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Abstract: Secondary metabolites produced by endophytic fungi are an important source of biologi-
cally active compounds. The current research was focused on the biological activities of ethyl acetate
extracts of fungi, isolated and identified from Vernonia anthelmintica flowers for the first time. In
addition, an investigation of the non-polar chemical composition of dichloromethane-ethyl acetate
extracts of the most active fungal strain was carried out. The isolates included Ovatospora senegalensis
NR-03, Chaetomium globosum NR-04, Thielavia subthermophila NR-06, Aspergillus calidoustus NR-10,
Aspergillus keveii XJF-23 and Aspergillus terreus XJF-3 species. Strains were identified by 18S rRNA
gene sequencing methods and were registered in GenBank. Crude extracts of the fungi displayed
in vitro biological activities, including antimicrobial and cytotoxic activities. A melanin content assay
was performed on murine B16 cells. An ethyl acetate extract of O. senegalensis NR-03 showed high
anticancer and antimicrobial activity; therefore, we also studied the non-polar chemical composi-
tion of the dichloromethane-ethyl acetate fraction and identified 52 non-polar compounds with the
different medium. This investigation discovered that the secondary metabolites of the total extract
of endophytic fungi could be a potential source of alternative natural antimicrobial, cytotoxic and
melanin synthesis activity in their host plant, and the isolation of bioactive metabolites may provide
a lead to new compounds of pharmaceutical significance.

Keywords: Vernonia anthelmintica flowers; biological activities; non-polar chemical composition;
endophytic fungi

1. Introduction

Endophytic fungi are an integral part of the plant’s microbiome and live inside the
healthy tissues of host the plant without negative symptoms of disease [1–4]. They are
also recognized as having complex associations with their host plants and other organisms,
including endophytic microorganisms in their ecological niches and pathogens in the ex-
ternal environment [5,6]. As a significant microbial resource, endophytes exist widely in
nature [7,8]. Endophytic fungi and their host plants have an intimate relationship, and fun-
gal microorganisms can produce bioactive secondary metabolites that protect against plant
pathogens and pests as a growth regulator [9]. The relationship between fungal endophytes
and their host plants is significantly associated with modifications in the fungal coloniza-
tion and extraction of fungal-derived pharmacologic active natural compounds [3,10,11].
The chemical contents and biological properties of the secondary metabolites synthesized
by medicinal plants have been studied extensively [12–14]. However, the exploration of
the complex biosynthesis of the metabolites of medicinal plants with their endophytic
microorganisms has been insufficiently investigated. Endophytic fungi are an essential
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biotechnological source because they can be involved in the production of a pharmacologi-
cally active and structurally diverse range of secondary metabolites together with the host
plant and might even be the sole producer [15–17]. Numerous bioactive natural compounds
with antimicrobial [18,19], anti-inflammatory [20], cytotoxic [21,22], antioxidant [23], an-
tidiabetic [24] and acetylcholinesterase [25] inhibitory activity have been isolated from
endophytic fungi. For example, the bioactive secondary metabolites produced by the endo-
phytic fungal strain Aspergillus versicolor exhibited significant antifungal activity against
Candida albicans and Geotrichum candidum [26]. Likewise, metabolites obtained from the
fungal endophyte Aspergillus versicolor F210 showed cytotoxic activity against the human
cancer cell lines HL-60 [27]. The endophytic fungus Trichoderma atroviride was isolated
from the healthy flowers of Colquhounia coccineavar and exhibited strong antimicrobial
activity against Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus [28]. Juan
et al. [29] obtained secondary metabolites from the fungus Conocybe siliginea and evaluated
the metabolites for their immunosuppressive activity against A (ConA)-induced T-cell
proliferation and lipopolysaccharide (LPS)-induced B-lymphocyte-cell proliferation. The
metabolites also inhibited Con A-induced T-cell proliferation. The endophytic fungus
Streptomyces sp. HN2A53 showed satisfactory antiviral inhibitory activity against influenza
virus neuraminidase (NA) [30]. A sesquiterpene coumarin produced by the endophytic
fungus Penicillium sp. KMU18029 displayed significant cytotoxic activity against two
human cancer cell lines, HL-60 and SMMC-7721, as reported by Li et al. [31]. The endo-
phytic fungus Peniophora incarnate produced metabolites that demonstrate cytotoxic activity
against the human A375, MCF-7 and HL-60 cancer cell lines [32]. The secondary metabo-
lites produced by endophytic microorganisms are an important, rich source of biologically
active compounds for novel drug discovery. The following characteristics were taken
into consideration in order to isolate endophytic fungi from the Chinese medicinal plant
V. anthelmintica. The endophytes of the flowers of Chinese medicinal plant V. anthelmintica
have not been studied until now. This is the first report on the isolation of endophytic fungi
from the flowers of V. anthelmintica. These plants have an ethno botanical history and have
been used in traditional Chinese medicines for the treatment of vitiligo [33]. Moreover,
natural compounds isolated and identified from different parts of V. anthelmintica have
shown antidiabetic, anti-vitiligo, antioxidant and antimicrobial activity [34]. Endophytes
may display similar biological activities and produce similar metabolites to their hosts.
Therefore, we selected the medicinal plant V. anthelmintica grown in China for our study
and isolated and systematically studied the endophytic fungi from the flowers.

In our previous work, we reported the diversity, biological activity and chemical
composition of endophytic bacteria and fungi associated with roots of the Chinese medicinal
plant V. anthelmintica [35–37]. The aims of the current research were (a) to isolate and
identify to the endophytic fungi associated with V. anthelmintica flowers, (b) to measure
several biological activities of the total extract, (c) to optimize the culture conditions for
producing the secondary metabolites excreted by the most active fungal strain, and (d)
to identify the non-polar chemical composition of the dichloromethane fraction by gas
chromatography–mass spectrometry (GC–MS).

2. Results
2.1. Isolation and Identification of Endophytic Fungi from the Flowers of V. anthelmintica

In total, more than 30 fungal endophytic strains were isolated from the fresh flower
tissues of the Chinese medicinal plant V. anthelmintica. All isolated fungal strains were
cultivated in a PDB medium and extracted with ethyl acetate to produce crude extracts
(Figure 1). Among these, only six crude extracts of the endophytic fungi O. senegalensis
NR-03, Ch. globosum NR-04, T. subthermophila NR-06, A. calidoustus NR-10, A. keveii XJF-23
and, A. terreus XJF-3 were selected for our study. The primary screening of these crude
extracts showed antimicrobial activity.
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All results were compared to the positive controls ampicillin and amphotericin B. The 
crude extract of O. senegalensis NR-03, (an ethyl acetate extract derived from the filtrate of 
the PDB culture) exhibited strong (zone of inhibition (ZOI) 26 and 19 mm) antibacterial 
activity against the E. coli and S. aureus strains, respectively, as well as weak antifungal 
inhibition (7.5 mm ZOI) against C. albicans. Ch. globosum NR-04 inhibited average-to-mod-
erate activity against the pathogenic fungal strain (C. albicans) and bacteria (S. aureus), with 
inhibition zones of 12 mm and 20 mm, respectively (Supplementary Figure S1). Three spe-
cies belonging to the genus Aspergillus, namely, A. calidoustus NR-10, A. keveii XJF-23 and 
A. terreus XJF-3, showed the same results against S. aureus (ZOI 15, 15 and 16 mm, respec-
tively). In our previous work, we reported the antimicrobial activity of endophytic fungi 
isolated from the roots of V. anthelmintica. Accordingly, two species belonging to the genus 

Figure 1. Isolated fungal strains from the flowers of the medicinal plant V. anthelmintica.

All fungal strains were identified by 18S rRNA gene sequencing and registered in Gen-
Bank (accession numbers MW996742, MW996743, MW996745, MW996749, MW881461 and
MW881454 (https://www.ncbi.nlm.nih.gov/nuccore/MW881454 accessed on 24 August
2022) Figure 2). The isolated fungal strains belong to four genera: Ovatospora, Chaetomium,
Thielavia and Aspergillus. The most numerous were representatives of the genus Aspergillus
(NR-10, XJF-23 and XJF-3). The isolates showed 99–100% homology to O. senegalensis, Ch.
globosum, T. subthermophila, A. calidoustus, A. keveii and, A. terreus (Table 1). A phylogenetic
tree using the neighbor-joining method was constructed, showing the closest relatives of
the isolates from GenBank (Figure 2).
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Table 1. Sequence similarities of endophyte fungi isolated from aerial parts of V. anthelmintica with
sequences registered in GenBank.

Isolated Strains Sequences
Deposited in GenBank

Closest Match among Bacteria (18S rRNA Genes)
(GenBank)

Strains Accession
Number Species Source ID%

NR-03 MW996742 O. senegalensis flower 100
NR-04 MW996743 Ch. globosum flower 99.04
NR-06 MW996745 T. subthermophila flower 100
NR-10 MW996749 A. calidoustus flower 100
XJF-23 MW881461 A. keveii flower 99.82
XJF-3 MW881454 A. terreus flower 99.94

2.2. Antimicrobial Activity of the Crude Extracts of Endophytic Fungi

A part of our present study focused on systematically screening crude extracts from the
endophytic fungi. Our work is the first study of the antimicrobial inhibition of extracts from
endophytic fungi from the flowers V. anthelmintica. In this regard, here, we considered the
antimicrobial properties of the selected endophytic strains, namely O. senegalensis NR-03,
Ch. globosum NR-04, T. subthermophila NR-06, A. calidoustus NR-10, A. keveii XJF-23 and A.
terreus XJF-3. The antimicrobial properties of the crude fungal extracts were estimated using
three pathogenic microbes: E. coli (ATCC6538) (Gram-positive bacteria), E. coli (ATCC11229)
(Gram-negative bacteria) and C. albicans (ATCC10231) (fungi) (Table 2). All results were
compared to the positive controls ampicillin and amphotericin B. The crude extract of O.
senegalensis NR-03, (an ethyl acetate extract derived from the filtrate of the PDB culture)
exhibited strong (zone of inhibition (ZOI) 26 and 19 mm) antibacterial activity against the
E. coli and S. aureus strains, respectively, as well as weak antifungal inhibition (7.5 mm
ZOI) against C. albicans. Ch. globosum NR-04 inhibited average-to-moderate activity against
the pathogenic fungal strain (C. albicans) and bacteria (S. aureus), with inhibition zones of
12 mm and 20 mm, respectively (Supplementary Figure S1). Three species belonging to the
genus Aspergillus, namely, A. calidoustus NR-10, A. keveii XJF-23 and A. terreus XJF-3, showed
the same results against S. aureus (ZOI 15, 15 and 16 mm, respectively). In our previous
work, we reported the antimicrobial activity of endophytic fungi isolated from the roots of
V. anthelmintica. Accordingly, two species belonging to the genus Aspergillus (Aspergillus
sp. XJA6 and A. terreus XJA8) showed strong antifungal activity against the C. albicans
strain with inhibition zones of 23 and 20 mm, respectively [37]. On the other hand, many
species of Aspergillus also showed antimicrobial activity. For example: the endophytic
fungi A. candidus NF2412 and A. terreus BCC51799 exhibited in vitro antimicrobial activity
against a number of pathogenic microorganisms [38,39].

Table 2. Antimicrobial activity (ZOI) of endophytic fungi associated with medicinal plant V. an-
thelmintica flowers.

Sample Sample
Concentration

Sample
Amount (µL)

C. albicans
(mm ZOI)

E. coli
(mm ZOI)

S. aureus
(mm ZOI)

Ampicillin 312.5 µg/mL 20 - 11 -
Ampicillin 4.44 µg/mL 20 - - 18.5

Amphotericin B 5 µg/mL 20 12 - -
O. senegalensis NR-03 50 µg/mL 20 7.5 26 19
Ch. Globosum NR-04 50 µg/mL 20 12 - 20

T. Subthermophila NR-06 50 µg/mL 20 9.5 9 11
A. calidoustus NR-10 50 µg/mL 20 10 13 15

A. keveii XJF-23 50 µg/mL 20 8 10 15
A. terreus XJF-3 50 µg/mL 20 10 11 16
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2.3. Determination of the MIC

Crude extracts of the selected fungal strains were isolated from the V. anthelmintica
flowers. Some strains exhibited strong antibacterial activity; therefore, we also determined
their of minimum inhibitory (MIC). The results were compared with the positive controls
ampicillin and amphotericin B. The total extract of O. senegalensis NR-03 exhibited strong
antibacterial action, with a MIC value of 62.5 µg/mL against S. aureus. Ch. globosum NR-04
exhibited powerful antifungal activity against the pathogenic fungus C. albicans, with a
MIC value of 31.25 µg/mL. The strain A. terreus XJF-3 displayed significant activity against
E. coli and S. aureus, with MIC values 62.5 and 250 µg/mL, respectively (Table 3).

Table 3. Determination of minimum inhibitory (MIC) concentration of endophytic fungi associated
with medicinal plant V. anthelmintica flowers.

Sample
C. albicans E. coli S. aureus

MIC
µg/mL

MIC
µg/mL

MIC
µg/mL

O. senegalensis NR-03 ND 2000 62.5
Ch. Globosum NR-04 31.25 ND 125

T. Subthermophila NR-06 ND ND ND
A. calidoustus NR-10 ND 125 ND

A. keveii XJF-23 ND 250 ND
A. terreus XJF-3 250 62.5 250

Ampicillin 100 mg/mL - 0.98 62.5
Amphotericin B 50 mg/mL 0.98 - -

2.4. Effect of the Crude Extracts of Endophytic Fungi Isolated from V. anthelmintica Flowers on
Melanin Content and Tyrosinase Activity in B16 Cells

The host plant V. anthelmintica has been used on a very large scale in traditional
Chinese medicine and Uyghur folk medicine [40,41]. In recent years, many bioactive
components from V. anthelmintica have been reported, and these compounds have shown
many pharmacological properties. The extract of the seeds of this plant is used in the
treatment of vitiligo in traditional Uyghur medicine [33]. It has previously been reported
that crude extracts of endophytic bacteria and fungi as well as secondary metabolites from
the crude extracts of endophytes isolated from the roots of V. anthelmintica demonstrated
effects on melanin synthesis in B16 melanoma cells [35–37]. These results suggested that
the biological role of the V. anthelmintica-derived microbes from the aerial parts (flow-
ers), particularly endophytes and their metabolites, remain to be investigated. The total
crude extract of the ethyl acetate fraction from the endophytic fungi increased melanin
synthesis in murine B16 cells in a dose-dependent manner, and all results were comparable
with the drug 8-methoxypsoralen (8-MOP) (Table 4). Crude extracts of the fungal strains
O. senegalensis NR-03, Ch. globosum NR-04 and T. subthermophila NR-06 could increase
melanin synthesis in B16 cells by 154.49, 171.58 and 156.27% (50 µg/mL) compared with the
positive control 8-MOP (123.34 at 50 µg/mL). The crude extracts of three species of fungi
belonging to the genus Aspergillus, namely, A. calidoustus NR-10, A. keveii XJF-23 and A.
terreus XJF-3, increased melanin synthesis in murine B16 cells by 193.31, 205.35 and 208.46%
(50 µg/mL), respectively, which was 1.6-fold higher than that of 8-MOP (Figure 3A). There-
fore, these were chosen for further investigation of their melanin synthesis and tyrosinase
activity in murine B16 cells at different concentrations (Figure 3B,C). The fungal endophytes
A. calidoustus NR-10 (5 µg/mL, 137.91%; 10 µg/mL, 162.17%; and 50 µg/mL, 197.98%),
A. keveii XJF-23 (5 µg/mL, 96.57%; 10 µg/mL, 161.18%; and 50 µg/mL, 204.02%) and A.
terreus XJF-3 (5 µg/mL, 133.24%; 10 µg/mL, 167.85%; and 50 µg/mL, 207.12%) showed a
1.5-fold increase in melanin synthesis compared with the positive control 8-MOP (125.52
at 50 µg/mL) in a dose-dependent manner. After melanin production was measured, the
tyrosinase activities of these strains was determined in B16, as shown in Figure 3C. The
secondary metabolites of three Aspergillus species improved the tyrosinase activity in a
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dose-dependent manner, and the results were compared with 8-MOP, (50 µM, 123.34%).
Treatment at concentrations of 5–50 µg/mL resulted in strong tyrosinase activity. A. cali-
doustus NR-10 showed 5 µg/mL, 113.12%; 10 µg/mL, 130.02%; and 50 µg/mL, 146.63%.
A. keveii XJF-23 showed 5 µg/mL, 95.05%; 10 µg/mL, 129.02%; and 50 µg/mL, 151.63%.
A. terreus XJF-3 showed 5 µg/mL, 114.06%; 10 µg/mL, 140.06%; and 50 µg/mL, 146.63%
(Table 5).

Table 4. Stimulation of melanin content of B16 cells by total crude extracts of the endophytic fungi.

Sample Concentration
(µM)

Intracellular Melanin
Content (% of Control)

Control 2µL-DMSO 100.00
8-MOP 50µM 123.34

O. senegalensis NR-03 50µg/mL 154.49
Ch. globosum NR-04 50µg/mL 171.58

T. subthermophila NR-06 50µg/mL 156.27
A. calidoustus NR-10 50µg/mL 193.31

A. keveii XJF-23 50µg/mL 205.35
A. terreus XJF-3 50µg/mL 208.46
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(cervical cancer) (Table 6). All results were compared with the positive control DOX. The 
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activity than the positive control DOX against two cancer cell lines with IC50 values of 0.10 
± 0.004 μg/mL against HT-29 and 0.09 ± 0.005 μg/mL against HeLa. The IC50 values of the 
extract of T. subthermophila NR-06 displayed moderate anticancer activity against all cell 
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Figure 3. (A) Stimulation of melanin content of B16 cells by secondary metabolites of crude extract of
the fungi; (B) melanin content activity of different concentration; (C) tyrosinase activity of different
concentration. Note: * compared to the blank control group (DMSO), p < 0.05; ** compared to the
blank control group (DMSO), *** p < 0.001 compared with the blank control group (DMSO); p < 0.01
**** compared to the blank control group (DMSO), p < 0.0001.
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Table 5. Effect of crude extracts of endophytic fungi on melanin production and tyrosinase activity in
B16 cells.

Sample Concentration Intracellular Melanin Content
(% of Control)

Tyrosinase
Activity

Control DMSO 100.00 100.00
8-MOP 50 µM 125.52 124.8

A. calidoustus NR-10
5 µM 137.91 113.12

10 µM 162.17 130.02
50 µM 197.98 146.63

A. keveii XJF-23
5 µM 96.57 95.05

10 µM 161.18 129.02
50 µM 204.02 151.63

A. terreus XJF-3
5 µM 133.24 114.06

10 µM 167.85 140.06
50 µM 207.12 146.63

2.5. Cytotoxic Activity of Fungal Endophytes

In recent years, the natural compounds produced by endophytic fungi have become a
rich resource for drug discovery. Many endophytic fungi synthesize secondary metabolites
with anticancer activity. The secondary metabolites produced by the endophytic fungus
Ch. globosum showed in vitro cytotoxicity activity against the human hepatoma cell line
HepG-2 [22]. The endophytic fungus Paramyrothecium roridum was isolated from fresh
roots of Morinda officinalis and demonstrated cytotoxic activity against the human SF-268,
NCI-H460 and epG-2 cancer cell lines [42]. Li et al. [32] reported that the endophytic fungus
Peniophora incarnata exhibited cytotoxic activity against the three human cancer cells lines
A375, MCF-7, and HL-60. As measured in our previous work, the crude ethyl acetate extracts
of the endophytic fungi Aspergillus sp. XJA6 and A. terreus XJA8 isolated from the root of V.
anthelmintica showed strong activity against the HeLa and HT-29 cancer cell lines [37].

In our present research, the crude extracts of six endophytic fungi (O. senegalensis
NR-03, Ch. globosum NR-04, T. subthermophila NR-06, A. calidoustus NR-10, A. keveii XJF-
23 and A. terreus XJF-3) were selected. Crude extracts of the fungi were tested against
the following human cancer cells lines: HT-29 (colon cancer), MCF-7 (breast cancer) and
HeLa (cervical cancer) (Table 6). All results were compared with the positive control
DOX. The crude extract of the endophytic fungus O. senegalensis NR-03 exhibited stronger
anticancer activity than the positive control DOX against two cancer cell lines with IC50
values of 0.10 ± 0.004 µg/mL against HT-29 and 0.09 ± 0.005 µg/mL against HeLa. The
IC50 values of the extract of T. subthermophila NR-06 displayed moderate anticancer ac-
tivity against all cell lines: 3.85 ± 0.15 µg/mL against HT-29, 9.99 ± 0.69 µg/mL against
MCF-7 and 5.89 ± 0.35 µg/mL against HeLa. The total extract of the endophytic fungus
A. terreus XJF-3 showed significant cytotoxic activity against HeLa, with IC50 values of
0.10 ± 0.0051 µg/mL, similar to the positive control (0.11 ± 0.005 µg/mL).

Table 6. Cytotoxic activity of total extracts obtained from fungal endophytes on human cancer cell
lines HT-29, MCF-7 and HeLa (n = 3).

Samples

Cell Lines

IC50 (µg/mL)

HT-29 MCF-7 HeLa

O. senegalensis NR-03 0.10 µg/mL ± 0.004 Not active 0.09 µg/mL ± 0.005
Ch. Globosum NR-04 32.41 µg/mL ± 2.20 Not active 29.38 µg/mL ± 1.27

T. Subthermophila NR-06 3.85 µg/mL ± 0.15 9.99 µg/mL ± 0.69 5.89 µg/mL ± 0.35
A. calidoustus NR-10 16.44 µg/mL ± 0.85 19.55 µg/mL ± 1.03 13.59 µg/mL ± 0.63

A. keveii XJF-23 31.37 µg/mL ± 1.82 Not active 17.81 µg/mL ± 0.78
A. terreus XJF-3 Not active Not active 0.10 µg/mL ± 0.005

DOX 0.82 µg/mL ± 0.041 0.17 µg/mL ± 0.006 0.11 µg/mL ± 0.005
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2.6. The Effects of Different Media and Incubation Times on the Growth and Production of
Metabolites from Endophytic Fungi

The bioactive secondary metabolites produced by six fungal endophytes displayed
several biological activities. Among them, the O. senegalensis NR-03 strain exhibited signifi-
cant antibacterial and cytotoxic activities. Because that strain produced more secondary
metabolites than other fungal isolates, we selected it for further optimization of the growth
conditions in terms of incubation time and different media content. We used different me-
dia content for growing endophytic fungi and producing bioactive secondary metabolites.
SAB and PDB were the most effective media for the growth and production of secondary
metabolites of the endophytic fungus O. senegalensis NR-03. In the SAB and PDB media,
the fungal strain produced 1.98 g and 2.03 g of secondary metabolites, respectively, per liter
of the liquid medium. Therefore, these media were found to be the most optimal nutrients
for the growth of the fungus. The incubation time also impacted metabolite biosynthesis.
The time profile of bioactive secondary metabolites synthesized by the fungal endophyte
O. senegalensis NR-03 revealed a growth period of 42 days (Figure 4). During growth, the
production of secondary metabolites was observed to increase, reaching a maximum of
2.01 g/L at 14 days. The optimal culture conditions for the growth and production of
secondary metabolites of endophytic microorganisms are specific to each species. For
example, the optimal conditions for the endophytic bacteria Alternaria solani are 30 ◦C for
48 h and pH 7.0 [43]. The fungal endophyte Piriformospora indica has optimal growth and
production of secondary metabolites under the following conditions: carbon and nitrogen
sources, glucose and NH4Cl; shaker speed, 200 rpm; working volume, 20% [44].
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2.7. Scanning Electron Microscopy (SEM) Analysis of O. senegalensis NR-03

A scanning electron microscope is a type of electron microscope that images the
samples surface by scanning it with a high-energy beam of electrons in a raster scan
pattern [45]. SEM observations were carried out to determine the surface structure of the
mycelia and conidiophores of the endophytic fungi. This revealed the distinct mycelia,
hyphae and sporangia of the endophytic fungi (Figure 5).
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Figure 5. Microscopical view of O. senegalensis NR-03 conidial heads ×1000, ×750 (A,B) and (C,D)
hyphae ×500, mycelium ×1000 and conidiophore.

2.8. HPLC Analysis of the Crude Extracts from Different Media

HPLC analyses were conducted for tracking the secondary metabolites of the endo-
phytic fungus O. senegalensis NR-03 produced in different liquid media. All extracts of the
endophytic fungus were subjected to the same conditions. HPLC analysis was performed to
identify the secondary metabolites of endophytic fungus extracts from the different media
as shown in Figure 6. The results showed that the different media influenced the production
of metabolites by the endophytic fungi. For example, in the PBG medium, the fungus pro-
duced different metabolites (retention times: 35, 48 and 51 min), which was not observed in
other media (Supplementary Figures S2–S8). O. senegalensis NR-03 in the SAB medium also
revealed peaks which were not found for the other media between 35 and 40 min (Figure 6).
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2.9. Chemical Composition of the Endophyic Fungus O. senegalensis NR-03 Analyzed by GC-MS

As mentioned above, we conducted several biological assays of the crude extracts of
six endophytic fungi; of these, O. senegalensis NR-03 exhibited significant pharmacological
activity. We decided to study the non-polar chemical composition of dichloromethane–ethyl
acetate fractions at a ratio of 80:1 in crude extracts of O. senegalensis NR-03, which were sep-
arated using column chromatography. Because many non-polar compounds of medicinal
plants are very important sources of a huge number of biologically active agents [46,47],
our laboratory is continuing this research investigating the secondary metabolites from the
ethyl acetate fraction, which have potential for future drug development.

Cell-free supernatants of fungi grown on seven different media were extracted with
dichloromethane and analyzed by GC/MS. In total, 52 components were identified from the
dichloromethane extract of O. senegalensis NR-03 (Supplementary Figure S9–S16). There are
no literature data relating to the non-polar chemical composition of the endophytic fungi of V.
anthelmintica flowers. This work was the first study investigating the non-polar components
of the endophytic fungus O. senegalensis NR-03. In total, 16 non-polar components were
identified from the extract with the YPD medium (Supplementary Figure S11), including
thymine (1.13%), n-acetyltyramine (2.21%) and hexahydro-3-(phenylmethyl)-pyrrolo[1,2-a]
pyrazine-1,4-dione (21.64%), which were the main compounds (Table 7). Eleven compo-
nents were found with the MEB medium; 3-methyl-butanoic acid (1.40%), orcinol (1.11%)
and simvastatin (14.38%) were the main compounds (Supplementary Figure S12). The
highest number of compounds was detected with the PDB medium (23 components;
3-methyl-1,2-cyclopentanedione (1.41%), terrein (33.71%), 9,12-octadecadienoic acid (Z, Z)-
methyl ester (6.39%), (E)-9-octadecenoic acid, methyl ester (6.15%) and rosenonolactone
(2.11%) were the main compounds) (Supplementary Figure S12). It should be noted that
hexahydro-3-(phenylmethyl)-pyrrolo[1,2-a] pyrazine-1,4-dione was the main compound in
almost all the liquid media.

Table 7. The chemical composition of dichloromethane-ethyl acetate of the O. senegalensis NR-03.

№ Composition tR (min)
Relative Peak Area %

BEB SAB YPD MEB PBG CDM PDB

1 3-Methyl-butanoic acid 3.418 - - - 1.40 - - -
2 2-Methyl-butanoic acid 3.520 - - - 0.48 - - 0.78
3 p-Xylene 3.741 - - - - - 1.71 -
4 3-methyl-1,2-cyclopentanedione 5.848 - - - - - - 1.41
5 2-Methyl-phenol 6.247 - 0.21 - 0.12 - - 0.22
6 p-Cresol 6.553 - 1.96 - 0.28 - - -
7 Tetramethyl-pyrazine 6.714 - - 0.26 - - - -
8 Maltol 7.105 - - - 0.57 - - -
9 Phenylethyl alcohol 7.139 - - 0.13 - - - -

10 N-(3-Methylbutyl)acetamide 7.402 - - 0.16 - - - -
11 Benzeneacetic acid 9.136 - 3.02 - - - - 1.00
12 Indole 9.756 - - 0.56 - - - -
13 Orcinol 10.801 - 1.66 - 1.11 - - -
14 4-Hydroxy-2-methylbenzaldehyde 11.157 - - - - - - 1.11
15 3,4-Bis(methylene)-cyclopentanone 11.480 - - 0.36 - - - -
16 4-Hydroxy-benzeneethanol 11.489 - - - 0.99 - - -
17 3-Ethyl-2,5-dimethyl-pyrazine 11.795 - - 0.53 - - - -
18 Terrein 11.948 - - 0.92 - - - 33.71
19 3,5-Diethyl-2-methyl-pyrazine 12.474 - - 0.30 - - - -
20 Dimethyl(3-methylphenoxy)ethoxy-silane 12.525 - - - - - - 1.09
21 N-(2-Phenylethyl)-acetamide 12.542 - - 0.76 - - - -
22 Thymine 13.587 - - 1.13 - - - -
23 3-Mercaptobenzoic acid, S-methyl-, methyl ester 14.258 - - - 0.44 - - -
24 Tetradecanoic acid 15.278 - - - - - - 0.22
25 Hexahydro-pyrrolo[1,2-a]pyrazine-1,4-dione 15.337 - - 0.41 - - - -
26 Pentadecanoic acid 16.008 - 0.17 - - - - 1.10
27 N,N-Dimethyl-1H-purin-6-amine 16.153 - - 0.30 - - - -
28 N-Acetyltyramine 16.280 - - 2.21 - - - -
29 Hexadecanoic acid, methyl ester 17.223 - - - - - - 1.94
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Table 7. Cont.

№ Composition tR (min)
Relative Peak Area %

BEB SAB YPD MEB PBG CDM PDB

30 Hexahydro-3-(2-methylpropyl)-
pyrrolo[1,2-a]pyrazine-1,4-dione 17.393 36.59 - - - - 7.90 -

31 3,4-dihydro-6,8-dihydroxy-3-methyl-1H-2-
benzopyran-1-one 17.546 - - - 0.44 - - -

32 n-Hexadecanoic acid 17.656 - - - - - - 0.60
33 Eicosamethyl-cyclodecasiloxane, 17.903 - - - - - - 0.31
34 Hexadecanoic acid, ethyl ester 18.081 - - - - - - 0.34
35 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 19.449 - - - - - - 6.39
36 (E)-9-Octadecenoic acid, methyl ester 19.525 - - - - - - 6.15
37 Methyl stearate 19.848 - - - - - - 0.87
38 Linoleic acid ethyl ester 20.358 - - - - - - 0.78
39 (E)-9-Octadecenoic acid ethyl ester 20.434 - - - - - - 0.62
40 N-[2-(1H-indol-3-yl)ethyl]-acetamide 20.859 - - 0.76 - - - -
41 3-Benzyl-6-isopropyl-2,5-piperazinedione 21.845 - - 0.22 - - - -
42 Octadecamethyl-cyclononasiloxane 21.989 - - - - - - 0.36
43 Hexadecane 22.244 - - - - - 3.05

44 Hexahydro-3-(phenylmethyl)-
pyrrolo[1,2-a]pyrazine-1,4-dione 22.915 14.44 1.47 21.64 - 14.47 18.13 0.56

45 Tetracosane 23.671 - - - - - 4.89 -
46 Eicosane 25.098 - - - - - 5.60 -
47 Rosenonolactone 26.152 - - - - - - 2.11
48 (5.beta.)-chol-7-ene 27.129 - - - 0.81 - - -

49 1,8-dihydroxy-3-methoxy-6-methyl-9,10
anthracenedione 27.256 - - - 0.22 - - -

50 3,4-dihydro-3-hydroxy-2,2-dimethyl-,
(R)-2H-naphtho[1,2-b]pyran-5,6-dione 31.087 - - - - 0.83 - -

51 Simvastatin 31.391 - - - 14.38 15.68 - 1.60
52 Lovastatin 34.307 - - - - - - 0.67

3. Discussion

The Chinese medicinal plant V. anthelmintica is very important in traditional Chinese
and Uyghur medicine. The seeds of the plant are used to treatment skin disorders, such as
vitiligo, leucoderma, psoriasis and eczema [34,48]. Moreover, natural compounds isolated
from the seeds and other part of V. anthelmintica have shown antidiabetic, anti-vitiligo,
antioxidant and antimicrobial activity. In particular, an extract from the seeds is one of
the most popular Uygur medicines used for vitiligo. In previous studies, we reported the
diversity and synergetic properties of the total extract compositions, as well as the effects of
the pure isolated secondary metabolites of the endophytic bacteria and fungi of this plant
associated with the roots in terms of melanin synthesis, cytotoxic, antidiabetic, antioxidant
and antimicrobial activity [35,37]. The present investigation focused on evaluating the
diversity, biological activity and non-polar chemical composition of the most active endo-
phytic fungi of V. anthelmintica flowers. Six endophytic fungi were isolated and identified;
moreover, their antimicrobial, cytotoxic and melanin synthesis effects on murine B16 cells
were evaluated. Three species belonging to the genus Aspergillus (A. calidoustus NR-10, A.
keveii XJF-23 and A. terreus XJF-3) showed antimicrobial and cytotoxic activity comparable
with some results reported by other authors [49–51]. These results revealed the extensive
capacity for the production of pharmacologically active secondary metabolites with an-
timicrobial and cytotoxic potential from these fungal microorganisms. Fungal endophytes
from the genus Aspergillus have been reported as important sources of bioactive natural
products with applications in agriculture and pharmacology [52–55]. Recently, we isolated
the endophytic bacteria and fungi from V. anthelmintica roots. Crude ethyl acetate extracts
of the bacteria P. ananatis and the fungal strains S. communae XJA1, Talaromyces sp. XJA4,
Aspergillus sp. XJA6 and A. terreus XJA8 greatly influenced melanin synthesis in murine
B16 cells with IC50 values of 191.56.814, 119.02, 118.16, 182.45 and 177.92% at 50 µg/mL,
respectively [35,37]. In our current work, endophytic fungi belonging to the Aspergillus
genus (A. calidoustus NR-10, A. keveii XJF-23 and A. terreus XJF-3) showed a 1.6-fold in-
crease in melanin synthesis in murine B16 cells compared with the positive control 8-MOP
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(123.34% at 50 µg/mL), with IC50 values of 193.31, 205.35 and 208.46% (50 µg/mL). The
results showed that the biological activity of endophytic fungi isolated from V. anthelmintica
flowers was higher than that of the endophytic isolates of roots. The same can be seen
for cytotoxic activity. For examples, crude extracts of Aspergillus sp. XJA6 and A. terreus
XJA8 isolated from the roots of V. anthelmintica showed strong cytotoxic activity against
the HT-29 and HeLa cells lines with IC50 values 19.31 ± 0.8 µg/mL, 5.73 ± 0.6 µg/mL,
9.99 ± 0.8 µg/mL and 24.69 ± 0.2 µg/mL, respectively. However, O. senegalensis NR-03
and A. terreus XJF-3 displayed powerful cytotoxic activity against the HT-29 and HeLa
lines, with IC50 values of 0.10 ± 0.004 µg/mL and 0.09 ± 0.005 µg/mL against HT-29 and
0.10 ± 0.005 µg/mL against HeLa. As shown by these results, the synergetic effect of the
secondary metabolites in the total extracts very strongly increased melanin synthesis in
melanoma B16 cells, as well as displaying antimicrobial and cytotoxic activity. A wide
range of biological active secondary metabolites have been found from endophytic fungi.
Tantapakul et al. [56] isolated a secondary metabolite from the endophytic fungus Ch.
globosum 7s-1. The metabolite showed promising cytotoxicity in the selected cancer cell
lines (KB, MCF-7, and NCI-H187) with IC50 values of 7.04, 18.40, and 0.98, respectively.
Other secondary metabolite polyketides were isolated from the fungus Phoma bellidis and
demonstrated cytotoxicity in human cancer cell lines (HL-60, A549, SMMC-7721, MCF-7,
and SW480) [57]. The most active fungus (O. senegalensis NR-03) was further studied for op-
timization of the culture conditions and to determine the non-polar chemical composition
of the dichloromethane-ethyl acetate fraction, to understand which secondary metabolites
displayed bioactivity. The non-polar composition of endophytes is poorly understood.
Endophytic fungi mainly synthesize ethers, acids, amines, alkenes and benzene [58]. Fun-
gal strain O. senegalensis NR-03 synthesized different non-polar components depending
on the content of the culture medium. For example, 9,12-octadecadienoic acid (Z, Z)-
methyl ester and (E)-9-octadecenoic acid methyl ester were the main components in PDB
the medium but were not found at all in other broth media. Contrariwise, hexahydro-3-
(phenylmethyl)–pyrrolo [1,2-a] pyrazine-1,4-dione was the main component in all, ex-
cept the MEB medium. Hexahydro-3-(phenylmethyl)- pyrrolo[1,2-a] pyrazine-1,4-dione
(21.64%), simvastatin (14.38%), terrein (33.71%), 9,12-octadecadienoic acid (Z, Z)-, methyl
ester (6.39%) and (E)-9-octadecenoic acid, methyl ester (6.15%) were the main components
in different media. In this investigation, about 52 compounds were identified by GC-MS
for strain O. senegalensis NR-03, the major compounds in the displayed biological activity.
In general, these results support the development of natural products that may minimize
the need for the application of pharmacology, which would be an environmentally friendly
approach and preserve natural resources in medicinal chemistry. In light of the current
study, further characterizations of the fungus O. senegalensis NR-03 will be executed in
order to (a) isolate and identify the secondary metabolites from ethyl acetates extract and
(b) measure the biological activity of each individually isolated natural compound.

4. Materials and Methods
4.1. Plant Samples Collection

The Chinese medicinal plant V. anthelmintica was collected from Hotan, within the
Xinjiang Autonomous region, in August 2020. The fresh aerial parts of the plant were
transported to the laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization,
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences.

4.2. Isolation of Endophytic Fungi Producing Bioactive Secondary Metabolites

The isolation procedures for endophytic fungi involved a surface sterilization method
described in a previous publication [37]. Fresh flowers (10 g) were separated and sterilized
with 99.9% ethanol for 2 min and with 10% NaClO, then rinsed with sterile distilled water.
The sterile flowers (10 g fresh weight) were cut into pieces 3–4 cm long and macerated
using a sterile mortar and pestle. The macerated tissue (1 g) was transferred into plastic
tubes containing 9 mL of sterile phosphate buffered saline (PBS) (20 mM sodium phosphate,
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150 mM NaCl, pH 7.4) and shaken for 1 min using a Vortex Biosan B-1. Aliquots (100 µL)
from dilutions (101–105) were spread on PDA. After that, they were incubated for 7 days.
Visually homogenous colonies of different sizes, shapes and colors were used for DNA
isolation.

4.3. Identification of Endophytic Fungi Producing Bioactive Secondary Metabolites

Isolated endophytic fungi were incubated in a 250 mL flask containing 50 mL of fresh
Potato Dextrose Both (PDB) medium for 16 h at 28 ◦C with shaking at 200 rpm. DNA
extraction was conducted using an E.Z.N.ATM Fungal DNA Kit (Omega Bio-Tek, USA). PCR
amplification was carried out to determine the partial 18S rRNA gene. The PCR thermal
cycling scheme was set as follows: 30 cycles of denaturation at 94 ◦C for 1 min, 55 ◦C for
30 s and 72 ◦C for 1.5 min. The 18S universal primers C27F AGAGTTTGATCCTGGCTCAG
and C14921R TACGGCTACCTTGTTACGACTT were used to amplify of the 18S rRNA
gene. Purification of the PCR products and determination of the sequences were performed
by GeneCore BioTechnologies Co, Ltd. (Shanghai, China). The 18SrRNA gene sequence of
the fungal strains obtained was compared with the NCBI database (https://www.ncbi.nlm.
nih.gov/nuccore/MW881454 (accessed on 24 August 2022)). The neighbor-joining method
was used to infer the phylogenetic relatedness [59]. Bootstrap analysis was performed with
500 replications [60] using the heuristic search option as described previously to estimate
the reliability of the inferred monophyletic groups. The evolutionary distances were
computed using the maximum composite likelihood method [61] and are given in units of
the number of base substitutions per site. This analysis involved 15 nucleotide sequences
and all ambiguous positions were removed for each sequence pair (pairwise deletion
option). There were 767 positions in total in the final dataset. Evolutionary analyses were
conducted with MEGA 6 software [62].

4.4. Fermentation and Crude Extract Preparation

All isolated, purified and identified endophytic fungi were cultured in a potato dex-
trose broth (PDB) (dextrose 20 g/L, potato extract 4 g/L) medium for the synthesis of
bioactive natural compounds. The fungal culture was incubated at 28 ◦C on a shaker at
160 rpm for 28 days under septic conditions [63,64]. The PDB cultures were filtered by
vacuum filtration and cell-free supernatants of each fungus were extracted separately with
ethyl acetate (1:3) in a separator funnel. During the extraction procedure, 1–1.2 g of total
extract was obtained per liter of fungal culture.

4.5. Antimicrobial Activity of Total Extracts of the Endophytic Fungi

The bioactive secondary metabolites produced by the endophytic fungi were screened
in vitro for antibacterial and antifungal activity, which was measured using a well diffusion
method [35,65]. The three pathogenic microorganisms used for the antimicrobial assays
were the Gram-positive bacterium Staphylococcus aureus (ATCC6538), the Gram-negative
bacterium Escherichia coli (ATCC11229) and the fungus Candida albicans (ATCC10231). The
bacterial pathogenic strains were plated on LB medium (4% glucose, 1% peptone) and the
fungus in potato dextrose agar (PDA) (4 g potato extract, 20 g dextrose, agar 20 g, and
1 L water) inoculated at 28 ◦C for 48 h in accordance. A total of 6 µL of crude extract
of endophytic fungi dissolved in DMSO was added to these wells, with the plates being
incubated at 37 ◦C for 24 h for bacteria and 72 h for fungi. The inhibitions zones were
measured to assess the antimicrobial activity of the samples. Ampicillin was obtained from
Sigma Chemicals Co., and amphotericin B was purchased from AMRESCO LLC.

4.6. Determination of MIC

The minimum inhibitory concentration (MIC) of the secondary metabolites of ethyl
acetate extracts of the endophytic fungi were determined against S. aureus, E. coli and C.
albicans. The MIC of the extracts was estimated for each of the test organisms in triplicates.
Bacterial strains were cultured on the LB liquid medium (4% glucose, 1% peptone) at
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37 ◦C for 24 h, while the fungal pathogen was grown in potato dextrose both at 30 ◦C
for 48 h. Ampicillin and amphotericin B were used as positive controls. The total crude
extracts were dissolved in DMSO, and 50 µL of each sample dilution was added in 96-well
micro-titer plates, followed by the addition of 10 µL of the pathogen suspension and 100 µL
of the liquid culture medium. Plates were incubated at 37 ◦C for 24 h. [66,67] The growth
of bacteria and fungus was checked by reading the absorbance at 600 nm. The lowest
concentration of the compounds that that could inhibit the growth of microorganisms was
determined.

4.7. Melanin Content Assay

Cell Culture: Murine B16 melanoma cell lines (B16F10) were obtained from CAS (Chi-
nese Academy of Sciences, Shanghai, China). Cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco Life Technologies, Waltham, MA, USA) supplemented with
10% heat-inactivated fetal bovine serum (FBS), penicillin G (100 U/mL), and streptomycin
(100 mg/mL) (Gibco-BRL, Grand Island, NY, USA) at 37 ◦C in a humidified atmosphere of
5% CO2.

Melanin Measurement: The melanin content assay of ethyl acetate extracts of the
endophytic fungi associated with V. anthelmintica flowers was determined in accordance
with the procedure described previously [36,68,69]. Exponentially growing B16 cells were
seeded at a density of 2 × 105 cells per well in a 6-well plate and incubated for 24 h. After
that, test samples were added to the individual wells, and the cells were incubated for 48 h,
then washed twice with ice-cold PBS. After that, the cells were lysed, and the assembled
cells were centrifuged at 10,000× g for 20 min. Each lysate (150 µL) was placed in a 96-well
microplate and read spectrophotometrically at 405 nm using a multi-plate reader. The
amount of protein of each sample was determined by a BCA Protein Assay Kit (Biomed,
Beijing, China). The melanin content was normalized to the cellular protein concentration.
Melanin content was calculated according to the formula:

Melanin content (%) =
S
B
× 100 (1)

where S is the absorbance of the cells treated by the samples, and B is the absorbance of the
wells containing untreated cells. Each measurement was carried out in triplicate.

Tyrosinase Activity Assay: Tyrosinase activity was determined by the method of
Chao et al. [68]. First, the B16 cells were seeded in a 6-well plate at a concentration of
2 × 105 cells per well and incubated for 24 h. Test samples were then added to each well
and incubated for 24 h. Cells were then washed twice with ice-cold PBS and lysed using
1% Triton X-100 solution containing 1% sodium deoxycholate for 30 min at −80 ◦C. The
lysates were centrifuged at 12,000× g for 15 min. After quantification and adjustment of
the protein concentration of the supernatants, 90 µL of the supernatant was mixed and
incubated with 10 µL of a freshly prepared substrate solution (10 µM 8-MOP) in duplicate
in a 96-well plate, followed by incubation at 37 ◦C. Samples were then read at 490 nm. The
results were calculated by the formula used for calculating the melanin content.

4.8. Cytotoxic Activity (MTT Assay)

The cytotoxic activity of the total extracts of all fungal endophytes was tested against
three human cancer cells lines: HT-29 (colon cancer), MCF-7 (breast cancer), and HeLa (cer-
vical cancer). An MTT assay was carried out as described, with minor modifications [70–72].
The samples were dissolved in DMSO; the extract concentration was 50 µg/µL. The cells
grown to the logarithmic growth phase were aspirated, washed once with PBS, digested
with trypsin, terminated by adding a medium, gently pipetted, counted, and seeded in
a 96-well plate (100 µL/well) at the corresponding cell density after, overnight culture.
Samples (20 µL/well) were added and incubated in CO2, at 37 ◦C for 48 h, then, aspirated
and the old medium was discarded before, adding 100 µL of MTT. The samples were left
to culture for 2 h. After incubation at 37 ◦C for 2 h, the absorbance value (OD) at 570 nm
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was measured using an MB microplate reader. The inhibition rate was determined by the
equation

IR =
(C − S)
(C − B)

× 100 (2)

where C is the OD of the control group, S is the OD of the experimental group, and B is the
OD of the blank.

4.9. Optimization of the Optimal Culture Medium for the Production of Biologically Active
Secondary Metabolites from Endophytic Fungi

The total extracts of all the isolated fungal strains were measured for their pharmaco-
logical activities (antimicrobial, cytotoxic and melanin content assay on murine B16 cells).
The strain O. senegalensis NR-03 displayed the highest activity; in addition, the yield of
biologically active compounds synthesized by this strain was significantly higher than that
of the other strains. Therefore, O. senegalensis NR-03 was selected for further study to find
the most effective culture conditions. In order to provide a way to select the best medium
and incubation time for the production of the bioactive metabolites, seven different liquid
culture media were used: yeast extract peptone dextrose (YPD) (yeast extract, 1 g/L; dex-
trose, 20 g/L; peptone, 20 g/L), malt extract broth (MEB) (malt extract 30 g/L), Sapouraud
broth (SAB) (dextrose, 40 g/L; peptone, 10 g/L), Czapeck–Dox medium (CDM) (sucrose,
30 g/L; NaNO3, 3 g/L; K2HPO4, 1 g/L; MgSO4, 0.5 g/L; KCl, 0.5 g/L; FeSO4, 0.01 g/L),
beef extract broth (BEB) (beef extract, 3 g/L; NaCl, 5 g/L), peptone beef extract glycogen
medium (PBG; peptone, 10 g/L; beef, 10 g/L; glycogen, 4 g/L; NaCl, 5 g/L; NaC12H25SO4,
0.1 g/L) and potato dextrose broth (PDB) (potato extract 4 g/L, dextrose 20 g/L). After
incubation on the different liquid media, crude extracts were extracted with ethyl acetate.
The total extract of the endophytic fungi was tested for biological activity and analyzed by
HPLC.

4.10. The Effect of Cultivation Time on the Secondary Metabolite Production of Endophytic Fungi

The time profile of the secondary metabolite production by the endophytes was
observed a for growth period of 42 days. Every 7 days, the fungal culture was adjusted to
7, 14, 21, 28, 35 and 42 days, respectively. The extracts were obtained with ethyl acetate,
and the yield of the metabolites produced was calculated.

4.11. Scanning Electron Microscopy Analysis of Endophytic Fungi

The mycelia of endophytic fungi were placed in a petri dish on the surface of a PDA
medium as mycelial plug and cultured for 14 days. The mycelia of the fungi were directly
coated with gold by an iron sputter coater (SuPro, ISC 150, Bruker Nano GmbH, Berlin,
Germany), and the appearance of the surface of the fungi, such as shape, color, the diameter
of the colony and colony reversal, was observed under a scanning electron microscope
(Carl Zeiss Jena, SUPRA 55VP, Bruker Nano GmbH, Berlin, Germany).

4.12. HPLC Analysis

Crude extracts of the endophytes (15 mg) were dissolved in 1 mL of HPLC grade
methanol, and HPLC was carried out with the DIONEX Ultimate 3000 HPLC system
(Thermo-Fisher, Waltham, MA, USA) combined with a Sunfire C18 column (4.6 × 250 mm,
5 µm) (Waters, USA) and a Sunfire C18 guard column (4.6 × 20 mm, 5 µm) (Waters,
Waltham, MA, USA). Mobile phase A was 0.2% (v/v) formic acid (HCOOH) in water;
mobile phase B was acetonitrile (ACN). The elution profile was 0–10 min 100% B (isocratic),
and 1–86 min 10–100% B (acetonitrile). The flow rate was 1 mL/min, and the injection
volume was 10 µL. UV chromatograms were recorded at 210, 254 and 330 nm; this analysis
enabled the characterization of alkaloids, terpenoids and phenolic compounds on the basis
of their retention time and UV spectra.
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4.13. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The fungal strain was incubated in seven different liquid media: yeast extract peptone
dextrose (YPD), malt extract broth (MEB), cornmeal broth medium (CBM), Sabouraud
broth (SAB), Czapeck–Dox medium (CDM), beef extract broth (BEB), peptone beef extract
glycogen medium (PBG) and potato dextrose broth (PDB). The secondary metabolites pro-
duced by the fungal strain in each medium were extracted by ethyl acetate then dissolved
in dichloromethane. The non-polar chemical composition of the endophytic fungus O.
senegalensis NR-03 was subjected to gas chromatography—mass spectral (GC-MS) analy-
sis, as previously reported [37,58]. The GC-MS system consisted of an Agilent 7890 gas
chromatograph coupled to an Agilent 5975 mass detector (Agilent Technologies, New York,
USA) and an Agilent 7693 autosampler. A capillary column HP-5 (30 m × 0.25 mm internal
diameter; CM Scientific, New York, USA), coated with a 0.25-µM film of 5% (v/v) dimethyl
polysiloxane and 95% diphenyl was used for separation. The column temperature was
set at 100 ◦C and held for 5 min. A sample of 0.5 µL of the solutions (5 mg extract was
dissolved in 1 mL dichloromethane) was injected [73,74]. The initial column temperature
was increased to 145 ◦C at a rate of 5 ◦C/min and was held at this temperature for 25 min.
The MS inlet temperature was 250 ◦C; MS mode, EI; mass range, 40–550 amu; and ionization
source temperature, 280 ◦C. The compounds were identified on the basis of retention time
(RT) and by comparing the spectra with a stored MS library (W8N05ST and NIST08).

4.14. Statistical Analysis

All the experimental data were analyzed using GraphPad Prism using three replicate
values in side-by-side subcolumn analysis of variance (ANOVA) and Tukey’s test to deter-
mine statistical significance. A p-value of <0.05 was considered to be statistically significant.
The correlation index was calculated using the Pearson coefficient (ρ).

5. Conclusions

In this study, we demonstrated the biological activities of the endophytic fungi associ-
ated with Chinese medicinal plant V. anthelmintica flowers. Six fungal strains were studied;
three isolates belonged to the Aspergillus genus and the others were from Ovatospora,
Chaetomium and Thielavia. Crude extracts of endophytic fungi exhibited several biological
effects, including antimicrobial, cytotoxic and melanin syntheses and tyrosinase activity, on
murine B16 cells. The strain O. senegalensis NR-03 displayed strong antibacterial activity
against the E. coli and S. aureus strains. Moreover, the crude extract of the endophytic
fungus O. senegalensis NR-03 exhibited stronger anticancer activity than the positive control
DOX against two cancer cell lines HT-29 and HeLa. O. senegalensis NR-03 showed higher
biological activity than the other fungal strains. Bioactive compounds, which were pro-
duced by endophytic fungi O. senegalensis NR-03, were analyzed and determined through
GC-MS analyses. In addition, we observed optimization of the growth conditions in terms
of incubation time and different media content. The secondary metabolites produced by
most active fungal strains showed cytotoxicity against several cancer cell lines, in addition
to displaying antimicrobial and melanin synthesis activity, which suggest that it should be
considered as a drug candidate with therapeutic potential.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911935/s1, Figure S1: Antimicrobial activity of ethyl
acetate crude extract of endophytic fungi evaluated by the diameter of inhibition zone (mm); Figure
S2: HPLC analysis of secondary metabolites produced by O. senegalensis NR-03 in the peptone beef
extract glycogen medium (PBG); Figure S3: HPLC analysis of secondary metabolites produced by
O. senegalensis NR-03 in the Czapeck-Dox medium (CDM); Figure S4: HPLC analysis of secondary
metabolites produced by O. senegalensis NR-03 in the Beef extract broth (BEB); Figure S5: HPLC
analysis of secondary metabolites produced by O. senegalensis NR-03 in the Yeast extract peptone
dextrose (YPD); Figure S6: HPLC analysis of secondary metabolites produced by O. senegalensis NR-03
in the Sapouraund broth (SAB); Figure S7: HPLC analysis of secondary metabolites produced by O.
senegalensis NR-03 in the Malt extract broth (MEB); Figure S8: HPLC analysis of secondary metabolites
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produced by O. senegalensis NR-03 in the Potato Dextrose broth (PDB); Figure S9: Volatile chemical
composition dichloromethane extract of the endophyic fungus of O. senegalensis NR-03 growth on
BEB medium; Figure S10: Volatile chemical composition dichloromethane extract of the endophyic
fungus of O. senegalensis NR-03 growth on BEB medium; Figure S11: Volatile chemical composition
dichloromethane extract of the endophyic fungus of O. senegalensis NR-03 growth on YPD medium;
Figure S12: Volatile chemical composition dichloromethane extract of the endophyic fungus of O. sene-
galensis NR-03 growth on MEM medium; Figure S13: Volatile chemical composition dichloromethane
extract of the endophyic fungus of O. senegalensis NR-03 growth on PBG medium; Figure S14: Volatile
chemical composition dichloromethane extract of the endophyic fungus of O. senegalensis NR-03
growth on CDM medium; Figure S15: Volatile chemical composition dichloromethane extract of the
endophyic fungus of O. senegalensis NR-03 growth on PDB medium; Figure S16: Chemical structure
of same main volatile chemical compounds of dichloromethane fraction of O. senegalensis NR-03.
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