in Figure 1 and Table 1. The morphological characteristics of P. hybrida
were affected by the Fe source and pH level. In the treatment with high pH among these
Fe sources, plants showed obvious chlorosis of leaves, which was the most serious at
pH 6.70. The shoot length was the greatest in the control (no Fe) at pH 5.70 (6.3 mm)
(control-5.7). The shoot length decreased with an increase in pH after supplying FeSO4
and Fe-EDTA. The greatest root length was observed in EDTA-5.7. The greatest shoot fresh
weight (FW) was observed when the pH was 5.70 in the control. When the pH was 4.70
in FeSO4 (FeSO4-4.7) and Fe-EDTA (EDTA-4.7) treatments, the FW was greater than in
other pH levels. The FW of roots was the greatest when the pH was 5.70, followed by
pH 4.70 and 6.70. According to the results of the F-test in Table 1, the Fe source and pH
affected the growth characteristics of the shoots and roots.
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Figure 1. Photographs showing the growth and morphology of P. hybrida leaves as affected by the 
Fe source and medium pH after 10 days of culture in vitro. Bars indicate 3 cm. 

Table 1. Growth of P. hybrida after 10 days of culture in vitro. 

Fe Source 
(A) 

pH (B) 
Leaf Shoot Root 

Number Length 
(mm) 

Width 
(mm) 

Length 
(mm) 

Fresh Weight 
(mg) 

Dry Weight 
(mg) 

Length 
(mm) 

Fresh 
Weight (mg) 

Dry Weight 
(mg) 

Control 
4.70 9.3 z a y 30.0 ab 6.0 c 4.0 bc 141.0 cd 13.7 f 49.0 b 57.5 c 2.3 c 
5.70 8.7 ab 21.3 c 7.8 a 6.3 a 236.7 a 17.1 de 49.5 b 70.0 b 3.0 c 
6.70 5.7 de 26.0 bc 7.7 ab 3.8 cd 128.5 d 17.3 de 21.5 e 18.3 e 2.6 c 

FeSO4 
4.70 9.0 ab 25.7 bc 5.7 c 4.7 bc 255.0 a 18.3 cd 42.7 c 55.3 c 4.2 b 
5.70 7.7 c 25.0 bc 8.7 a 3.7 cd 165.5 cd 20.5 bc 29.0 d 65.5 b 2.3 c 
6.70 6.3 cd 25.3 bc 7.8 a 3.5 cde 232.0 a 34.1 a 32.0 d 21.8 e 1.3 d 

Fe-EDTA 
4.70 8.7 ab 25.5 bc 7.3 abc 3.3 cde 253.0 a 21.4 bc 44.0 c 69.5 b 3.8 b 
5.70 8.7 ab 32.0 a 5.7 c 3.2 de 200.5 b 14.8 ef 55.0 a 118.6 a 6.1 a 
6.70 4.3 e 25.0 bc 8.5 a 2.8 e 130.0 d 17.2 de 32.5 d 41.0 d 2.5 c 

F-test x 
A NS NS NS *** *** *** *** *** *** 
B *** NS ** *** *** *** *** *** *** 

A × B NS * ** *** *** *** *** *** *** 
z Values represent the mean of three replications. y Mean separation within columns by the Duncan’s 
multiple range test at 5% level. x NS, *, **, and ***: non-significant or significant at p ≤ 0.05, 0.01, or 
0.001, respectively. 

2.2. Leaf Color and Pigment Contents 
At the end of the experiment, the leaf color of three biological replicates of each treat-

ment was identified by the color reader, and the coefficient differences of red (R), green 
(G), and blue (B) of each treatment in Table 2 were obtained according to the Munsell color 
system. Leaf color reflects the pigment contents of leaves. In the evaluation of the RGB 
chromatography, the RGB is a theory of light color mixing, where the value range of R, G, 
and B is between 0 to 255 [44]. The brighter the color of the leaves was observed to be, the 
greater the numerical value. When the pH was 6.70, the leaves were chlorotic. The same 
trend was also reflected in the pigment contents of leaves (Figure 2). When the pH of each 

Figure 1. Photographs showing the growth and morphology of P. hybrida leaves as affected by the Fe
source and medium pH after 10 days of culture in vitro. Bars indicate 3 cm.

Table 1. Growth of P. hybrida after 10 days of culture in vitro.

Fe Source
(A) pH (B)

Leaf Shoot Root

Number Length
(mm)

Width
(mm)

Length
(mm)

Fresh
Weight

(mg)

Dry
Weight

(mg)
Length
(mm)

Fresh
Weight

(mg)

Dry
Weight

(mg)

Control
4.70 9.3 z a y 30.0 ab 6.0 c 4.0 bc 141.0 cd 13.7 f 49.0 b 57.5 c 2.3 c
5.70 8.7 ab 21.3 c 7.8 a 6.3 a 236.7 a 17.1 de 49.5 b 70.0 b 3.0 c
6.70 5.7 de 26.0 bc 7.7 ab 3.8 cd 128.5 d 17.3 de 21.5 e 18.3 e 2.6 c

FeSO4

4.70 9.0 ab 25.7 bc 5.7 c 4.7 bc 255.0 a 18.3 cd 42.7 c 55.3 c 4.2 b
5.70 7.7 c 25.0 bc 8.7 a 3.7 cd 165.5 cd 20.5 bc 29.0 d 65.5 b 2.3 c
6.70 6.3 cd 25.3 bc 7.8 a 3.5 cde 232.0 a 34.1 a 32.0 d 21.8 e 1.3 d

Fe-EDTA
4.70 8.7 ab 25.5 bc 7.3 abc 3.3 cde 253.0 a 21.4 bc 44.0 c 69.5 b 3.8 b
5.70 8.7 ab 32.0 a 5.7 c 3.2 de 200.5 b 14.8 ef 55.0 a 118.6 a 6.1 a
6.70 4.3 e 25.0 bc 8.5 a 2.8 e 130.0 d 17.2 de 32.5 d 41.0 d 2.5 c

F-test x
A NS NS NS *** *** *** *** *** ***
B *** NS ** *** *** *** *** *** ***

A × B NS * ** *** *** *** *** *** ***
z Values represent the mean of three replications. y Mean separation within columns by the Duncan’s multiple
range test at 5% level. x NS, *, **, and ***: non-significant or significant at p ≤ 0.05, 0.01, or 0.001, respectively.

2.2. Leaf Color and Pigment Contents

At the end of the experiment, the leaf color of three biological replicates of each
treatment was identified by the color reader, and the coefficient differences of red (R), green
(G), and blue (B) of each treatment in Table 2 were obtained according to the Munsell color
system. Leaf color reflects the pigment contents of leaves. In the evaluation of the RGB
chromatography, the RGB is a theory of light color mixing, where the value range of R,
G, and B is between 0 to 255 [44]. The brighter the color of the leaves was observed to be,
the greater the numerical value. When the pH was 6.70, the leaves were chlorotic. The
same trend was also reflected in the pigment contents of leaves (Figure 2). When the pH of
each Fe source was 4.70, the contents of chlorophyll, carotenoid, and anthocyanin were the
highest among the three pH levels. At pH 6.70, these contents were the lowest.
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Table 2. The correlation analysis between the leaf color and plant pigment contents.

Fe Source (A) pH (B) Red Attribute Green Attribute Blue Attribute

Control
4.70 115.0 z d y 126.5 cd 79.5 d
5.70 153.0 c 165.0 b 132.5 ab
6.70 209.5 a 210.7 a 136.5 a

FeSO4

4.70 123.5 d 178.7 b 113.7 bc
5.70 172.0 b 139.5 c 112.5 bc
6.70 221.0 a 210.3 a 130.5 abc

Fe-EDTA
4.70 115.0 d 114.0 d 76.5 d
5.70 128.0 d 126.5 cd 85.5 d
6.70 159.0 b 165.0 b 110.5 c

F-test x
A *** *** ***
B *** *** ***

A × B *** *** **
z Values represent the mean of three replications. y Mean separation within columns by the Duncan’s multiple
range test at 5% level. x ** and ***: significant at p ≤ 0.01 or 0.001, respectively.
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relation between the plant pigment contents in leaves. However, there is a negative cor-
relation between each RGB factor and the plant pigment contents, thus resulting in smaller 
RGB values (deeper color) that correspond to higher pigment contents. Simultaneously, 

Figure 2. Effects of the Fe source and pH on the contents of total chlorophyll (A), carotenoid (B),
and anthocyanin (C) in P. hybrida leaves after 10 days of culture in vitro. Different letters above the
bars indicate significant differences according to the Duncan’s multiple range test at p ≤ 0.05. The
standard errors (n = 3) are indicated by the vertical bars.

According to Pearson’s correlation analysis results in Table 3, there is a positive correla-
tion among the R value, the G value, and the B value, and there is also a positive correlation
between the plant pigment contents in leaves. However, there is a negative correlation
between each RGB factor and the plant pigment contents, thus resulting in smaller RGB val-
ues (deeper color) that correspond to higher pigment contents. Simultaneously, the values
of the correlation were closer to −1 or 1, indicating greater significance of the correlation.
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Table 3. The correlation analysis between the leaf color and plant pigment contents.

Correlation Red Attribute Green Attribute Blue Attribute Total Chlorophyll Carotenoid

Green attribute 0.944 ** z - - - -
Blue attribute 0.735 ** 0.819 ** - - -

Total chlorophyll −0.717 ** −0.689 ** −0.405 * - -
Carotenoid −0.790 ** −0.748 ** −0.483 * 0.974 ** -

Anthocyanin −0.781 ** −0.737 ** −0.441 * 0.957 ** 0.967 **
z * and **: significant at the p ≤ 0.05 and 0.01 levels, respectively.

2.3. FCR Activity in Roots

The FCR activity was affected by the Fe source and pH (Figure 3). The pH level in
combination with FeSO4 significantly affected the FCR activities, and the FCR activity
decreased with increasing pH, resulting in the highest FCR activity in FeSO4-4.7. However,
the FCR activity was not affected by the pH in the control and in plants supplied with
Fe-EDTA, although the FCR activities were significantly lower in treatments with Fe-EDTA
than in the control.
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Figure 3. Effects of the Fe source and pH on FCR activity of P. hybrida after 10 days of culture in vitro.
Different letters above the bars indicate significant differences according to the Duncan’s multiple
range test at p ≤ 0.05. The standard errors (n = 3) are indicated by the vertical bars.

2.4. Soluble Protein Contents and Antioxidant Enzyme Activities

The soluble protein content was significantly different among the treatments. The
soluble protein content with Fe-EDTA treatments was generally higher, and when the pH
was 5.70, the greatest soluble protein content (15.5 mg·g−1) was observed (Figure 4A). The
antioxidant enzyme activities were significantly affected by the Fe source and pH. The
maximum guaiacol peroxidase (GPX) activity was observed in control-4.7 (0.046 U·µg−1),
while higher activities in the control group and the group with Fe-EDTA corresponded to
a lower pH (Figure 4B). According to Figure 4C, the greatest ascorbate peroxidase (APX)
activity was observed in EDTA-5.7 (0.127 U·µg−1), while in plants grown with FeSO4, the
highest activity was observed in pH 6.70. Similar to the results of APX activity, the highest
catalase (CAT) activity was observed in EDTA-5.7 (0.058 U·µg−1), as shown in Figure 4D.
The greatest superoxide dismutase (SOD) activity was observed at pH 6.70 in the control
and treatments with FeSO4 and at pH 4.70 with Fe-EDTA (Figure 4E).
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According to Figure 5, the Fe source and pH had significant effects on the contents
of NH4

+ and NO3
− in P. hybrida leaves. In the control and FeSO4 groups, the highest

content of NO3
− was measured at pH 6.70. For Fe-EDTA, the highest content of NO3

− was
observed at pH 5.70. The lowest NO3

− content was observed at pH 6.70 with Fe-EDTA,
whereas the control and FeSO4 had the greatest NO3

− content at pH 6.70. In Figure 5A,
the variation of the NH4

+ content was influenced by the medium pH. Therein, FeSO4-4.7
had the highest content (35.34 µmol·g−1) among all treatments, and the lowest content was
measured in control-5.7 (12.36 µmol·g−1).
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2.6. Contents of Macronutrients and Micronutrients in Leaves

As shown in Table 4, the Fe source and pH level directly affected the uptake of nutrients
in P. hybrida. In the control and FeSO4, lower pH levels corresponded to higher Fe contents.
On the other hand, the Fe content was the greatest at pH 5.70 in the Fe-EDTA and the
lowest at pH 4.70. The efficient Fe uptake also promoted the uptake of other nutrients. In
EDTA-5.7, which contained the highest Fe content, the contents of micronutrient manganese
(Mn) and macronutrients phosphorus (P), potassium (K), calcium (Ca), and magnesium
(Mg) were also the greatest.

Table 4. Contents of macronutrients and micronutrients in leaves of P. hybrida after 10 days of culture
in vitro.

Fe Source
(A)

pH
(B)

Macronutrients (mg·g−1 DW) Micronutrients (mg·g−1 DW)

P K S Ca Mg Cu Mn Zn Fe

Control
4.70 102.7 z b y 2029.2 b 103.3 c 459.6 b 109.0 c 5.93 a 0.83 b 2.01 a 7.00 b
5.70 86.4 d 1500.9 d 567.1 a 295.7 de 88.0 e 3.25 cd 0.66 c 1.34 cd 5.93 cd
6.70 99.8 bc 1000.5 e 306.9 b 309.8 d 118.7 b 5.02 ab 0.53 d 1.81 ab 3.56 e

FeSO4

4.70 91.8 cd 1834.4 c 117.5 c 362.8 c 92.4 de 4.12 bc 0.80 b 1.27 de 6.36 bc
5.70 104.3 b 1003.0 e 98.7 c 282.9 de 70.3 f 3.91 bcd 0.64 c 0.97 f 3.68 e
6.70 73.5 e 652.8 f 62.9 c 213.4 f 68.7 f 2.86 d 0.31 e 0.66 g 3.16 e

Fe-EDTA
4.70 105.6 b 1827.1 c 96.0 c 389.1 c 99.9 cd 4.62 b 0.80 b 1.10 def 5.07 d
5.70 133.1 a 2286.9 a 150.2 c 686.6 a 153.9 a 4.41 bc 1.47 a 1.01 ef 9.09 a
6.70 69.3 e 727.0 f 89.3 c 265.2 e 72.0 f 4.23 bc 0.36 e 1.58 bc 5.92 cd

F-test x
A *** *** *** *** *** *** ** *** ***
B *** *** *** *** *** ** ** NS ***

A × B *** *** *** *** *** *** ** *** ***
z Values represent the mean of three replications. y Mean separation within columns by the Duncan’s multiple
range test at 5% level. x NS, **, and ***: non-significant or significant at p ≤ 0.01, or 0.001, respectively.

2.7. Correlation Analysis of Pigments with Fe Content, Growth Parameters, and Nutrient Contents
in Leaves

Tables 5 and 6 show the correlation among the contents of three pigments, growth
parameters of shoots, and 12 nutrient contents. The Fe content had a positive correlation
with the contents of carotenoid, and had a significant positive correlation with chlorophyll
and anthocyanin (Table 5). However, there was no significant correlation between Fe
content and the number of leaves or between the length and FW of shoots (Table 6). There
was a very significant negative correlation between shoot DW and Fe content. In addition,
there is also a very significant negative correlation between DW and contents of Zn, Cu, Mn,
Ca, Mg, and K, indicating that the higher contents of these nutrients in shoots corresponds
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to a lower DW and a higher water content. The contents of Mn, Ca, K, and P had a very
significant positive correlation with the number of leaves, indicating that higher contents
corresponded to a greater number of leaves. The Fe content had a positive correlation
with the contents of other nutrients except sulfur (S), and had a very significant positive
correlation with contents of Cu, Mn, Ca, Mg, K and P. In the correlation results between
NH4

+ and NO3
−, NH4

+ was significantly negatively correlated with NO3
−, while both

were not significantly positively correlated with the Fe content. This indicated that there
were no significant direct relationships between the Fe content and the NH4

+ and NO3
−

contents in P. hybrida leaves. The correlation values were closer to −1 or 1, indicating a
greater significance of the correlation.

2.8. Expressions of Fe, Pigments, and N Transporter Genes

The relative expression levels of genes were significantly different according to the
treatments (Figure 6). The expression levels of one gene related to Fe-regulated transporter
(PhIRT1) (Figure 6A), two genes related to ferric reduction oxidase (PhFRO1 and PhFRO8)
(Figure 6B,C), one gene related to ammonium (PhNRT2.5) (Figure 6D) and one gene related
to nitrate transport (PhAMT1;1) (Figure 6E), one gene related to myb domain protein (Ph-
MYB113) (Figure 6F), and one gene related to deoxyhypusine synthase (PhDHS) (Figure 6G)
were investigated in this study. All the highest relative expression of gene levels were
observed in the treatment with Fe-EDTA, except for PhAMT1;1 and PhMYB113. The highest
relative expression levels of PhAMT1;1 were observed in EDTA-4.7. The highest relative
expression levels of PhFRO1, PhFRO8, PhIRT1, PhNRT2.5, and PhDHS were observed in
EDTA-5.7. However, the highest relative expression level of PhMYB113 was observed in
control-4.7, followed by EDTA-5.7.
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Figure 6. The gene expression levels in P. hybrida as affected by the Fe source and medium pH after
10 days of cultivation in vitro. Fe-regulated transporter, PhIRT1 (A); ferric reduction oxidase, PhFRO1
(B) and PhFRO8 (C); ammonium transporter, PhNRT2.5 (D); nitrate transporter, PhAMT1;1 (E); myb
domain protein, PhMYB113 (F); and deoxyhypusine synthase, PhDHS (G). The relative transcription
level of each gene was analyzed by quantitative real-time PCR (qRT-PCR). The expression of genes
was normalized to that of PhActin. Different letters above the bars indicate significant differences
according to the Duncan’s multiple range test at p ≤ 0.05. The standard errors (n = 3) are indicated by
the vertical bars.

Table 5. The correlation analysis between content of pigments and Fe in leaves of P. hybrida after
10 days of culture in vitro.

Correlation Chlorophyll Carotenoid Anthocyanin

Carotenoid 0.976 ** z - -
Anthocyanin 0.961 ** 0.967 ** -

Fe 0.420 * 0.372 0.403 *
z * and **: significant at the p ≤ 0.05 and 0.01 levels, respectively.
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Table 6. The correlation analysis between growth parameters and nutrient contents in leaves of P. hybrida after 10 days of culture in vitro.

Correlation Leaf Number
Shoot Zn Cu Fe Mn Ca Mg K P S NH4

+

Length FW DW

Length 0.367 z - - - - - - - - - - - - -
FW 0.458 * 0.370 - - - - - - - - - - - -
DW −0.253 −0.147 0.416 * -
Zn −0.040 0.083 0.556 ** −0.639 ** - - - - - - - - - -
Cu 0.160 −0.247 −0.424 * −0.523 ** 0.667 ** - - - - - - - - -
Fe 0.178 −0.320 −0.271 −0.649 ** 0.346 0.516 ** - - - - - - - -

Mn 0.600 ** −0.030 0.178 −0.533 ** −0.048 0.259 0.731 ** - - - - - - -
Ca 0.496 ** −0.171 0.015 −0.553 ** 0.058 0.354 0.845 ** 0.960 ** - - - - - -
Mg 0.336 −0.102 −0.081 −0.535 ** 0.218 0.397 * 0.803 ** 0.828 ** 0.883 ** - - - - -
K 0.784 ** 0.160 0.286 −0.566 ** 0.136 0.398 * 0.655 ** 0.881 ** 0.848 ** 0.714 ** - - - -
P 0.524 ** −0.138 −0.009 −0.461 * −0.024 0.319 0.634 ** 0.883 ** 0.851 ** 0.813 ** 0.724 ** - - -
S 0.112 0.748 ** 0.115 −0.280 0.228 −0.259 −0.224 0.012 −0.083 0.130 0.030 −0.026 - -

NH4
+ 0.317 0.157 0.292 −0.069 0.132 0.161 0.222 0.075 0.034 −0.019 0.299 −0.080 −0.272 -

NO3
− 0.004 −0.164 0.352 0.276 −0.380 −0.190 0.119 0.295 0.317 0.485 * 0.157 0.296 0.154 −0.398 *

z * and **: significant at the p ≤ 0.05 and 0.01 levels, respectively.
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3. Discussion

Higher plants mainly uptake Fe by the root system. On account of a strong demand
for Fe, the photosynthetic system will be established and manipulated in the chloroplast
of the photosynthetically active tissue, and Fe is transported from the roots to leaves.
Petunia is an Fe-inefficient plant that is sensitive to an environment of neutral or high pH,
which would result in reduced Fe uptake, followed by appearance of chlorosis and growth
inhibition [45,46]. This was also confirmed in this study (Figure 1), as leaves of petunia
showed obvious chlorosis at high pHs. The Fe homeostasis in leaves depends on the
binding of Fe to cofactors of oxidoreductases, and the developmental system of plants also
determines the direction of the Fe distribution in leaf cells [3]. In this study, the effects of the
Fe source and different medium pH on the plant growth and development of P. hybrida were
obvious. According to the growth parameters in P. hybrida (Table 1), the plants with the
highest number of leaves were observed at pH 4.70 regardless of the Fe source, including
the control group. The pH affects the substance solubility and nutrient availability for
plants. It is also confirmed in this study (Table 6) that the number of leaves has a significant
positive correlation with the contents of Mn, Ca, K, and P in leaves. At the same time,
it was also found that there was a significant regularity between the pH of the medium
and the number of leaves and the content of these elements (Tables 1 and 4). Among the
iron sources, high pH corresponds to a lesser number of leaves and the content of these
nutrient. H+ as a cation will exchange positions while competing with other cations. The
metal availability is often inhibited, and micronutrient deficiencies are generated for plants
in alkaline soils [47]. Moreover, the solubility of Fe under different pH levels also changes.
In neutral pH media, Fe exists in the form of ferric Fe and most of the Fe3+-OH complexes
are cross-linked into insoluble ferrihydrite polymers, therefore, the Fe ion content in the
medium is extremely low [48]. The solubility of FeSO4 is higher at lower pH (below 5.5),
and the solubility of FeSO4 decreases with the increase in the pH [49]. Fe-EDTA, a chelated
Fe, is unstable at high pH; it is relatively stable at a pH lower than 6.0, and highly unstable
when at a pH higher than 6.5. That explains why in Table 1, when the Fe source was
Fe-EDTA, the leaf length and root length of P. hybrida were the greatest at pH 5.70.

In strategy I plants, reduction of Fe chelates is carried out by FCR, and plants are
more likely to reduce Fe with weak Fe3+-chelates. In some Fe-sensitive species (such as
Vaccinium spp. and Annona glabra), low FCR activity was found in acidic soils with high
organic matter and Fe2+, where these conditions are more favorable for Fe uptake [50].
Following the FCR-mediated reduction, Fe2+ is transported through the plasma membrane
into the roots [51]. Strategy I plants upregulate the expression of FCR enzymes when the
Fe content of the medium is limited, while increasing the pH level will enhance the FCR
activity [52,53], which was similar to the findings in Figure 3. The FCR activity was the
highest in control-6.7 (pH is greater than 6.5) among the three pH levels in the control,
because the Fe level in the medium affects the root response mechanisms to improve the Fe
uptake [54]. The excess Fe2+ produced by FCR is re-oxidized by the electron acceptor, but
the chelating agent can be re-oxidized by the catalysis of Fe3+-chelate [55]. Furthermore, the
Fe availability affects the natural distribution of species and limits the growth of important
commercial crops. To prevent the potential high Fe toxicity to plants [56], plants have
evolved a series of protective mechanisms that bind Fe and proteins. Plants will reduce Fe
uptake by reducing the FCR activity when the Fe content in the medium is excessive; for
example, in Spinacia oleracea and Brassica oleracea, the FCR activity of roots decrease with
increasing Fe content [57]. The Fe content in the Fe-EDTA was high on account of Fe-EDTA
reducing Fe to Fe2+ by the reaction of metal charge transfer (Table 4) [58,59]. Therefore, the
Fe-EDTA group showed a lower overall FCR activity.

Among the extensive range of metal transporters in plants, NRAMP (natural resistant-
associated macrophage protein), YSL (yellow stripe-like), and ZIP (zrt- and irt-related
protein) families are thought to participate in the Fe transport [60]. As a member of the
ZIP family, IRT1 is capable of compensating for some defects in the Fe uptake, and IRT2
is also a homologue of the ZIP family [61]. IRT1 and IRT2 uptake ferrous Fe from the
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medium in Fe deficiency, and its gene expression is induced in the roots as a part of the Fe-
deficiency response [62,63]. In Fe-deficient A. thaliana, Fe and other metals are absorbed by
AtIRT1 from the medium to regulate Fe homeostasis, and AtIRT1 is highly expressed in the
epidermal region of the roots [64] (in strategy I plants, the expression of proton pumping,
Fe chelate reductase, and IRT1 are all significantly increased when Fe is deficient) [65]. In
the EDTA-5.7 treatment in this study, the expression level of PhIRT1 in P. hybrida leaves
was 6947 times higher than that in the control (Figure 6A), which may be because when
the ligand inside plants is binding to metal cations, the high mobility relative to the lower
affinity of the chelated Fe is at a negative location of cell membranes and vessels [66]. It
was also found that in Zea mays, chelating agents such as EDTA or DTPA will increase the
Fe transport in leaves. Brian et al. [67] discovered that the expression of FRO1 was low
in the Fe-rich leaves of Pisum sativum, while the expression of FRO1 was increased in the
Fe-deficient leaves [68]. The highest PhFRO1 expression and Fe content were observed in
EDTA-5.7 in this study (Figure 6B); before uptake of Fe3+ by leaf cells, FRO1 participated in
the process of composite reduction of Fe3+ to Fe2+ [67,69]. FRO8, which is also a chelate
Fe reductase, exists in the mitochondria of cells, mainly acts on Fe reduction during shoot
senescence [70], and also participates in the reduction of Fe3+ to Fe2+. Simultaneously, the
highest expression of PhFRO8 was observed in EDTA-5.7 (Figure 6C).

The plant pigment contents in leaves are closely related to the physiological function
of leaves, which can provide a valuable insight into the physiological functions of leaves.
According to the contents of total chlorophyll (chlorophyll a and b), carotenoids, and
anthocyanins in Figure 2, the contents of these photosynthetic pigments and secondary
metabolites were influenced by the Fe source and medium pH. However, the effects of
the medium pH were stronger than that of the Fe source. As shown In Figure 1 of this
study, when the pH was 6.70, the leaves were chlorotic. The same trend was also observed
in the pigment contents in leaves. This is similar to the results of Smith et al. [38,39],
where when the pH of the substrate was increased from 5.0 to 6.0, the contents of the total
chlorophyll and carotenoids in leaves of P. hybrida ‘Priscilla’ decreased, chlorosis appeared
after 2 weeks, and, when the pH of the medium was raised to 7.0, the contents of total
chlorophyll and carotenoid decreased significantly. Chlorosis of young leaves in general is
the first visual phenomenon of Fe deficiency. It is associated not only with the damage of
chlorophyll but also with changes in the expression and assembly of other components of
the photosynthetic organ [71]. In photosynthetic cells, approximately 80% of the Fe is a key
determinant in the formation of prosthetic groups in enzymes [72]; the Fe content plays a
role in a variety of vital plant activities such as chlorophyll production, electron transport
between PSI and PSII, and maintenance of the structure and function of the chloroplast [73].

The function of chloroplasts depends on the plastid and nuclear genomes of proteins
encoded, and a normal development of chloroplasts is associated with the leaf color [74,75].
The DHS proteins localized in the cytoplasm and nucleus affect the chlorophyll levels in
leaves, and in Solanum lycopersicum and Nicotiana tabacum L., the formation of deoxyhy-
pusine residues is catalyzed by DHS, which plays a role in chloroplast development [76].
Liu et al. [25] observed that in DHS-silenced leaves in petunia, the chloroplast development
had abnormal and reduced chlorophyll levels and activity of photosystem II. However,
in our study, the highest expression of the DHS gene appeared in EDTA-5.7, where the
chlorophyll content and chlorosis state were about the median among all the treatments; it
is, therefore, speculated that the DHS expression is more related to the pH. Fe reacts to the
porphyrin structure of chlorophyll, the main component of the chloroplast. A famous func-
tion of the cytochrome is electron transfer, and cytochrome oxidase is involved in the last
step of the respiratory chain [77]. The ratio of condensation for glycine and succinyl-CoA
synthesis of ALA (delta-aminolevulinic acid) is reduced when plants are Fe-deficient. At
that time, the photosynthetic system remains intact, but the number of photosynthetic units
decrease [78]. Nenoval et al. [79] found that excess Fe can increase the pigment contents in
pea leaves by at least 28%. The relationship between the chlorophyll content and spectral
index is also affected by other pigments [26]. The anthocyanin content tends to be higher in
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young leaves with low photosynthetic rates [80], and metal ions and pH can alter the antho-
cyanin color in vitro but only play a minor role in vivo. The biosynthesis of anthocyanins is
mainly regulated by several transcription factors in the R2R3-MYB family, of which MYB113
mainly regulates the anthocyanin expression in mature leaves [81]. Several research data
indicated that anthocyanin synthesis is enhanced when the MYB113 gene is overexpressed
in A. thaliana [30]. It was confirmed in our study that the control-4.7 treatment with the
highest expression of PhMYB113 (Figure 6F) also resulted in the greatest anthocyanin
content (Figure 2C), indicating that the PhMYB113 expression of the control group corre-
sponded to the anthocyanin level. However, in treatment groups with FeSO4 and EDTA,
the expression of PhMYB113 was the highest at pH 5.70. Since nutrients affect the synthesis
of anthocyanins and also activate or inhibit the expression of transcription factors [82], it
is speculated that the Fe source and pH affect the expression of PhMYB113. In vegetative
tissues, anthocyanins are considered important photosynthetic antioxidants [83,84]. When
plants are deficient in anthocyanins, photoprotection is achieved through an alternative
mechanism [85]. Therefore, the change in the anthocyanin content often also represents the
diversity of antioxidants [86]. In the antioxidant processes of plants, H2O2 is oxidized by
SOD and then scavenged by GPX, POD, and CAT. Under the influence of Fe and ROS, the
activities of GPX, POD, and POD change accordingly [87]. As shown in Figure 2, the pH
affects Fe absorption, resulting in reduced anthocyanin content with Fe deficiency.

Several steps of biosynthesis are dependent on Fe. Fe-deficiency chlorosis severely
affects crop quality and production. Meanwhile, chlorosis caused by Fe deficiency in a high
pH environment is generally ameliorated by other approaches, such as acidification of the
medium or the use of amino-based fertilizers, to lower the pH to achieve higher solubility
of microelements [45,88]. At the same time, the results of other research indicate that the
correlation between the Fe concentration and chlorophyll content is not always the same, as
in the case of chlorosis caused by Fe deficiency, and the Fe concentration in chlorotic leaves
may be higher than that in non-chlorotic leaves. When the pH is too high, Fe can be fixed in
the free space of leaves [89]. The Fe source and pH not only affect the plant pigment content
but also the macronutrient and micronutrient contents [90]. Floral crops cultivated under
soilless conditions are commonly cultivated with a medium pH range, usually controlled
between 5.6 and 6.2. In the leaves of plants, the availability of nutrients correlates with
the water solubility of the applied compound [66]. The solubility of nutrients is controlled
by the pH. When the pH increases, the solubility of the microelements in the medium
decreases, and oxyphilous plants appear as a nutrient-deficiency symptom. Meanwhile,
when Fe-efficient plants such as Pelargonium hortorum and Tagetes erecta L. are grown in a
low-pH medium with high solubility of Fe and Mn, elemental poisoning occurs, thereby
generating necrosis in plants [45]. The high pH of the medium also restricts Mn uptake,
and the symptoms of Mn deficiency are similar to those of Fe deficiency [91]. As shown in
Table 4, in the control and FeSO4 groups, low Mn content corresponded to a high–medium
pH. According to the results of Abadia et al. [92], when the leaves of Prunus persica L.
appear to be chlorotic, the content of K ions increases, while the content of Ca ions in the
leaves decreases, thereby the value of K/Ca is increased. However, as shown in Figure 1
and Table 4, chlorosis of leaves was obvious with the increase in the pH, and the content
of K and Ca ions also decreased, especially in the control and FeSO4 groups. It has been
reported that the reduction of chlorophyll is not always due to Fe deficiency but may also
be related to the dilution effect of leaves, and the appearance of chlorosis is not necessarily
directly related to the nutrient contents.

In addition, N is also an important mineral nutrient for crops, and an important factor
for plant growth and development [93]. Some important organic compounds in plants
are inseparable from N, such as proteins, chlorophyll, alkaloids, etc. [41]. N is mainly
dissolved in the form of NH4

+ and NO3
−, then absorbed by the roots of plants [94]. A

large proportion of NO3
− and a fraction of NH4

+ are directly transferred to the leaves,
and the remainder is assimilated [94,95]. The absorption of NO3

− and NH4
+ significantly

affected the pH of the rhizosphere and apoplast, thereby affecting the absorption and
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utilization of Fe by plants [96]. As shown in Figure 5 and Table 6, the nutrient contents
interact with each other in P. hybrida leaves. In the control group under Fe deficiency, lower
pH corresponded to lower NO3

− contents, because the increase in pH increased the NO3
−

content, while reducing the activity of Fe3+ reductase, thereby inhibiting the transport of Fe
from roots to shoots [97,98]. In the treatment with FeSO4 or chelated iron EDTA, due to
supplementation of Fe2+ or Fe3+, the interaction effect and absorption by leaves of nutrients
were changed. The N uptake of plants is mainly determined by specific genes, such as
the nitrate transporter NRTs and ammonium transporter AMTs [99]. The regulation of the
NRT and AMT expressions are affected by N metabolites, light, pH, sucrose, etc. [100,101].
Among them, NRT2.5 is a high-affinity nitrate transporter that is localized in the plasma
membrane and mainly expressed in the epidermis of root hairs and leaves [102]. As shown
in Figure 6D, in the control group, the expression level of PhNRT2.5 was lower than that in
the FeSO4 and EDTA groups, and the highest expression level was observed in EDTA-5.7. In
addition, the overexpression of AMT1 will increase the absorption of ammonium by plants,
but, with sufficient ammonium content, AMT1 will reduce the biomass of the aboveground
parts in order to reduce ammonium toxicity [94]. As shown in Figure 6E, the expression of
PhAMT1;1 in the control group was the lowest and was affected by the pH, with high pH
corresponding to high expression. The highest expression of PhAMT1;1 was observed in
the EDTA group, and the expression decreased with increasing pH. Therefore, we judged
that under the synergistic effects of Fe and pH, the uptake and contents of NO3

− and NH4
+

were affected in P. hybrida leaves.

4. Materials and Methods
4.1. Seed Materials and Sterilization

The bedding plant seeds of Petunia hybrida ‘Madness Red’ were purchased from
PanAmerican Seeds (West Chicago, IL, USA). The seeds were washed with running tap
water for 1 h to wash off the coating, then put into glass beakers with 0.3% (v/v) Tween
20 solution and stirred for 3 h using a blender. The seeds were subsequently rinsed with
sterilized distilled water (SDW) 7 times. The seeds were then transferred to a sterilized
container, and the surfaces of the seeds were sterilized with 70% (v/v) ethanol for 1 min
and 0.5% (v/v) sodium hypochlorite (NaClO) for 5 min. Finally, the seeds were rinsed with
SDW 5 times before culture.

4.2. Seed Germination and Culture Conditions

The surface-sterilized seeds were cultured in a multipurpose nutrient solution (MNS)
medium for germination [103]. The medium contained 3.0% (w/v) sucrose and 0.80% (w/v)
agar, and the pH was adjusted to 5.80. Then, 50 mL of the medium was dispensed to each
container (Cat. No. Gaooze-0811C, Korea Scientific Technique Industry, Suwon, Korea)
before being sterilized in an autoclave at 121 ◦C for 15 min. A total of 15 seeds were sown
in each container and placed in the culture room with a temperature of 24 ◦C and relative
humidity of 70%, and a 16 h photoperiod, provided at 100 µmol·m−2·s−1 photosynthetic
photon flux density (PPFD) by white fluorescent light (40 W tubes, Philips, Eindhoven,
The Netherlands).

4.3. Experimental Design of the Fe and pH Treatments

The seeds of P. hybrida were germinated and cultured in the MNS medium for 15 days,
after which the plantlets were transplanted to the media with the Fe treatments. The compo-
sition was (in mg·L−1): Ca(NO3)2·4H2O 436.6, KNO3 232.3, KH2PO4 272.0, MgSO4·7H2O
209.1, NH4NO3 80.0, K2SO4 17.4, H3BO3 1.40, CuSO4·5H2O 0.20, MnSO4·4H2O 2.10,
Na2MoO4·2H2O 0.12, and ZnSO4·7H2O 0.80, containing 3.0% (w/v) sucrose and 0.80%
(w/v) agar. The iron sulfate (FeSO4·7H2O) or iron chelated with ethylenediaminetetraacetic
acid (Fe-EDTA) were used as the Fe sources, according to the protocol of Xiao et al. [42]
with a final Fe content of 27.8 mg·L−1 in the MNS medium, and the treatment without Fe
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was used as the control. Before autoclaving, the pH of the medium was adjusted to 4.70,
5.70, or 6.70 with 1 M NaOH or HCl. Each treatment was repeated three times.

4.4. Measurements of the Growth Parameters

After 10 days, the length of the shoots and roots were examined. The FW of the shoots
and roots was measured with a precision electronic balance (NTRIS224I-1S, Sartorius,
Gottingen, Germany). Before the dry weights (DW) were measured, the shoot and root
samples were dried in a forced convection oven (AAH12245K, Jeio Tech. Co., Ltd. Daejeon,
Korea) at 60 ◦C for 72 h. The leaf-color data were collected with a color reader (CR-11,
Konica Minolta Co., Ltd. Osaka, Japan). The obtained Munsell chromatographic data
were converted into RGB chromatographic data using an online tool (https://pteromys.
melonisland.net/munsell/) (accessed on 7 February 2022), and after obtaining the average
of at least 3 biological replicates, the RGB chromatographic data were converted into an
exclusive serial number of HEX chromatographic data online (https://www.rgbtohex.net/)
(accessed on 7 February 2022).

4.5. Contents of Chlorophyll, Carotenoid, and Anthocyanin

The extraction solution was formed overnight using a 1 cm2 area of the leaf tissue
soaked in 80% (v/v) acetone. Then, a UV spectrophotometer (Libra S22, Biochrom Ltd.,
Cambridge, UK) was used to evaluate the absorbances of the extraction solution at A470nm,
A645nm, and A662nm. The contents of chlorophyll a, b, and carotenoid were measured
according to the protocol of Sukran et al. [104]. The total anthocyanin was also evaluated
using a UV spectrophotometer, according to the protocol of Pirie and Mullins [105].

4.6. Determination of the FCR Activity

The root FCR activity was measured based on the methods of Biengait et al. [106] and
Chaney et al. [107]. The fresh roots from each treatment were washed clean of the residual
solid medium, immediately put into the saturated stationary CaSO4 solution for 5 min,
rinsed with SDW 2–3 times, wiped to remove the surface moisture, and put into a 15 mL
FCR reaction solution [0.1 mM Fe-EDTA and 0.4 mM 2,2′-Dipyridyl, pH 5.3]. A solution
sample without roots was used as the control, and all samples were incubated in the dark
at 24 ◦C for 1 h. The absorbance of the reaction solution at A520nm [1 mM Fe(dipyridyl)3 at
A520nm = 8.650] was measured and calculated with a UV spectrophotometer.

4.7. Soluble Protein Content and Antioxidant Enzyme Activity Assays

After 10 days, leaves of P. hybrida were separated from plantlets and frozen in liq-
uid nitrogen immediately. The leaf tissues from different treatments were ground into
a fine powder with liquid nitrogen and stored at −80 ◦C until the next analysis. The
activities of antioxidant enzymes guaiacol peroxidase (GPX), catalase (CAT), ascorbate
peroxidase (APX), and superoxide peroxidase (SOD) were measured according to Mani-
vannan et al. [108]. Then, 0.10 g fine powder samples were homogenized with 100 mM
phosphate-buffered saline (PBS) solution for the GPX assay and homogenized with 50 mM
PBS solution to measure the activities of CAT, APX, and SOD. A 50 mM PBS solution
containing 1 mM ethylenediaminetetraacetic acid (EDTA), 1 Mm polyvinylpyrrolidone
(PVP), and 0.05% triton-X at pH 7.0 was used. The mixtures were centrifuged at 4 ◦C for
20 min at 13,000 rpm, then the supernatants were transferred to a new 1.5 mL microtube
to analyze the soluble protein contents and activities of the antioxidant enzymes. The
unit·µg−1 was used to represent the specific enzyme activity. The enzymes that induced a
0.01 per minute increase was determined as one unit of GPX activity. The enzymes required
to reduce 1 µM of H2O2 for each minute was defined as one unit of CAT activity. The
enzyme activity catalyzing the oxidation of 1 µM ascorbic acid each minute was defined
as one unit of APX activity. The quantity that causes a 50% inhibition of the initial rate of
nitro blue tetrazolium (NBT) degradation was determined as one unit of SOD activity.

https://pteromys.melonisland.net/munsell/
https://pteromys.melonisland.net/munsell/
https://www.rgbtohex.net/
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4.8. Contents of NH4
+ and NO3

−

The NH4
+ and NO3

− concentrations in leaves were analyzed based on the methods
of Bräutigam et al. [109] and Huang et al. [110]. The NH4

+ concentration was analyzed
by a colorimetric method based on the Berthelot reaction [109]. The 0.10 g fine powder of
frozen leaf tissues was homogenized with an extraction solution containing 1 mL 0.1 M
of HCl and 500 µL of chloroform and shaken at 4 ◦C for 15 min and then centrifuged for
5 min at 12,000 rpm (4 ◦C). Then, the supernatants were transferred to a new microtube
containing 50 mg of activated charcoal and then centrifuged for 5 min at 12,000 rpm (4 ◦C)
after homogenization. The supernatants were analyzed for the NH4

+ concentration with
a UV-spectrophotometer at A620nm. For the NO3

− concentration, 0.10 g fine powder of
frozen leaf tissues was extracted with 1 mL DW (deionized water) and incubated at 45 ◦C
for 1 h. After centrifugation for 15 min at 5000 rpm (20 ◦C), 0.2 mL of the supernatant
was transferred to a 30 mL glass tube and mixed with 0.8 mL 5.0% (w/v) salicylic acid in
concentrated sulfuric acid. The solution was incubated for 20 min, and 19 mL of 2.0 M
sodium hydroxide was then added to raise the pH of the solution to more than 12. After
the solution was cooled to room temperature, the concentrations of NO3

− were analyzed
with a UV-spectrophotometer at A410nm.

4.9. Macronutrient and Micronutrient Contents

The macronutrient and micronutrient contents were analyzed based on the methods of
Zhang and Dotson [111]. The dry weight of the leaf samples was measured, and the leaves
were then ashed for 4 h in a Nabertherm muffle furnace (Model LV 5/11/B180, Lilienthal,
Breman, Germany) at 525 ◦C. The ashes of the leaves were dissolved in 1 mL of 25% HCl
(hydrochloric acid), then dissolved in 2 mL of hot distilled water, and 3 mL of normal
temperature distilled water was added. The total mixture (6 mL) was filtered through a
quantitative filter paper (Cat no. 02005110, Hyundai Micro Co., Ltd., Seoul, Korea), and the
macronutrient and micronutrient contents of mixture were analyzed with an inductively
coupled plasma (ICP) spectrometer (Optima 4300DV/5300DV, Perkin Elmer, Baesweiler,
Germany). Three biological replicates were performed for each treatment.

4.10. Quantitative RT-PCR Analysis

The RNA of the leaf tissues was extracted with the TRIzol Reagent (Cat no. 15596026,
Invitrogen, Carlsbad, CA, USA) in accordance with the standard protocols of the manu-
facturer. Briefly, 0.1 g frozen powder of leaf tissues was ground with 1.0 mL TRNzol to
homogenize, and the homogenate was transferred to a 1.5 mL tube (RNA-free), incubated
for 10 min at room temperature, then centrifuged at 4 ◦C, 12,000 rpm for 11 min. The su-
pernatant (0.8 mL) was transferred to a new 1.5 mL tube, to which 0.2 mL chloroform was
added, mixed thoroughly, and centrifuged at 4 ◦C, 12,000 rpm for 11 min. Next, 0.4 mL of
the supernatant was transferred to a new 1.5 mL tube, and an equal volume of isopropanol
was added, then the mixture was inverted several times to mix and incubated at −20 ◦C.
After 3 h of incubation, these samples were centrifuged at 4 ◦C with 12,000 rpm for 11 min.
The supernatant was discarded with a pipette, 0.9 mL 75% (v/v) ethanol was added and
mixed well with the pellet at 4 ◦C, 12,000 rpm for 11 min, and the process was repeated
twice. Finally, the pellet was dried for 10 min at room temperature, dissolved with 20 µL
ddH2O (double distilled water), then kept at −80 ◦C for further work.

A NanoDrop 2000c Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
was used to evaluate the quality of the RNAs. The RNAs were reverse-transcribed cDNA
using the PrimeScript kit (Cat no. RR047A, Takara, Shiga, Japan) in accordance with the
protocols of the manufacturer.

The target genes following FRO1, FRO8, IRT1, NRT2.5, AMT1, MYB113, and DHS
were chosen from the DNA sequence of A. thaliana (Table 7). The CDS sequences of
these target genes were found on the National Center for Biotechnology Information
‘https://www.ncbi.nlm.nih.gov/’ (accessed on 10 February 2022) and then compared
with the draft genome sequence of Petunia axillaris: ‘https://solgenomics.net/organism/

https://www.ncbi.nlm.nih.gov/
https://solgenomics.net/organism/Petunia_axillaris/genome
https://solgenomics.net/organism/Petunia_axillaris/genome
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Petunia_axillaris/genome’ (accessed on 10 February 2022), before determining the gene
expression levels. The primers are shown in Table 8. The gene expression was analyzed by
SYBR Green Master Mix kit and quantitative real-time PCR (RT-PCR) was performed on a
CFXconnect system (Bio-Rad, Hercules, CA, USA). The reaction system (10 µL) contained
1 µL of cDNA (100 µM), 1 µL of each primer (10 µM), 2 µL of ddH2O, and 5 µL of SYBR
Green Master Mix. The melting temperature of gene-specific primers was designed to be
55 ◦C. The PhActiin11 gene was selected as a reference and the data were analyzed using
the 2−∆∆Ct method. For each treatment, three biological replicates were employed.

Table 7. The names and locus ID of target genes of Arabidopsis thaliana used in this study.

Gene Name Abbreviation Locus ID

Ferric reduction oxidase 1 FRO1 AT1GO1590
Ferric reduction oxidase 8 FRO8 AT5G50160

Iron-regulated transporter 1 IRT1 AT4G19690
Nitrate transporter 2.5 NRT2.5 AT1G12940

Ammonium transporter 1;1 AMT1;1 AT4G13510
Myb domain protein 113 MYB113 AT1G66370
Deoxyhypusine synthase DHS AT5G05920

Table 8. The list of primers used for gene expression quantification in P. hybrida.

Name Gene Identifier Forward (5′–3′) Reverse (5′–3′)

PhFRO1 Peaxi162Scf41243 CGTCTCACAGGTCAAAACCC TTGCTGGTTGGATTGATATTGTGG
PhFRO8 Peaxi162Scf00089 TCAGTCTTCTTGCAGGATTGAT TGGAAGGAAAGATTCGAACAGA
PhIRT1 Peaxi162Scf00623 GCTGGGAATCATTGTTCACTC CACCAAGTCCCATTCCTTCAAAC

PhNRT2.5 Peaxi162Scf00515 GGTGTTGAACTTACTGTGGACAA CAAAAGTGAGGCCACAGGCA
PhAMT1;1 Peaxi162Scf00043 CCATAAACCAGCAATGCCACC TGCAGGATCAGTTAGAGCCAA
PhMYB113 Peaxi162Scf00102 GGTGTGGAAAGAGTTGTAGGC TGTCAGTTCGACCTGGTAATC

PhDHS Peaxi162Scf00178 TGGCACCACCACGTATTTTTC CTGTCCATGCTGGTTCAAGG
PhActin11 cn1159 TGCACTCCCACATGCTATCCT TCAGCCGAAGTGGTGAAAGAG

4.11. Data Analysis

The analysis of variance (ANOVA) was used to evaluate significant differences be-
tween the treatments using the PROC ANOVA function in SAS (SAS, version 8, SAS
Institute Inc., Cary, NC, USA). First, Fe pH was considered one-way, then the Duncan’s
multiple range testing was conducted at a 5% probability level. Second, pH, Fe, and
their interaction (A × B) were also analyzed. The analysis graphics were drawn with the
OriginPro 9.0 software (OringinLab Co., Northampton, MA, USA).

5. Conclusions

The results of our study showed that the Fe source and medium pH affected the
growth and development of P. hybrida. The Fe increased the leaf width, shoot fresh and dry
weights, and root dry weight of P. hybrida. The contents of chlorophyll, carotenoids, and
anthocyanins, as well as leaf color, regardless of the Fe source, were significantly affected
by the pH, and the results decreased with increasing pH. The highest soluble protein
content and activities of APX and CAT were observed in the Fe-EDTA under pH 5.70. In
addition, the highest contents of NH4

+ and NO3
− were measured in the FeSO4-4.7 and

EDTA-5.7, respectively. When the Fe source was Fe-EDTA, pH 5.70 of the medium was the
most beneficial for nutrient uptake of P. hybrida. The gene-expression results of P. hyrida
revealed that the greatest relative gene expressions of PhIRT1, PhFOR1, PhFRO8, PhNRT2.5,
and PhDHS were obtained with Fe-EDTA, pH 5.70. In the treatment of EDTA-5.7, the
reduction and transport of chelated iron in P. hybrida leaves were enhanced, which also
affected the transport of nitrate. In conclusion, when the medium pH was adjusted to 5.70,
supplementation of chelated Fe-EDTA was more conducive to promoting the growth and
development of, and absorption of mineral nutrients by, the plant, and expression of related

https://solgenomics.net/organism/Petunia_axillaris/genome
https://solgenomics.net/organism/Petunia_axillaris/genome
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genes in leaves. Therefore Fe-EDTA was more conducive to the growth and development
of P. hybrida at pH 5.70.
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