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Abstract: Genome-wide association study (GWAS) of Juvenile idiopathic arthritis (JIA) suffers from
low power due to limited sample size and the interpretation challenge due to most signals located in
non-coding regions. Gene-level analysis could alleviate these issues. Using GWAS summary statistics,
we performed two typical gene-level analysis of JIA, transcriptome-wide association studies (TWAS)
using FUnctional Summary-based ImputatiON (FUSION) and gene-based analysis using eQTL
Multi-marker Analysis of GenoMic Annotation (eMAGMA), followed by comprehensive enrichment
analysis. Among 33 overlapped significant genes from these two methods, 11 were previously
reported, including TYKZ (PrusioN = 5.12 x 1070, Pavacma = 1.94 x 107 for whole blood), IL-6R
(Prusion = 8.63 X 1077, Papiagma = 2.74 x 107° for cells EBV-transformed lymphocytes), and Fas
(Prusion = 5.21 x 1072, Paviagma = 1.08 x 107° for muscle skeletal). Some newly plausible JIA-
associated genes are also reported, mcludmg IL-27 (Prusion = 2.10 x 1077, Pavacma = 3.93 x 1078
for LIVEI') LAT (PFUSION =1.53 x 10 ’ eMAGMA =4.62 x 10~ 7 for Artery Aorta) and MAGI3
(Prusion = 1.30 x 107>
highlighted 4 Kyoto Encyclopedla of Genes and Genomes (KEGG) pathways and 10 Gene Ontology

PemacMa = 1.73 x 1077 for Muscle Skeletal). Enrichment analysis further

(GO) terms. Our findings can benefit the understanding of genetic determinants and potential
therapeutic targets for JIA.

Keywords: juvenile idiopathic arthritis; transcriptome-wide association study; gene-based association

analysis; enrichment analysis

1. Introduction

Juvenile idiopathic arthritis (JIA) is one of the most common rheumatic diseases
characterized by arthritis in childhood [1]. It can cause damage to multiple organs such
as arthrosis, heart, lung, skin, and eyes, and is an important cause of disability in children
under the age of 16 [2]. Previous studies have shown that the concordance rate of JIA
in monozygotic twins and the relative risk of the disease in the siblings of JIA patients
are higher [3,4], highlighting the important role of genetic factors in the development of
JIA [5,6]. Therefore, it is of great significance to probe the complex genetic association of JIA
to better understand the genetic mechanisms and investigate potential intervention targets.

Genome-wide association studies (GWAS) have successfully identified 22 risk loci
associated with JIA [7-9], however, these GWASs suffer from either small sample size
or low case proportions, which may be presumably due to the difficulty in accurate JIA
diagnosis and the lack of pathognomonic features [10]. So far, the JJA GWAS with relatively
larger sample size and the largest case proportions only includes 3305 JIA cases and
9196 controls [9]. In addition, most genetic variants identified from GWAS of JIA are located
in non-coding regions [11], leading to the difficulty in explaining the association signals.
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On the other hand, statistically, GWAS often provide JIA-associated single nucleotide
polymorphisms (SNPs), the effects of which are too weak to be detected. Gene-level
analysis can not only aggregate many SNPs with small effects to improve the power, but
provide good biological interpretations, which is more straightforward to be translated into
clinical practice.

With the increase of publicly available GWAS summary data and the well-developed
efficient tools, it is feasible to conduct the gene-level analysis for JIA [12]. There are
two typical gene-level association analysis methods with different model assumptions,
one is transcriptome-wide association studies (TWAS), which has shown great promise
in interpreting the GWAS signals and is powerful in detecting the association between
the gene expression level and the complex disease [13,14]. Recently, one TWAS analysis
of JIA has been conducted, however, it only involves two tissues with lower JIA case
proportions [15], which may lead to the power loss and the insufficiency in capturing the
tissue information related with JIA. The other is multi-marker analysis, which can assign
SNPs to genes based on physical proximity and further conduct gene-based association
analysis. Both methods, though have different statistical principles, can produce the gene-
level p values. We would like to emphasize that using different gene-level methods with
different model statistical principles to obtain the common genes can avoid the risk of false
discoveries from using single method. Actually, the results from different analysis could
complement to each other [16,17].

In the present study, using the GWAS summary data of JIA with relatively larger
sample size and case proportions (3305 cases and 9196 controls), we performed TWAS anal-
ysis and the gene-based association analysis to identify the tissue-specific JIA-associated
genes. We used the false discovery rate (FDR) correction on each tissue to declare the
significant genes. Finally, we overlapped the genes significantly detected from these two
gene-level methods, and performed the enrichment analysis for these overlapped genes on
the Metascape website to identify the significant Gene Ontology (GO) terms as well as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

2. Methods
2.1. Study Design, Data Source, and Quality Control

The analysis flowchart of this study is shown in Figure 1. We used the GWAS of JIA
from a large-scale meta-analysis [9]. We obtained the largest GWAS summary statistics of
JIA from the NHGRI-EBI GWAS Catalog (Study Accession Code GCST90010715), where
the JIA cases were diagnosed according to The International League Against Rheumatism
(ILAR) criteria. The data were restricted to European ancestry with stringent quality control
as described previously [9]. Briefly, the GWAS of JIA initially recruited 4520 UK JIA patients
and 9965 healthy individuals. Individuals with call rate less than 0.98 and discrepancy
between genetically predicted sex and database record were removed. In addition, SNPs
that were non-autosomal, had a call rate <0.98 or a minor allele frequency (MAF) <0.01 were
further excluded. About 12,501 individuals (3305 cases and 9196 healthy controls) were
finally remained. For the summary data, we further excluded the major histocompatibility
complex (MHC) region (chromosome 6: 25-35 Mb) due to its complex structure, restricted to
biallelic SNPs and removed SNPs with duplicated or missing rs ID for subsequent analyses.
Totally 7,415,262 SNPs are finally included. Bearing in mind that using different methods
with different model assumptions to obtain the overlapped genes can avoid the risk of false
discoveries from using single method, we here applied two gene-level approaches with
distinct principles, TWAS analysis and gene-based association analysis, as parallel analyses
to obtain the common JIA-associated genes for enrichment analysis.
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Figure 1. The flowchart of integrative analysis of FUSION and eMAGMA. ABBR: JIA, Juvenile
idiopathic arthritis; GWAS, genome-wide association study; MHC, major histocompatibility complex;
GTEx, Genotype-Tissue Expression Project; LD, linkage disequilibrium; EUR, European; FUSION,
functional summary-based imputation; eQTL, expression quantitative trait loci; eMAGMA, eQTL
Multi-marker Analysis of GenoMic Annotation; FDR, false discovery rate; KEGG, Kyoto Encyclopedia
of Genes and Genomes; GO, Gene Ontology.

2.2. TWAS Analysis

TWAS aim to integrate GWAS and expression quantitative trait loci (eQTL) studies
to identify tissue-specific gene-trait associations [18], which has shown great promise
both in interpreting GWAS findings and in elucidating the underlying disease mecha-
nisms. We here adopted FUnctional Summary-based ImputatiON (FUSION) method
(http://gusevlab.org/projects/fusion/, accessed on 8 April 2022) to conducted TWAS
analysis of JIA. FUSION is the most commonly used TWAS method and has shown great
promise in large-scale integrative omics data analysis [14]. Once inputting the GWAS
summary data and expression weight, FUSION will impute the gene expressions in GWAS,
and then perform an association analysis between the predicted gene expression and JIA.
We selected Genotype-Tissue Expression Project (GTEx) v8 with pre-computed gene ex-
pression weights from totally 49 tissues. Using all the tissues may introduce the nuisance
information and increase the computation burden; previous studies recommend using
an expression panel from only plausible disease-related tissues in TWAS [13]. Here, we
determine the analyzed tissue based on not only previous studies [2,19], but also the
clinical symptoms and involved organs of JIA, such as hepatomegaly, splenomegaly, ane-
mia, disseminated intravascular coagulation, arthritis, rash, mesenteric lymphadenopathy,
pericarditis, and pneumonia. We finally selected 18 tissues for analysis including artery
aorta, artery coronary, artery tibial, cells EBV-transformed lymphocytes, colon sigmoid,


http://gusevlab.org/projects/fusion/

Int. . Mol. Sci. 2022, 23, 13555

40f11

colon transverse, heart atrial appendage, heart left ventricle, liver, lung, muscle skeletal,
nerve tibial, skin not sun exposed suprapubic, skin sun exposed lower leg, small intestine
terminal ileum, spleen, stomach, whole blood. We used the 1000 Genomes European panel
as a linkage disequilibrium (LD) reference data, and obtained tissue-specific p value for
each gene across different tissues. We finally performed FDR correction on each tissue, and
genes with FDR less than 0.05 are declared to be significant.

2.3. Gene-Based Association Analysis

We used eQTL Multi-marker Analysis of GenoMic Annotation (eMAGMA) method
(https:/ /github.com/eskederks/eMAGMA-tutorial, accessed on 28 March 2022) to conduct
gene-based association analysis for JIA. eMAGMA follows the same statistical framework
as MAGMA, which is based on a multiple linear principal component regression model and
can provide better statistical performance in gene-based association analysis [16]. Besides
this, eMAGMA can further utilize tissue-specific cis-eQTL information to assign SNPs
to putative genes, providing more biologically meaningful and interpretable results [17].
Gene-based analysis using eMAGMA typically involves two stages, annotation and gene
analysis [16]. We, in the annotation stage, used the same tissues as that in above TWAS
analysis and directly used the GTEx v8-based annotation files provided on eMAGMA's
website. In the gene analysis stage, we used the 1000 Genomes European panel as the
reference panel and tested the association between the annotated genes and JIA. We further
performed FDR correction on each tissue, and selected significant genes with FDR less
than 0.05.

2.4. Gene Set Enrichment Analysis

We conducted gene set enrichment analysis for the overlapped genes that were signif-
icantly identified by both TWAS and eMAGMA analysis. Specifically, these overlapped
significant genes were subjected to GO term and KEGG pathway enrichment analysis on
the Metascape website (https://metascape.org/gp/index.html#/main/step1, accessed
on 26 April 2022) to better understand the biological mechanisms. Metascape essentially
utilizes the hypergeometric test and Benjamini-Hochberg p value correction algorithm to
identify all ontology terms. A large number of terms would make the results redundant and
complicate the interpretation, Kappa consistency test was thus performed and terms with
Kappa > 0.3 were grouped into a cluster, and the most statistically significant term in the
cluster was selected to represent the cluster [20]. The parameters of Min Overlap, p Value
Cutoff, and Min Enrichment are set to be the default values, respectively. In addition, we
also made a protein—protein interaction (PPI) network for the overlapped significant genes
on the STRING website (https:/ /cn.string-db.org/, accessed on 15 September 2022).

3. Results
3.1. TWAS Analysis

We analyzed all genes involved in the 18 tissues, among which 275 tissue-specific
genes were significantly detected by FUSION with FDR less than 0.05. Note that LAT is
significantly detected at the border line (p = 1.53 x 10~% and FDR = 5.40 x 102 for Artery
Aorta). These TWAS significant genes included some established JIA-associated genes that
have been reported previously, such as CCDC101 (p = 5.82 x 1078 and FDR = 1.64 x 10~*
for Muscle Skeletal), CLN3 (p = 5.82 x 1078 and FDR= 2.53 x 10~* for Whole Blood),
ERAP2 (p = 5.49 x 107% and FDR = 2.16 x 103 for Cells EBV-transformed lymphocytes),
LNPEP (p = 3.53 x 107% and FDR = 2.36 x 10~ for Artery Tibial). The consistent results
with previous GWAS partly indicates the correctness of the FUSION analysis. All significant
genes in FUSION analysis were displayed in Supplementary Table S1.

3.2. Gene-Based Association Analysis Results

Similarly, we analyzed all genes involved in the 18 tissues, among which 380 tissue-
specific genes were significantly detected by eMAGMA with FDR less than 0.05. These
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included some well-known JIA-associated genes, such as SGF29 (p = 2.22 x 1078 and
FDR = 3.38 x 10> for Whole Blood), ANKRD55 (p = 3.09 x 10~8 and FDR = 1.08 x 10~*
for Spleen), ATP8B2 (p = 7.53 x 10~7 and FDR = 6.59 x 10~* for Stomach), PTPN2
(p =3.96 x 107° and FDR = 2.75 x 10~ for Spleen). Again, all these genes are included in
the 22 risk loci identified by previous GWAS illustrate the eMAGMA results more reliable.
All significant genes from eMAGMA analysis were summarized in Supplementary Table S2.

3.3. Gene Set Enrichment Analysis

We intersected the significant genes from both TWAS analysis and eMAGMA gene-
based association analysis according to different tissues, and found a total of 132 tissue-
specific genes. A total of 33 unique genes were further identified after removing the
duplicated ones, among which 11 genes have been reported in previous studies [7-9], such
as TYK2 (Prysion = 5.12 % 107°, Poyacma = 1.94 x 1077 for Whole Blood), IL(Interleukin)-
6R (Prusion = 8.63 X 1077, Payacma = 2.74 x 1070 for Cells EBV-transformed lymphocytes),
and Fas (Pryusion =521 x 1072, Paptacma = 1.08 x 1070 for Muscle Skeletal). The remaining
newly discovered 22 genes are APOBR, ATXN2L, GSDMB, IKZF3, IL27, KIAA1109, LAT,
LMAN2L, MAGI3, NFATC2IP, NUPR1, ORMDL3, PHTF1, PSMB7, RGS14, SBK1, SH2B1,
STEAP1B, TNFSF15, TUFM, UXS1, ZNF197. Among them, IL-27 (Prysion = 2.10 x 1077,
Povacma = 3.93 x 1078 for Liver), LAT (Prusion = 1.53 x 1074, Poyacya = 4.62 x 1077
for Artery Aorta) and MAGI3 (Prysion = 1.30 x 1072, Poptacma = 1.73 x 1077 for Muscle
Skeletal) are the novel genes that are more likely to be associated with JIA. Detailed
information for 33 genes were summarized in Table 1.

Table 1. Overlapped gene identified by FUSION and eMAGMA.

Gene

Gene Start Gene End

Symbol Chromosome (bp) (bp) Prysion FDRgysion Pemacma FDRemagMma
IL6R 1 154,377,669 154,441,926 8.63 x 107 7.80 x 1074 2.74 x 107° 1.56 x 1073
MAGI3 1 113,933,371 114,228,545 1.30 x 1075 7.35 x 1073 1.73 x 1077 262 x 1074
PHTF1 1 114,239,453 114,302,111 6.55 x 107 1.21 x 1073 293 x 10~7 5.60 x 1074
LMAN2L 2 97,371,666 97,405,801 416 x 107° 1.69 x 1072 1.56 x 107> 6.48 x 1073
UXS1 2 106,709,759 106,810,795 139 x 1074 478 x 1072 139 x 1074 3.52 x 1072
ZNF197 3 44 626,380 44 689,963 7.92 x 107° 3.28 x 1072 2.04 x 107° 1.23 x 1072
KIAA1109 4 123,073,488 123,283,913 151 x 1075 9.73 x 1073 2.06 x 107° 1.44 x 1072
ERAP2 5 96,211,643 96,255,420 549 x 10° 2.16 x 1073 1.03 x 107° 8.68 x 1074
LNPEP 5 96,271,098 96,373,219 3.53 x 107 236 x 1073 1.50 x 1076 9.68 x 1074
RGS14 5 176,784,838 176,799,602 1.02 x 10~° 1.97 x 1073 1.07 x 10> 9.71 x 1073
AHI1 6 135,604,670 135,818,914 1.98 x 10~° 261 x 1073 331 x 107° 1.10 x 102
STEAP1B 7 22,459,063 22,672,544 123 x 1075 5.29 x 1073 2.86 x 107° 2.07 x 1072
PSMB?7 9 127,115,745 127,177,723 484 x 107° 2.28 x 1072 1.10 x 1074 3.84 x 1072
TNFSF15 9 117,546,915 117,568,406 403 x 107° 1.60 x 102 409 x 107° 1.61 x 1072
ACTA2 10 90,694,831 90,751,147 5.64 x 10~° 4.05 x 1073 1.03 x 10~° 7.17 x 1074
FAS 10 90,750,414 90,775,542 521 x 107> 2.32 x 1072 1.08 x 107° 893 x 1074
APOBR 16 28,505,970 28,510,291 6.52 x 1077 8.61 x 1074 1.25 x 107° 9.48 x 1074
ATP2A1 16 28,889,726 28,915,830 531 x 1077 1.18 x 103 3.66 x 1077 5.87 x 1074
ATXN2L 16 28,834,356 28,848,558 8.15 x 107 5.37 x 1073 1.03 x 107° 717 x 1074
CLN3 16 28,477,983 28,506,896 5.82 x 108 253 x 1074 243 x 108 338 x 10°°
IL27 16 28,510,683 28,523,372 2.10 x 107 410 x 1074 393 x 108 1.30 x 1074
LAT 16 28,996,147 29,002,104 153 x 1074 5.40 x 1072 462 x 1077 6.13 x 1074
NFATC2IP 16 28,962,128 28,978,418 1.93 x 10~8 9.20 x 10~° 8.07 x 108 1.84 x 1074
NUPR1 16 28,548,606 28,550,495 6.39 x 108 3.04 x 1074 1.94 x 1078 4.69 x 107>
SBK1 16 28,303,840 28,335,170 2.55 x 1077 439 x 1074 7.70 x 107 745 x 1074
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Gene Gene Start Gene End
Symbol Chromosome (bp) (bp) Prysion FDRrysion Peviacma FDRemagMA
SH2B1 16 28,857,921 28,885,526 591 x 10~ 5.13 x 107° 7.76 x 1077 1.10 x 103
SULT1A1 16 28,616,903 28,634,946 1.54 x 102 8.17 x 10~ 827 x 1078 1.25 x 1074
SULT1A2 16 28,603,264 28,608,430 719 x 10711 763 x 1077 3.63 x 108 7.79 x 1075
TUFM 16 28,853,732 28,857,729 212 x 10° 2.05 x 1073 410 x 107 741 x 1074
GSDMB 17 38,060,848 38,076,107 6.69 x 1075 2.64 x 1072 2.22 x 107> 1.16 x 1072
IKZF3 17 37,921,198 38,020,441 401 x 107° 1.69 x 1072 2.70 x 107° 9.35 x 1073
ORMDL3 17 38,077,294 38,083,854 499 x 1075 1.38 x 1072 1.64 x 107> 6.66 x 1073
TYK2 19 10,461,209 10,491,352 512 x 10 405 x 1073 1.94 x 107 2.01 x 1074

(a)

Th17 cell differentiation

Cytokine—cytokine receptor interaction

Spinocerebellar ataxia

Rap] signaling pathway{+

0

22 novel gene were shown in bold. Gene position (start and end) are based on GRCh37/hg19 by Ensembl.

We further performed KEGG and GO enrichment analysis on the overlapped 33 sig-
nificant genes on the Metascape website, respectively. For KEGG enrichment analysis, we
totally found four significant KEGG pathways (Figure 2), including Th17 cell differentiation
(p = 5.83 x 107%), cytokine—cytokine receptor interaction (p = 2.92 x 10~*), spinocerebellar
ataxia (p = 5.11 x 10~%), and Rapl signaling pathway (p = 1.55 x 10~3). For GO enrichment
analysis, we totally found ten significant GO terms (Figure 2), including signaling receptor
complex adaptor activity (p = 2.25 x 10~°), apoptotic signaling pathway (p = 2.09 x 107%),
cytokine receptor binding (p = 2.14 x 10~%), regulation of blood pressure (p = 1.16 x 1073),
positive regulation of protein phosphorylation (p = 1.18 x 10~3), inflammatory response
(p = 2.44 x 10~3), steroid metabolic process (p = 2.66 x 10~2), regulation of autophagy
(p = 5.96 x 10~3), protein homodimerization activity (p = 6.40 x 10~3), and regulation of
MAPK cascade (p = 6.47 x 1073). In addition, chord graphs (Figure 3) were also depicted
to show the most significant enrichment pathways of KEGG and GO and visualize the
targeting relationship between significant genes and significant pathways, so as to visualize
which pathways every gene is enriched to, and which genes are enriched in each pathway:.
PPI network (Figure 4) shows the interaction between proteins.

(b)

positive regulation of protein phosphorylation .!

~log10(pvalue) regulation of MAPK cascade

"
LE B

count

—~log10(pvalue)
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inflammatory responsc
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>w oW
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Figure 2. KEGG and GO enrichment analysis of 33 overlapped genes by Metascape. (a) Bubble chart
for KEGG enrichment analysis. (b) Bubble chart for GO enrichment analysis.
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Figure 3. Chord graphs for four significant KEGG pathways and ten significant GO terms. (a) Chord
graph of four significant KEGG pathways. (b) Chord graph of ten significant GO terms. For
each panel, the right semicircle represented significant pathways or terms, and the left semicircle
represented the genes enriched in these pathways or terms.
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Figure 4. Protein—protein interaction (PPI) network for 33 overlapped genes by STRING. Each circle
represents a protein, a line between proteins indicates PPI, line thickness indicates the strength of
data support.
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4. Discussion

In the present study, we performed a comprehensive large-scale gene-level analysis
using co-complementary methods and successfully detected 33 common genes, including
11 previously reported genes such as TYK2, IL-6R, and Fas [7-9], and 22 novel potential
genes such as IL-27, LAT, and MAGI3. Enrichment analysis suggested important role of
pathways involving Th17 cell differentiation and Rapl signaling pathway, followed by
PPI network illustrating the protein—protein interactions. All these findings provide novel
insights into the potential molecular mechanisms underlying the development of JIA.

TYK2, IL-6R, and Fas appear more frequently in the significant KEGG pathways and
Go terms, and the expression products of these three genes have been shown to play
important roles in the inflammatory and immune responses of JIA [21-23]. Tyrosine kinase
2 encoded by gene TYK2 is a part of janus kinase (JAK), which mediates the activation
of signal transducers and activators of transcription (STAT) proteins. That is, TYK2 may
play a role in autoimmunity and inflammation through abnormal expression in JAK-STAT
pathway, thus leading to JIA [21,24,25]. IL-6R encodes part of the interleukin 6 receptor,
as a pro-inflammatory cytokine, IL-6 is significantly elevated in the serum of JIA patients.
Inhibition of IL-6R expression reduces IL-6 and IL-6 receptor binding, thereby reducing
inflammation and immune responses in JIA patients [22,26]. Fas can induce T-cell apoptosis
by binding to the Fas Ligand (FasL), so decreased gene Fas expression may lead to the
accumulation of activated T-cells and cause autoimmune diseases [27].

IL-27 is involved in encoding the synthesis of IL-27, a cytokine that plays a role in
innate immunity and whose primary function is to promote pro-inflammatory Th1 differ-
entiation and inhibit anti-inflammatory Th2 responses [28-32]. IL-27 promotes Th1 cell
differentiation, which in turn produces a large amount of the proinflammatory cytokine
interferon-y (IFN-y) to play a pathogenic role in JIA [32,33]. The promotion of Thl differen-
tiation and the inhibition of Th2 differentiation by IL-27 is also dependent on the action
of STAT1 [28,31-33], that is, the role of IL-27 is also involved in the JAK-STAT signaling
pathway. Therefore, if the expression of gene IL-27 is inhibited, the inflammatory response
of JIA patients can be correspondingly reduced.

LAT encodes a protein called T-cell activation adaptor [34]. T-cell receptor (TCR) sig-
naling is an important process in T-cell development and its activation in the periphery [35].
LAT is a key signaling hub connecting TCRs to trigger downstream T-cell responses. If
LAT gene expression is reduced, peripheral T-cell development and numbers are inhibited.
Decreased numbers of T cells are prone to lead to immunodeficiency and autoimmune
diseases [36], and patients with JIA are likely to have decreased autoimmune function due
to lack of LAT.

MAGI3 encodes Membrane-associated guanylate kinase, WW and PDZ domain-
containing protein 3. Abnormal expression of MAGI3 may affect Notch signaling and
thus affect bone and joint development in children [37]. In addition, MAGI3 is also a
risk gene for rheumatoid arthritis (RA), Graves’ disease, and other autoimmune diseases,
indicating it can also cause JIA by affecting the human immune system [38,39].

Enrichment analysis suggested important role of pathways involving Th17 cell differ-
entiation and Rap1 signaling pathway. The Th17 cell differentiation pathway is involved in
inflammation and bone destruction, IL-27, IL-6R, LAT, TYK?2 are all on this pathway. Th17
cells are actively differentiated and mainly secrete IL-17, which not only promotes the pro-
duction of inflammatory cytokines in the JAK-STAT signaling pathway, but also catalyzes
the maturation of osteoclasts, leading to osteopenia and joint damage [40,41]. The activation
of inflammatory cytokines and osteopenia together lead to arthritis, and so inhibiting the
differentiation of Th17 cells may inhibit and treat JIA to a certain extent [42—44].

The Rap1 signaling pathway plays a central role in the functional outcome of T-cell
stimulation [45]. Rapl is a T-cell receptor proximal signaling protein, and its abnormal
expression may lead to abnormal T cells [46]. T cells activate macrophages and synovial
stromal cells pleiotropically through cell-to-cell contact and interleukin production, leading
to synovitis and joint destruction in RA [47,48]. The pathogenic behavior of the above T
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cells is caused by Rap1 inactivation, and sustained Rap1 signaling in T cells can effectively
reduce the incidence and severity of arthritis [49,50]. Therefore, activation and enhancement
of Rap1 signaling also contribute to the prevention and treatment of JIA.

Our study is not without limitations. First, we only focused on European ancestry
due to the current large-scale GWASs of JIA was only available for European population.
The findings cannot be directly generalized to other ethnic population. Second, the results
from data analysis are often less reliable than that from serious and high-cost experiments,
which is likely to be the gold standard in biomedicine studies. However, the data analysis
is still valuable. For example, it is often hard to pre-specify the experimental target under a
hypothesis-free approach, data analysis can help to narrow down the candidate experimen-
tal target list and provide the evidence of target priority. In addition, the current analysis
pipeline can be easily extended, an alternative way is to search for restriction endonuclease
(RE) sites in the non-coding regions and gain insights through RE digestion patterns [51,52].
Third, our findings are obtained from a joint analysis of all subtypes of JIA, and there is no
guarantee that the conclusions would be valid for any subtype. Finally, the results must
necessarily be confirmed by experiments in the laboratory, given that all the analysis are
essentially in silico.

5. Conclusions

In summary, we performed gene-level analysis as well as enrichment analysis on the
largest GWAS summary data of JIA. We identified novel JIA-associated genes including
IL-27, LAT, and MAGI3, and highlight the important role of Th17 cell differentiation, Rap1
signaling pathway in the development of JIA. Our results can provide new insights into
the pathogenic mechanisms as well as potential therapeutic targets of JIA; however, further
studies are still required to validate these findings.
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