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Abstract: Aurisin A (AA), an aristolane dimer sesquiterpene isolated from the luminescent mushroom
Neonothopanus nambi, exhibits various biological and pharmacological effects. However, its poor
solubility limits its use for further medicinal applications. This study aimed to improve the water
solubility of AA via complexation with β-cyclodextrin (βCD) and its derivatives (2,6-di-O-methyl-
βCD (DMβCD) and 2-hydroxypropyl-βCD (HPβCD). A phase solubility analysis demonstrated that
the solubility of AA linearly enhanced with increasing concentrations of βCDs (ranked in the order of
AA/DMβCD > AA/HPβCD > AA/βCD). Notably, βCDs, especially DMβCD, increased the thermal
stability of the inclusion complexes. The thermodynamic study indicated that the complexation
between AA and βCD(s) was a spontaneous endothermic reaction, and AA/DMβCD possesses the
highest binding strength. The complex formation between AA and DMβCD was confirmed by means
of FT-IR, DSC, and SEM. Molecular dynamics simulations revealed that the stability and compactness
of the AA/DMβCD complex were higher than those of the DMβCD alone. The encapsulation of
AA led to increased intramolecular H-bond formations on the wider rim of DMβCD, enhancing the
complex stability. The antiproliferative activity of AA against A549 and H1975 lung cancer cells was
significantly improved by complexation with DMβCD. Altogether, the satisfactory water solubility,
high thermal stability, and enhanced antitumor potential of the AA/DMβCD inclusion complex
would be useful for its application as healthcare products or herbal medicines.

Keywords: Aurisin A; beta-cyclodextrins; inclusion complex; lung cancer

1. Introduction

Aurisin A (AA, Figure 1A) is an aristolane dimer sesquiterpene isolated from the
luminescent mushroom Neonothopanus nambi Speg. (Marasmiaceae), which is normally
found on logs or dead wood in broad-leaved forests in the northeast of Thailand [1].
This compound exhibits various biological and pharmacological activities, including an-
timycobacterial activity toward Mycobacterium tuberculosis, antimalarial property against
Plasmodium falciparum [1], and anticancer potential toward lung cancer cells (NCI-H187 and
A549) [1,2], breast cancer cells (BC1), epidermoid carcinoma cells (KB), cholangiocarcinoma
cells (KKU-100, KKU-139, KKU-156, KKU-213, and KKU-214) [1], and cervical cancer cells
(Hela, CaSki, and SiHa), with no cytotoxic effect on normal white blood cells [3]. AA exerts
its anticancer effects by (i) inhibiting cancer cell growth and migration and (ii) inducing
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cell cycle arrest and apoptosis through activating caspase-3/9 as well as decreasing the
expression of cyclin D1, cyclin-dependent kinase 2/4 (Cdk-2/4), B-cell lymphoma 2 (Bcl-2),
epidermal growth factor receptor (EGFR), phosphorylated p38 (pp38), and vascular en-
dothelial growth factor (VEGF) [2,3]. Although AA possesses promising biological and
pharmacological activities, its low water solubility limits its use for further applications as
herbal medicines or healthcare products.
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Figure 1. Chemical structures of (A) AA and (B) βCD and its derivatives (DMβCD and HPβCD),
where the functional substitutions used in this study, are shown below.

Cyclodextrin (CD) is a cyclic oligosaccharide linked by α-1,4 glycosidic bonds. Natu-
ral CD consists of six, seven, and eight glucose units, namely alpha-cyclodextrin (αCD),
beta-cyclodextrin (βCD), and gamma-cyclodextrin (γCD), respectively [4]. The struc-
tural arrangement of CD turns out to be a truncated cone shape structure possessing a
hydrophilic outer surface with a hydrophobic inner cavity. By hosting lipophilic guest
molecules into the central cavity of CD, their physico-chemical properties are tremen-
dously improved [5–7], making CD the most frequently used excipient in pharmaceutical
applications [8]. Among the three natural CDs, βCD (Figure 1B) has been widely used
because of its suitable cavity size, commercial availability, desirable drug loading capacity,
biocompatibility, and low price [9,10]. However, due to the limited solubility of βCD,
derivatives of βCD, such as 2-hydroxypropyl-βCD (HPβCD) and 2,6-di-O-methyl-βCD
(DMβCD), are developed to improve water solubility and reduce the limitations of the
parent βCD [11,12]. Many lines of evidence have shown that the water solubility, chemical
stability, and biological activity of poorly soluble compounds are significantly enhanced by
complexation with βCD derivatives [13–17]. However, the information on the inclusion
complexation between AA and βCD(s) has never been reported.

In the present study, we aimed to enhance the water solubility, stability, and anti-
cancer activity of AA by inclusion complexation with βCD and its derivatives (DMβCD
and HPβCD). The obtained inclusion complex was then confirmed experimentally and
theoretically using physical and chemical characterization techniques as well as molecu-
lar modeling studies. In addition, the anticancer potential of the inclusion complex was
evaluated. We hope that the improved physical and biological properties of AA/βCD(s) in-
clusion complex could pave the way for the further development of AA as herbal medicines
or healthcare products.
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2. Results and Discussion
2.1. Phase Solubility, Thermodynamic Parameters, and UV-Vis Spectra Analyses

The phase solubility diagrams of AA in aqueous solutions of βCD, DMβCD, and
HPβCD at 20, 30, 40, and 50 ◦C are shown in Figure 2. The obtained results revealed that
the solubility of AA linearly increased with increasing concentrations of βCDs (ranked
in the order of AA/DMβCD > AA/HPβCD > AA/βCD). This linear relationship is a
characteristic of AL-type solubility, indicating a 1:1 host–guest complexation [18–20]. Next,
the stability constant (Kc) was calculated from the phase solubility diagrams to estimate the
binding strength of all the studied inclusion complexes. As shown in Table 1, the highest Kc
value was found in AA/DMβCD (209–237 M−1), followed by AA/HPβCD (88–148 M−1)
and AA/βCD (42–80 M−1), respectively. These findings are consistent with many lines
of evidence demonstrating that βCD derivatives, especially DMβCD, could significantly
improve the stability and solubility of several poorly soluble compounds [15,21–23]. Inter-
estingly, the increased temperature remarkably enhanced the stability (the Kc index) of all
the investigated complexes.
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Table 1. Stability constant (Kc) of the AA/βCDs inclusion complexes at different temperatures.

Temperature (◦C)
Kc (M−1)

AA/βCD AA/DMβCD AA/HPβCD

20 42 209 88

30 60 219 112

40 73 232 135

50 80 237 148

To obtain the thermodynamic parameters (i.e., ∆H, ∆S, and ∆G) for the AA/βCD(s) in-
clusion complexation process, the Van’t Hoff plot based on Equation (3) was then employed
(Figure S1). As depicted in Table 2, the ∆H values were positive for all systems, indicating
that the inclusion complex formation was an endothermic process [14]. As expected, the in-
clusion complex formation between AA and βCD(s) was spontaneous, as evidenced by the
negative sign of ∆G. The lowest ∆G value was detected in AA/DMβCD (−3.24 kcal/mol),
followed by AA/HPβCD (−2.82 kcal/mol) and AA/βCD (−2.42 kcal/mol), respectively,
which is consistent well with the aforementioned Kc values (Table 1).
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Table 2. Thermodynamic values for the inclusion complexation between AA and βCD(s).

Thermodynamic Parameters
(kcal/mol) a AA/βCD AA/DMβCD AA/HPβCD

∆H 4.05 0.84 3.32

T∆S 6.47 4.08 6.14

∆G −2.42 −3.24 −2.82
a Data were derived from Van’t Hoff plots using R = 1.985 × 10−3 kcal·mol−1·K−1 and T = 303 K.

According to the UV-Vis spectra analysis (Figure 3), we found that the maximum
absorption of AA (325 nm) bathochromically shifted to 328–332 nm in all the studied com-
plexes, indicating a possible interaction between the AA and βCD(s). Similar bathochromic
shifts of ligands after complexation were also found in luteolin and trans-ferulic acid in
complex with the βCD derivatives [24,25]. Notably, the highest absorbance was detected
in the AA/DMβCD complex (0.91), followed by AA/HPβCD (0.53), AA/βCD (0.43), and
AA alone (0.27), which is consistent well with the phase solubility study mentioned above
(Figure 2).
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Taken together, only the AA/DMβCD complex possessing the highest stability and
solubility was selected for further structural characterizations in comparison with the free
form of AA and DMβCD.

2.2. Inclusion Complex Characterization
2.2.1. FT-IR

FT-IR spectroscopy was used to determine the inclusion complex formation between
AA and DMβCD. The obtained FT-IR spectra of the AA, DMβCD, and AA/DMβCD
complex are shown in Figure 4. The spectrogram of AA showed characteristic stretching
vibration peaks at (i) 1669 and 1634 cm−1 for C=O, (ii) 1561 cm−1 for C=C, (iii) 2954 cm−1

for C−H, (iv) 1272 and 1206 cm−1 for C−O, and (v) 3554 cm−1 for O−H [1]. The FT-IR
spectrum of DMβCD demonstrated a large band at 3399 cm−1 (O−H stretching), 2923 cm−1

(C−H stretching), and 1156, 1085, and 1045 cm−1 (C−O and C−H stretching) [26]. After
the inclusion complexation, the FT-IR spectrum of AA/DMβCD was distinctly different
from that of the pure AA and DMβCD. The characteristic stretching vibration peaks of AA
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at 1272, 1206, 1561, 1634, and 1669 cm−1 totally disappeared in the FT-IR spectrum of the
inclusion complex, which is similar to other reported hydrophobic compounds in complex
with the βCD analogs [14,25,27]. This might be due to a restriction of the AA’s C=O and
C=C stretching vibrations, as well as a modification of the hydrophobic microenvironment
inside the DMβCD cavity [28]. Moreover, the changes in the shape and position of the
absorption bands of AA and DMβCD were observed in the AA/DMβCD complex. The
vibration peaks of the C−H and O−H stretching of AA (2954 and 3554 cm−1) and DMβCD
(2923 and 3399 cm−1) were shifted to 2925 and 3402 cm−1 in the solid complex. Similarly,
the vibration peaks of the C−O and C−H stretching of DMβCD (1156, 1085, and 1045 cm−1)
were redshifted to 1155, 1084, and 1044 cm−1 after the complex formation. Altogether,
these FT-IR results indicated that AA was completely embedded in the hydrophobic
cavity of DMβCD, which is supported by the differential scanning calorimetry (DSC),
scanning electron microscope (SEM), and molecular dynamics (MD) simulation results, as
discussed later.
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2.2.2. Thermal Analysis

The thermal properties of the AA, DMβCD, and AA/DMβCD complex were char-
acterized in a solid state using DSC analysis. As shown in Figure 5, the characteristic
endothermic/exothermic peaks of the free compounds were as follows: (i) AA at 93.0,
213.9, 229.7, and 284.1 ◦C and (ii) DMβCD at 51.8 ◦C. The endothermic peaks found at
213.9 and 229.7 ◦C corresponded to the melting point of AA, as previously reported [1],
whereas the broad endothermic peak of DMβCD detected at 51.8 ◦C indicates the release
of water molecules from the DMβCD’s hydrophobic inner cavity [29]. In the thermogram
of the freeze-dried AA/DMβCD inclusion complex, the characteristic thermal peaks of AA
and DMβCD totally disappeared, coinciding with the appearance of a new endothermic
peak at 72.0 ◦C and an exothermic peak at 198.7 ◦C, similar to other reports [15,16,23,26,30].
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These findings indicated that the freeze-drying method successfully yielded the new solid
phase between AA and DMβCD.
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2.2.3. SEM

Many lines of evidence have shown that the inclusion complexation process signifi-
cantly changes the surface textures of the resulting products [27,31–33]. To visualize the
surface morphology of all the studied compounds, the SEM technique was employed. The
SEM photographs of the AA, DMβCD, and AA/DMβCD complex are given in Figure 6.
Both AA and DMβCD presented a rod-like structure [23,30]; however, the particle size and
shape of the AA were bigger and more spherical than those of the DMβCD. Upon molecular
complexation, the surface morphology of the obtained freeze-dried AA/DMβCD inclusion
complex, appearing as a plate-like structure, was different from that of the pure forms.
These findings confirmed the successful formation between AA and DMβCD. Taken to-
gether, all of the structural characterization results (Figures 4–6) revealed that the inclusion
complex between AA and DMβCD was successfully formed.
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2.3. Molecular Modeling Studies

To further verify the aforementioned experimental results and to investigate the
dynamic behavior of the AA/DMβCD inclusion complex at the atomic level, all-atom MD
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simulations in an aqueous solution and free energy calculations based on the molecular
mechanics/Poisson–Boltzmann surface area (MM/PBSA) were performed.

2.3.1. System Stability

The stability of DMβCD and its inclusion complex, AA/DMβCD, along the simulation
time was determined using the calculated time evolution of root-mean-square displacement
(RMSD), radius of gyration (Rg), and number of atomic contacts (# Atom contacts). As
shown in Figure 7A, the RMSD values of DMβCD (~2–3 Å) were higher than those of
the AA/DMβCD complex (~1 Å), suggesting that the AA/DMβCD is more stable than
the uncomplexed DMβCD. Similarly, the Rg values of DMβCD (~6.6–7.0 Å) were larger
than those of the AA/DMβCD complex (~6.4–6.6 Å), indicating higher compactness of the
AA/DMβCD structure, as evidenced by the final MD snapshots (Figure 7B). Although the #
Atom contacts (native + nonnative) was highly stable along the simulation times (~100–120)
for the three independent simulations, the high RMSD fluctuations at the first 150 ns of the
simulations were detected. Therefore, in this work, the MD trajectories from 200–300 ns
were extracted for further structural and energetic analyses. From Figure 7B, we found that
the AA molecule was completely embedded in the hydrophobic cavity of DMβCD, where
the C=O groups of AA at C1 and C1′ (Figure 1A) were located at the center of DMβCD’s
cavity, while those at C8 and C8′ were positioned near the secondary and primary rims of
DMβCD. This complete formation of the AA/DMβCD complex is consistent well with the
results of the inclusion complex characterization, as mentioned above.
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Figure 7. (A) Time evolution of RMSD, Rg, and # Atom contacts of DMβCD and AA/DMβCD for
three independent simulations (MD1–3). (B) Final MD snapshot of DMβCD and AA/DMβCD.

2.3.2. DMβCD Conformation upon AA Binding

The conformational changes of DMβCD upon AA encapsulation were investigated
by calculating (i) the distance of the oxygen atoms on the wider rim of DMβCD (O3(n)–
O2(n+1), dO3-2), corresponding to a possibility of an intramolecular hydrogen bond (H-bond)
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formation (dO3-2 ≤ 3.5 Å), and (ii) the distance of glycosidic oxygen atoms (O4(n)–O4(n+1),
dO4-4). Afterward, these two parameters were converted to the free energy value, F(x,y),
using Equation (1):

F(x,y) = −kBT log[P(x,y)] (1)

where kB is the Boltzmann constant, T is the temperature (303 K), and P(x,y) is the probability
of dO3-2 (x) and dO4-4 (y). The obtained 2D free energy landscape is shown in Figure 8.
When compared to the unbound form of DMβCD, the molecular encapsulation of AA in
the DMβCD could enhance the formation of intramolecular H-bonds on the wider rim of
DMβCD, as evidenced by the increased population of dO3-2 at ~3.0–3.5 Å. The H-bond-
operated conformational changes of DMβCD upon the AA encapsulation are similar to
other reported mansonones, pinostrobin, luteolin, pinocembrin, and neral in complex with
various βCD derivatives [23,34–37]. In addition, the populations of dO3-2 at ~3.0–5.0 Å and
dO4-4 at ~3.0–4.0 Å of the free form of DMβCD totally disappeared in the AA/DMβCD
complex due to the adaptation of the DMβCD structure upon the insertion of AA to the
hydrophobic cavity.
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O2(n+1), against the adjacent glycosidic oxygen distances, O4(n)–O4(n+1), of the DMβCD (top) and
AA/DMβCD complex (bottom) for three independent simulations (MD1–3).

2.3.3. Water Accessibility toward the Inclusion Complex

The water distribution around a spherical radius r of the oxygen atoms of AA (Figure 9A)
was visualized using radial distribution function (RDF, g(r)) calculation, and the obtained
results are given in Figure 9B. In addition, the integration number (n(r)) values at the
first minima, corresponding to the number of water molecules approaching the targeted
oxygens, are depicted in Table 3. From the RDF plots of all the systems, no dominant
peak was detected within ~3 Å of the O, O1, O2, and O2′ of AA (Figure 9B), indicat-
ing that these oxygen atoms were deeply embedded in the hydrophobic inner cavity of
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DMβCD (Figure 9A). This phenomenon is in good agreement with the previously reported
flavonoids, demonstrating that their oxygen atom on the chromone ring, embedded at the
center of the βCD cavity, displayed no sharp RDF peak at the first solvation shell [36,38].
In contrast, the other oxygen atoms (O1′, O8, O8′, O9, and O9′) displayed the first sharp
peak at ~2.5 Å, corresponding to the water distribution around these oxygens. The O8
and O8′ of AA exhibited higher water accessibility than the other oxygens, suggesting that
these oxygen atoms were positioned nearby either the secondary or primary rim and were
feasibly accessible to the water molecules (Figure 9A).
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Figure 9. (A) Final MD snapshot of the AA/DMβCD complex showing the oxygen atoms (O, O1,
O1′, O2, O2′, O8, O8′, O9, and O9′) of AA and the surrounding water molecules (cyan dot) within
5 Å of AA. (B) RDF of water oxygen atoms around the oxygen atoms of AA in complex with DMβCD
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Table 3. n(r) up to the first minimum for the oxygen atoms of AA inside the DMβCD
hydrophobic cavity.

O O1 O1′ O2 O2′ O8 O8′ O9 O9′

n(r) a - - 0.96 ± 0.02 - - 5.77 ± 0.43 4.74 ± 0.18 4.15 ± 0.16 3.07 ± 0.11
a Data derived from Figure 9 are shown as mean ± SEM (n = 3).

2.3.4. Binding Affinity of the Inclusion Complex

To estimate the binding affinity of the AA/DMβCD inclusion complex, the MM/PBSA
calculation was performed using 100 snapshots taken from the last 100 ns MD simulations.
As expected, due to the poor solubility of AA, the inclusion complexation in the gas phase
was driven mainly by van der Waals (vdW) interactions (∆EvdW = −35.12 ± 1.06 kcal/mol)
rather than electrostatic attraction (∆Eele = −17.05 ± 0.19 kcal/mol). Similarly, the summa-
tion of ∆Gsolv,non-polar + ∆EvdW energies (−40.64 ± 1.12 kcal/mol) showed a negative value
compared to that of ∆Gsolv,polar + ∆Eele energies (12.64 ± 0.28 kcal/mol), indicating that the
vdW forces play an important role in the complex formation between AA and DMβCD in
an aqueous environment. This vdW-driven host–guest complexation process is consistent
well with other lipophilic ligands in complex with βCDs [39–42]. Notably, the predicted
∆Gbind,MM/PBSA value (−3.87 ± 0.68 kcal/mol) was almost identical to the experimental
∆G (∆Gexp, −3.24 kcal/mol) obtained from the Van’t Hoff plot (Table 4), suggesting the
successful calculation of the AA/DMβCD complex.

2.4. DMβCD Enhances Cytotoxicity of AA against Lung Cancer Cells

The cytotoxic activity of AA and the AA/DMβCD inclusion complex against A549
and H1975 human lung cancer cells was evaluated using MTT assay. The obtained results
are depicted in Figure 10. We found that both AA and AA/DMβCD decreased cell viability
in a dose-dependent manner, in which the AA/DMβCD complex exhibited significantly
lower cell viability than the uncomplexed AA at the concentration of 1, 3, and 10 µM for
both A549 and H1975 cell lines (Figure 10A,B). The half-maximal inhibitory concentration
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(IC50) values against the A549 and H1975 cells of the AA/DMβCD inclusion complex
(17.14 ± 2.34 and 15.67 ± 1.33 µM) were significantly lower than those of the AA alone
(32.77± 2.94 and 27.38± 3.17 µM) (Figure 10C). These findings are in good agreement with
previous reports demonstrating that βCDs can distinctly enhance the anticancer activity
of several hydrophobic compounds, such as camptothecin, luotonin A, resveratrol, man-
sonone G, curcumin, and scutellarein [23,43–46]. Thus, it was assumed that the enhanced
antitumor effect of the AA/DMβCD inclusion complex was due to the improved water
solubility and complex stability (Figure 2 and Table 1). In addition, DMβCD could infiltrate
into the drug permeation barrier, called the unstirred water layer (UWL) [47], better than
the uncomplexed AA, enhancing the flux of AA through the UWL [48].

Table 4. ∆Gbind, MM/PBSA and its energy components (kcal/mol) of the AA/DMβCD complex.

Energy Component (kcal/mol) a AA/DMβCD

∆EvdW −35.12 ± 1.06

∆Eele −17.05 ± 0.19

∆EMM −52.18 ± 0.92

∆Gsolv,polar 29.69 ± 0.16

∆Gsolv,non-polar −5.51 ± 0.06

∆Gsolv 24.18 ± 0.19

∆Gsolv,polar + ∆Eele 12.64 ± 0.28

∆Gsolv,non-polar + ∆EvdW −40.64 ± 1.12

T∆S −24.12 ± 0.16

∆Gbind,MM/PBSA −3.87 ± 0.68

∆Gexp
b −3.24

a Data are shown as mean ± SEM (n = 3). ∆EMM, molecular mechanics energy; ∆Gsolv, solvation free energy
comprising polar (∆Gsolv,polar) and non-polar (∆Gsolv,non-polar) terms; ∆S, entropy. b Data from Table 2.
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Figure 10. Cell viability of (A) A549 and (B) H1975 human lung cancer cells after being treated with
various concentrations of AA and AA/DMβCD for 48 h. The viable cells in the vehicle control (0.2%
DMSO) were calculated as 100%. (C) IC50 of the AA and AA/DMβCD complex against the A549 and
H1975 cells. * p < 0.05, ** p < 0.01 vs. AA. Data are shown as mean ± SEM (n = 3).
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3. Materials and Methods
3.1. Materials

AA was extracted from the culture liquid of the luminescent mushroom Neonothopanus
nambi PW1 (Marasmiaceae), as previously described [1,3]. βCD and HPβCD were pur-
chased from TCI (Nihonbashi-honcho, CK, Tokyo), whereas DMβCD was purchased from
Sigma-Aldrich (St. Louis, MO, USA).

3.2. Phase Solubility Study

The phase solubility study was performed according to the methods described by
Higushi and Connors [49]. An excess amount of AA was added to aqueous solutions
containing increasing amounts of βCD(s) (0–10 mM). The mixtures were incubated in a
shaking incubator at 20, 30, 40, and 50 ◦C and 250 rpm for 40 h. After that, the insoluble
AA was separated from the suspension by centrifugation at 10,000 rpm for 5 min and then
filtered by a 0.45-micron syringe filter [13,23,44,50–52]. Two volumes of ethanol were added
into each inclusion complex solution before measuring the absorbance at 331 nm [3]. The
apparent stability constant (Kc) was determined by Equation (2), where S0 is the y-intercept.

Kc =
Slope

S0(1− slope)
(2)

The Van’t Hoff equation (Equation (3)) was used to calculate the change in the enthalpy
(∆H) and entropy (∆S) of the inclusion complexation, whereas the Gibbs free energy (∆G)
was determined by Equation (4).

ln Kc = −
∆H
RT

+
∆H
R

(3)

∆G = ∆H − T∆S (4)

3.3. Inclusion Complex Preparation

An excess amount of AA was added to a 10 mM DMβCD solution and incubated
in a shaking incubator at 30 ◦C at 250 rpm. After that, the suspension was centrifuged
(12,000 rpm for 15 min) and filtered through the 0.45-micron syringe filter, and lyophilized.
The obtained freeze-dried powders were kept in a desiccator for further analysis.

3.4. Inclusion Complex Characterization
3.4.1. Ultraviolet-Visible (UV-Vis) Spectroscopy

AA and its inclusion complexes were suspended in DI water at 30 ◦C for 48 h. Af-
ter that, the suspension was filtered using the 0.45-micron syringe filter. The UV-Vis
spectra of the solutions were recorded by Eppendorf BioSpectrometer™ (Eppendorf,
Hamburgm, Germany).

3.4.2. Fourier Transform Infrared (FT-IR) Spectroscopy

The FT-IR spectra of the AA, DMβCD, and AA/DMβCD complex were recorded by
a Nicolet 6700 FT-IR spectrometer (ThemoFisher Scientific, Waltham, MA, USA) over a
scanning range of 500–4000 cm−1 via the attenuated total reflectance (ATR) mode.

3.4.3. Differential Scanning Calorimetry (DSC)

The thermal behavior of the AA, DMβCD, and AA/DMβCD complex was character-
ized using NETZSCH DSC 204F1 Phoenix (Selb, Germany). Each solid sample (~1–2 mg)
was heated from 25 ◦C to 300 ◦C in aluminum pans at a rate of 10 ◦C/min.

3.4.4. Scanning Electron Microscope (SEM)

The surface morphology of the AA, DMβCD, and AA/DMβCD complex was analyzed
using a Scanning Electron Microscope (JEOL JSM-IT500HR, Tokyo, Japan). Samples were
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coated with a thin layer of gold in a vacuum before viewing under 300 times magnification.
Observations were performed using an accelerating voltage of 10 kV.

3.5. Computational Details
3.5.1. System Preparation and Molecular Docking

The 3D structure of DMβCD was taken from a previous study [23], whereas that of
AA was downloaded from the PubChem database (PubChem CID: 71491081) and then
optimized by the Gaussian09 program (Wallingford, CT, USA) [53] using the HF/6-31G*
level of theory. The protonation state of AA was checked at a pH of 7.0 using MarvinSketch
software (Budapest, Hungary). The inclusion complex model between the optimized AA
and the DMβCD was generated using the CDOCKER module implemented in Accelrys
Discovery Studio 2.5 (Accelrys Software Inc., San Diego, CA, USA). Among the result-
ing 100 docking poses, the AA/DMβCD inclusion complex with the lowest CDOCKER
interaction energy was selected for further studies.

3.5.2. Molecular Dynamics (MD) Simulations

The MD simulations with the isothermal-isobaric ensemble (NPT) of each system were
performed with a time step of 2 fs using an AMBER16 software package [54]. According
to the standard procedures [36,55,56], the electrostatic potential (ESP) charges of AA were
calculated with the HF/6-31(d) level of theory using the antechamber module, whereas
the restrained ESP (RESP) charges of AA were computed using the parmchk module
in AMBER16. The SHAKE algorithm [57] was applied to constrain all chemical bonds
involving hydrogen atoms, while the Particle Mesh Ewald [58] method was used to treat
long-range electrostatic interactions. The cutoff value for non-bonded interactions was set
to 12 Å. The general AMBER force field (GAFF) [59] and the Glycam-06 force field [60] were
applied on AA and DMβCD, respectively. The TIP3P water molecules [61] were added
to solvate the inclusion complex with a spacing distance of 15 Å. Subsequently, the water
molecules were minimized using the steepest descent (1500 steps) and conjugated gradient
(3000 steps), followed by the minimization of the whole system. Each studied system was
heated up from 10 K to 298 K for 100 ps and then equilibrated for 1000 ps. After that,
all-atom MD simulations were performed under a periodic boundary condition at 1 atm
and 298 K until reaching 300 ns. The MD simulations were performed in three replicates
(n = 3) for each model.

3.5.3. Structural and Energetic Analyses

The CPPTRAJ module of AMBER16 was used to calculate the structural information,
including the RMSD, Rg, # Atom contacts, free energy landscape, and RDF. For the energetic
analysis, the binding affinity between the host and guest was calculated by the MM/PBSA
method [62] using 100 snapshots extracted from the last 100 ns MD simulations.

3.6. Cell Lines and Culture

A549 and H1975 human lung cancer cells were purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA). Both cells were cultured in a Dulbecco’s
Modified Eagle’s Medium (Gibco, NY, USA) supplemented with a 10% heat-inactivated
fetal bovine serum (Gibco, NY, USA), 100 U/mL penicillin, and 100 µg/mL streptomycin
(Gibco, NY, USA) and were maintained at 37 ◦C in a humidified 5% CO2 atmosphere.

3.7. Cell Viability Assay

The A549 and H1975 cells were seeded into 96-well plates at a density of 1000 cells/well.
After overnight incubation, the cells were treated with logarithmic concentrations (1, 3, 10,
30, and 100 µM) of AA and AA/DMβCD for 48 h. Note that the amount of MG in free
form and in complex form was equivalent. An MTT reagent was then added to the wells
and incubated for 3 h. Subsequently, the culture medium was withdrawn, and 100 µL of a
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DMSO solution was added to dissolve the formazan crystals. Finally, the absorbance was
measured at 540 nm.

3.8. Statistical Analysis

Data are shown as mean ± standard error of the mean (SEM) of three independent
experiments. Differences between AA and AA/DMβCD were determined using the t test.
A p value of <0.05 was considered statistically significant.

4. Conclusions

This study aimed to improve the water solubility and biological activity of AA by
complexation with βCD and its derivatives (DMβCD and HPβCD). The phase solubility
diagrams indicated 1:1 AA/βCD(s) binding stoichiometry, and the highest Kc was detected
in the AA/DMβCD complex. Notably, βCDs, especially DMβCD, increased the thermal
stability of the complexes. The thermodynamic study indicated that the inclusion com-
plexation between AA and βCD(s) was a spontaneous endothermic reaction. The complex
formation of the AA/DMβCD was confirmed by UV-Vis, FT-IR, DSC, and SEM techniques.
MD simulations and MM/PBSA-based free energy calculations affirmed the vdW-driven
formation of the AA/DMβCD complex in an aqueous environment. The anticancer effect
of AA on A549 and H1975 lung cancer cells was significantly improved by complexation
with DMβCD. Taken together, the satisfactory water solubility, high thermal stability, and
enhanced antitumor potential of the AA/DMβCD complex would be potentially useful for
its application as herbal medicines or healthcare products.
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