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Abstract: Environmental stress triggered by climate change can alter the plant’s metabolite profile,
which affects its physiology and performance. This is particularly important in medicinal species
because their economic value depends on the richness of their phytocompounds. We aimed to
characterize how water deficit modulated the medicinal species Melia azedarach’s lipophilic profile
and antioxidant status. Young plants were exposed to water deficit for 20 days, and lipophilic
metabolite profile and the antioxidant capacity were evaluated. Leaves of M. azedarach are rich in
important fatty acids and oleamide. Water deficit increased the radical scavenging capacity, total
phenol, flavonoids, and catechol pools, and the accumulation of β-sitosterol, myo-inositol, succinic
acid, sucrose, D-glucose and derivatives, D-psicofuranose, D-(+)-fructofuranose, and the fatty acids
stearic, α-linolenic, linoleic and palmitic acids. These responses are relevant to protecting the plant
against climate change-related stress and also increase the nutritional and antioxidant quality of
M. azedarach leaves.

Keywords: Melia azedarach; drought; water deficit; oleamide; catechols; flavonoids

1. Introduction

According to the Intergovernmental Panel on Climate Change [1], the increasing
frequency of extreme weather events related to climate change, such as droughts and
heatwaves, represents a severe threat to agriculture and forestry ecosystems. Moreover, the
climatic projections forecast indicate that the climate change impacts on the functioning of
the ecosystem will increase in intensity and frequency, largely due to the occurrence of more
severe drought events [2]. Drought severely impacts plant development and productivity.
The photosynthetic apparatus is one of the main targets of drought stress, decreasing net
CO2 assimilation rate and PSII efficiency [3]. Plants respond to drought stress by triggering
several defense mechanisms. The activation of the antioxidant system, which comprises
enzymatic and non-enzymatic defense mechanisms, plays an important role in control-
ling reactive oxygen species (ROS) excessive production. The enzymatic system includes
several enzymes, such as superoxide dismutase, catalase, ascorbate peroxidase, and glu-
tathione peroxidase, and the non-enzymatic system comprises the ascorbate, glutathione,
carotenoids, tocopherols, and phenolic compounds [4]. Within the phenolic compounds,
the flavonoids are involved in plant physiological functions, demonstrating protective
effects against biotic and abiotic stresses, including drought and UV-B radiation [5]. These
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compounds can scavenge the free radicals O2
•−, OH•, and non-radicals such as 1O2, partic-

ularly the o-dihydroxy B-ring substituted flavonoids, such as the quercetin 3-O-glycosides
and luteolin 7-O-glycosides, which exhibit a high antioxidant activity [6,7]. The coordinated
action of both enzymatic and non-enzymatic defense systems contributes to controlling the
levels of oxidative stress, therefore helping the plants cope with stress. In addition to these
antioxidant responses, other protective metabolites from primary and secondary metabolic
pathways can also be upregulated by abiotic stress-inducing changes in metabolite pools
that can affect the pharmaceutical characteristics of plants [8–11]. For instance, drought con-
ditions enhanced the levels of several secondary metabolites such as (E) β-caryophyllene in
Origanum vulgare, rutin, quercetin, and betulinic acid in Hypericum Brasiliense; oleanolic acid
and botulin in Betula platyphylla; glycyrrhizin in Glycyrrhiza glabra; cyanogenic glucosides
in Phaseolus vulgaris; p-coumaric acid, rutin, luteolin and luteolin-7-O-glycoside, apigenin,
and 1,3 dicaffeoylquinic acid in Achillea pachycephal; and lupeol derivative and ursolic acid
in Olea europaea [11–13]. In Artemisis annua and Glycine max, drought conditions increased
the contents of sterols, promoting tolerance to dehydration [14,15]. In olive plants, drought,
or drought combined with heat and high UVB radiation, increased the levels of fatty acids
(e.g., palmitic and oleic acids), helping to protect from membrane damage and promoting
the accumulation of osmoprotectant agents (such as glucose and sorbitol) [7,13]. Moreover,
the adjustments in the levels of flavonoids (e.g., luteolin and derivatives (luteolin-7-O-
glucoside and luteolin-4-O-glucoside), apigenin-7-O-glucoside, chrysoeriol-7-O-glucoside,
and kaempferol derivatives), secoiridoids (oleuropein and oleoside-11-methyl ester), and
hydroxycinnamic acid derivatives (verbascoside) [7] in response to drought, together with
the activation of peroxidases enzymes [13], played an important role in the control of
oxidative stress. In Balangu plants (Lallemantia sp.), the levels of proline and total phenolic
compounds, as well as the activity of antioxidant enzymes (e.g., superoxide dismutase
(SOD) and ascorbate peroxidase (APX)), increased drought stress tolerance [16]. Addition-
ally, in Coleus plectranthus and Coleus forskholii, drought increased the activity of antioxidant
enzymes (e.g., SOD, APX, and catalase) along with the accumulation of non-enzymatic
antioxidants (such as α-tocopherol, reduced glutathione and ascorbic acid) [11]. The
production of sucrose, anthocyanins, total flavonoids, and phenolics, and the activity of
the enzyme phenylalanine lyase (involved in the biosynthesis of flavonoids and phenyl-
propanoids) was enhanced in Labisia pumila in response to drought conditions [11]. These
changes are particularly relevant in medicinal species since they are rich in important
bioactive compounds that have high applicability in the pharmaceutical and food indus-
tries [16] as well as in the healthcare of most of the world’s population [17]. Medicinal
species are a source of natural compounds with antioxidant properties, namely secondary
metabolites, such as phenols, flavonoids, terpenes and terpenoids, carotenoids, alkaloids
and saponins, and primary metabolites, such as amino acids, fatty acids, carbohydrates,
and intermediates of the tricarboxylic acid (TCA) cycle [12].

Melia azedarach is considered a multipurpose tree native to West Asia. Still, it is
nowadays cultivated in several countries (such as India, Pakistan, Nepal, Sri Lanka, East
Timor, Indonesia, Lebanon, Palestine, Syria, Tunisia, Algeria, Cyprus, Greece, Argentina,
China, Uganda, Kenya, Brazil, Australia, Southern France, Northern Italy, Croatia, and
Portugal) with temperate to warm climates [18–21]. However, the projected increase in the
frequency of extreme weather events in many regions of the globe during this century may
reshape M. azedarach future suitable habitats [21]. This species has economic interest since
it produces timber of high quality, which is often used to make furniture, farm tools, boats,
vehicles, plywood, toys, and musical instruments and is largely used as an ornamental
tree due to its ability to withstand a wide range of climatic and soil conditions [18,21,22].
Moreover, extracts of the different parts of this medicinal species are shown to have
pharmacological and toxicological characteristics. For instance, leaves are rich in several
bioactive molecules, such as flavonoids, terpenoids, limonoids, fatty acids, carbohydrates,
steroids, alkaloids, saponins and tannins [23,24], which have been demonstrated to have
antibacterial, antifungal, antiparasitic, antiviral and insecticide properties [19,25,26].
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The global recognition of the health benefits of plant phytocompounds promotes an
increased use in the pharmaceutical and food industries and a search for novel natural
antioxidant compounds [16]. This tendency highlights the need to tackle how climate
change-related stressors modulate medicinal species’ phytochemical composition and redox
state [7,8,12,16]. Thus, we aim to study how M. azedarach plants adjust their metabolite
and antioxidant status to deal with a water deficit condition and decipher how drought
modulates leaves’ bioactive compounds, promoting their nutritional and economic value.
We hypothesized that M. azedarach metabolite plasticity to drought conditions involves an
adjustment of the lipophilic metabolites and antioxidant status.

2. Results and Discussion

Climate change stressors can reduce plants’ growth and phytocompound levels [14].
We reported previously that water deficit (WD) conditions reduce M. azedarach water
potential, photosynthesis, and cell membrane stability but activate the antioxidant enzyme
system (e.g., superoxide dismutase, ascorbate peroxidase, glutathione reductase, and
catalase) and increase the ascorbate pool [22].

A commonly used marker to evaluate the level of plant dehydration or water status
is the leaf relative water content (RWC). In the present work, M. azedarach plants under
well-watered (WW) conditions presented a leaf RWC of 91.1 ± 1.77%, while the ones
under WD conditions showed a leaf RWC of 74.1 ± 4.19%. These data indicated that WD
treatment induced severe stress since the RWC levels decreased to values below 80% [27].
Severe drought stress can cause several physiological impairments in plants, such as a
decrease in photosynthesis, and when this stress condition is extended for a long period,
plant growth and productivity can be compromised [28].

In the present work, we demonstrated for the first time that drought conditions
significantly increase the antioxidant status of this species (increase in total antioxidant
capacity, total phenols, catechols, and flavonoid pools; see Figure 1). Similar results were
obtained in other species such as Triticum aestivum, H. brasiliens, L. pumila, C. forskholii and
C. amboinicus, O. europaea, and Achillea sp. (A. pachycephala, A. millefolium, A. nobilis, and
A. filipendulina) [11,29,30]. Drought seems to regulate the biosynthesis of phenolics, increas-
ing the activities of key enzymes, such as phenylalanine lyase (PAL) and chalcone synthase
(CHS). Moreover, drought upregulates the transcript levels of genes encoding key biosyn-
thetic enzymes of the phenylpropanoid and flavonoid biosynthesis, such as PAL, CHS, chal-
cone isomerase, dihydroflavonol 4-reductase, flavonol synthase, flavanone-3-hydroxylase,
cinnamate 4-hydroxylase, 4-coumarate-CoA ligase, dihydroflavonol-4-reductase, antho-
cyanidin synthase, and UDP flavonoid glycosyltransferase [30,31].

The GC-MS analysis allowed the identification of six classes of compounds in the
hexane extracts, long-chain alkanes (tetracontane (C40H82), hexatriacontane (C36H74) and
dopentacontane (C52H106)), sterols (β-sitosterol, stigmasterol, and campesterol), the polyal-
cohol myo-inositol, the amide oleamide, organic acids (linoleic, α-linolenic, palmitic, stearic
and succinic acids), and carbohydrates (sucrose, melibiose, D-glucose, D-(+)-talofuranose,
D-psicofuranose, and D-(-)-fructofuranose) (Table 1). The organic acids, oleamide, and
long-chain alkanes were the most abundant compounds found in the hexane extract
(Table 1). Some of these compounds (e.g., sterols such as β-sitosterol, long-chain alkanes,
and fatty acids such as the palmitic, stearic, and linoleic acids) were reported previously in
M. azedarach leaves [32,33]. The fold change in metabolites (Table 1) after WD treatment
showed that only the tetracontane, stigmasterol, campesterol, oleamide, linoleic acid, and
D-(+)-talofuranose exhibit a negative response (decrease in the respective metabolite).
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Figure 1. Total antioxidant activity evaluated by the ABTS assay (A), total phenolic content (B), cate-
chols (C), and flavonoids (D) in well-watered (WW) and water-deficit (WD) plants of Melia azedarach.
Values are means ± standard deviation (n = 6). Asterisks indicate statistical differences between
treatments (p < 0.05).

Table 1. Melia azedarach leaf metabolite content (mg g−1 DW) in plants under in well-watered (WW)
and water-deficit (WD) conditions. Values are means ± standard deviation (n = 3). For each line,
asterisks indicate statistical differences between treatments (p < 0.05). Fold change (log2 (WD/WW))
in metabolites after WD treatment (values of the fold change are presented near the respective bar).
Rt-retention time, DW-dry weight.

Rt
(min) Compound

Treatments
(mg g−1 DW) p-

Value Fold Change
WW WD

Long-chain alkanes
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32.35 D-(+)-Fructofuranose 0.361 ± 0.046 0.690 ± 0.002 * <0.001



Int. J. Mol. Sci. 2022, 23, 13611 5 of 10

Long-chain alkanes are presented in high amounts in M. azedarach leaves, and WD
conditions stimulated the accumulation of these compounds (Table 1). Leaf cuticular
wax is mainly composed of long-chain alkanes, triterpenes, alcohols, aldehydes, and fatty
acids [34]. The increase in long-chain alkanes in WD M. azedarach plants may represent
an investment to strengthen cuticle structure and, therefore, a protective barrier against
water loss.

Within the organic acids, M. azedarach leaves are particularly rich in the polyunsat-
urated fatty acids α-linolenic and linoleic acids, which are compounds that decrease the
risk of human cardiovascular disease [35], and also in the saturated fatty acids, palmitic
and stearic acids. Moreover, WD promoted the increase in the levels of these fatty acids
(except linoleic acid) (Table 1). Studies in Populus simonii plants suggested that drought
stress promotes the biosynthesis of long-chain fatty acids (LCFAs) through the upregu-
lation of the enzyme acetyl-CoA carboxylase 1 involved in the elongation of LCFAs [36].
However, the mechanisms behind the fatty acid adjustments in response to drought are not
well understood.

The TCA-cycle intermediate, succinic acid, was also stimulated by the WD treatment
and is positively correlated with the antioxidant battery, ABTS, total phenols, catechols, and
flavonoids (Table 1, Figure 2; r ≥ 0.85 and p ≤ 0.04). In fact, this acid (and its derivatives)
has antioxidant properties and plays an important role as an antidiabetic agent for type
2 diabetes, lowering blood glucose and glycosylated hemoglobin [37]. In addition, several
studies also demonstrated that the treatment with this acid improves motor behavior and
ameliorates the cognitive deficits in animal models with neurodegenerative diseases [38].
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Figure 2. Pearson’s correlation coefficients between parameters in plants of the well-watered (WW)
and water deficit (WD) conditions. Coefficients closer to 1 (blue color) mean a positive correlation,
0 (salmon color) indicates no correlation, and −1 (red color) means a negative correlation. Ac., acid;
D-(+)-Fructo., D-(+)-Fructofuranose; D-(+)-Talofur., D-(+)-Talofuranose; D-Psicofur., D-Psicofuranose;
β-D-Glucopyr., β-D-Glucopyranose; and LC, long chain.

To our knowledge, this is the first report of oleamide presence in M. azedarach leaves.
The levels of oleamide were not affected by the WD treatments, despite some works
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referred this compound putative stress protector [8]. So, the role of oleamide in plant
physiology remains unknown, possibly acting in growth and development regulation and
pathogen interactions [39]. Moreover, oleamide is an emerging drug with several pharma-
cological properties (e.g., neuro-signaling and antitumoral) [40], and the high content of
this amide (compared to other species, such as Coxi lachrymal-jobi [41], Lemna minor [42],
Nigella sativa [43] and O. europaea [8]) make M. azedarach a valuable source of this compound.

The leaves of M. azedarach are also rich in sterols, and we identified sitosterol, stig-
masterol, and campesterol (Table 1). Along with sphingolipids and glycerolipids, sterols
are structural components of cell membranes that maintain membrane permeability and
fluidity [15]. Under abiotic stress conditions, changes in sterols’ total content, as well
as variations in their profile (particularly the composition ratio of sitosterol and stigmas-
terol) can occur affecting the state of the cell membrane [29,44,45]. In the present work,
only sitosterol increased in response to WD treatment, indicating that this treatment in-
duced changes in the ratio of campesterol/sitosterol and sitosterol/stigmasterol, a process
of stress compensation [44]. Nevertheless, considering that plant sterols reduce human
total and LDL cholesterol by inhibiting cholesterol absorption [46], the increase in sitos-
terol levels by the WD treatment represents an improvement of the nutritional quality of
M. azedarach leaves.

In M. azedarach, the levels of carbohydrates changed in response to WD, leading
to a significant increase in sucrose, D-glucose and derivatives, D-psicofuranose, and D-
(-)-fructofuranose (Table 1). The increase in the sugars pools is a typical response of
plants to drought stress [3,13]. For instance, sucrose and glucose increase under water
deficit conditions can act as osmolytes to maintain cell turgor, while the increase in other
sugars, such as fructose, can be linked with the upregulation of some secondary metabolite
synthesis [47]. Moreover, the increase in these soluble sugars in M. azedarach is positively
correlated with total phenols, catechols, flavonoids, and total antioxidant activity (TAA)
(evaluated by the ABTS assay) (except for the case of D-psicofuranose) (Figure 2; r ≥ 0.83
and p ≤ 0.04), suggesting their involvement in antioxidant responses, possibly helping
in ROS balance and oxidative stress control, membrane protection, and enzyme/protein
stabilization as reported by You and Chan [48]. Despite this role in stress tolerance, the
increase in carbohydrate contents also represents an augmenting of energy availability,
enriching the nutritional level of M. azedarach plants.

The polyalcohol myo-inositol is a plant signaling molecule and under drought con-
ditions can act in osmoregulation processes and/or in oxidative control (e.g., ROS scav-
enger) [49]. This protective role seems to be important in M. azedarach plants, as their
levels increase under WD conditions and a positive correlation with the antioxidant battery,
TAA, total phenols, flavonoids, and catechols was observed (Table 1, Figure 2; r ≥ 0.85
and p ≤ 0.03). Additionally, in humans, myo-inositol and its phosphate derivatives exert
many valuable positive effects, acting as an antidiabetic, anti-inflammatory, antioxidant,
and anticancer agent [50]. Our work demonstrates that M. azedarach leaves can be enriched
by myo-inositol through exposure to WD, potentially increasing the health benefits.

3. Materials and Methods
3.1. Plant Material and Stress Treatment

Seeds of Melia azedarach Linn. were germinated in plastic pots (500 mL) with turf
and vermiculite (2:1). After germination, seedlings were grown in a climatic chamber at
20 ± 2 ◦C, a 16/8 h (day/night) photoperiod, and with a photosynthetic active radiation of
500 ± 20 µmol m−2 s−1 (250 ± 20 µmol m−2 s−1 at the top of the plants) provided by Osram
lamps. Light intensity in the climate chamber was measured with the external PAR sensor
of the LI-6400XT (Portable photosynthesis system, LI-COR Bioscience, Lincon, NE, USA).
Before the beginning of the water deficit treatment (WD), all plants were well-watered
(100% field capacity). Two-month-old plants (60 days-old) with a height of 13.5 ± 3.2 cm
were randomly assigned as well-watered (WW) (plants watered at 100% of field capacity
(n = 12)), and WD plants were watered at 20% of field capacity for 20 days (n = 12). The
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pots were watered at 100% or 20% field capacity by restoring the quantity of water lost
every second day (water lost was measured by weighing the pots with a scale). After these
treatments’ leaves from the third top node (the youngest fully expanded) were collected for
determination of the relative water content. Additionally, leaf samples (collected above the
second node from the bottom) were immediately frozen in liquid nitrogen and stored at
−80 ◦C.

3.2. Plant Water Status

Plant water status was determined by measuring the leaf relative water content (RWC).
The leaves’ fresh weight was determined, and then the leaves were immersed in distilled
water for 24 h at 4 ◦C. After this period, the turgid weight was determined, and the leaves
were dried to calculate the dry weight. The percentage of RWC was determined using the
formula: (FW-DW)/(TW-DW) × 100, where the FW was the leaf fresh weight, the DW the
leaf dry weight, and the TW the leaf turgid weight.

3.3. Total Antioxidant Activity, Total Polyphenols, Catechols, and Flavonoids

Approximately 100 mg of frozen leaf samples were ground with 1 mL of methanol [8]
for the determination of the total antioxidant activity, total polyphenols, catechols, and
flavonoids. After incubation for 30 min at 40 ◦C the homogenate was centrifuged (5000× g
for 5 min at 4 ◦C) and the supernatants were used for analysis.

For the total antioxidant activity (TAA), determined by the ABTS+• free cation radical
scavenging activity method, one aliquot of the leaf extract (10 µL) was incubated for 10 min
at 30 ◦C with 200 µL of ABTS (2,20-azinobis(3-ethylbenzothiazoline-6-sulphonic acid)) as
described by Re et al. [51]. Then, the absorbance of the supernatant was recorded at 734 nm,
and the total antioxidant activity was calculated using a calibration curve for the gallic acid.
Total antioxidant activity is expressed as µM Gallic Acid Equivalents per mg of dry extract.

For the determination of total polyphenols, the Folin–Ciocalteu method was used.
One aliquot of the leaf extract (20 µL) was homogenated with 405 µL of a Folin–Ciocalteu
reagent, and 75 µL Na2CO3 (20%). After an incubation period of 30 min (at 37 ◦C) the
supernatant was read at 765 nm. Total polyphenols content was determined based on a
gallic acid calibration curve. Total polyphenols are expressed as µM Gallic Acid Equivalent
per mg of dry extract.

Catechols were determined using the molybdate assay. A sodium molybdate solution
(5%) was prepared in 50% methanol, and 40 µL were mixed with 160 µL of leaf extract [52].
After incubation at 20 ◦C for 15 min, the absorbance of the supernatant was recorded
at 370 nm. Catechol contents were determined based on a gallic acid calibration curve.
Catechols are expressed as µM Gallic Acid Equivalents per mg of dry extract.

For flavonoid determination, one aliquot of the extract (37.5 µL) was homogenized
with methanol, 75 µL of NaNO2 at 5% and 75 µL of AlCl3 at 10%. After 6 min in dark,
125 µL of 1 M NaOH was added, and the absorbance was recorded at 510 nm. Flavonoids
content was determined based on a rutin calibration curve. Total flavonoids are expressed
as µM Rutin Equivalents per mg of dry extract.

3.4. Extraction of Metabolites and Chromatography Analysis

For each treatment (WW and WD) leaves of M. azedarach were ground in a mill.
Leaf powder (10 g) was mixed with 100 mL of hexane. The leaf metabolites were ex-
tracted at room temperature in three cycles of magnetic stirring for 72 h. The hexane
was evaporated using a rotatory evaporator and the extract solutions were left to dry.
Before analysis samples were silylated. In a glass tube, 250 µL of pyridine, 250 µL of N,O-
bis(trimethylsilyl)trifluoroacetamide, 50 µL of trimethylsilyl chloride, 450 µL of the leaf
extract (~10 mg mL−1), and 450 µL of tetracosane (1.4 mmol L−1) were mixed and placed at
70 ◦C (in a water bath) for 35 min. After that, the silylated extracts were injected into the gas
chromatography mass spectrometer (QP2010 Ultra Shimadzu, DB-5-J&W capillary column
of 30 m × 0.25 mm id and a film thickness of 0.25 µm) as described by Dias et al. [7,8].
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Briefly, helium was used as carrier gas (35 cm s−1) and the initial temperature was fixed to
80 ◦C for 5 min with a temperature rate of 4 ◦C min−1 up to 285 ◦C for 10 min. The injector
worked at a temperature of 250 ◦C and transfer-line temperature was 290 ◦C with a split
ratio of 1:50. The mass spectrometer functioned in the electron impact mode with energy of
70 eV, and data were stored at a rate of 1 scan s−1 (m/z 33–750). The temperature of the ion
source was 250 ◦C. The peak obtained in the chromatograms were identified by comparison
with the library entries of mass spectra database (WILEY Registry TM of Mass Spectra
Data and NIST14 Mass spectral). For metabolite quantification, calibration curves of pure
compounds representative of the chemical families identified in these extracts (palmitic
acid, cholesterol, maltose, octadecanol, and tetradecane) were prepared and injected in the
GC-MS as described above for the leaf extracts.

3.5. Statistical Analysis

Data were analyzed by t-test at a significance level set to 0.05 using the statistic
program SigmaStat for Windows version 3.1 (Systat Software, San Jose, CA, USA). Pearson
correlations were performed in the SigmaStat for Windows version 3.1 (Systat Software, San
Jose, CA, USA). Fold change was determined in Microsoft® Excel for windows (version 10).

4. Conclusions

We characterized the antioxidant status (total antioxidant activity, catechols, total phe-
nols, and flavonoids) and the leaf lipophilic profile of the multipurpose species M. azedarach
and demonstrated that leaves are a source of important fatty acids, polyalcohol, sterols,
TCA cycle-related metabolites, amides, and carbohydrates. Moreover, we demonstrated
for the first time in this species that metabolite adjustments and the increase in the total
antioxidant pool (total antioxidant activity, polyphenols, flavonoids, and catechols) repre-
sent a protective response to drought, helping M. azedarach plants to survive and tolerate
this stress. Drought conditions can stimulate the accumulation of important compounds,
contributing to increase the nutritional and bioactive richness of this species and thus its
commercial value.
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