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Abstract: Lung cancer is one of the most lethal forms of cancer, with a very high mortality rate. The
precise pathophysiology of lung cancer is not well understood, and pertinent information regarding
the initiation and progression of lung cancer is currently a crucial area of scientific investigation. En-
hanced knowledge about the disease will lead to the development of potent therapeutic interventions.
Extracellular vesicles (EVs) are membrane-bound heterogeneous populations of cellular entities that
are abundantly produced by all cells in the human body, including the tumor cells. A defined class of
EVs called small Extracellular Vesicles (sEVs or exosomes) carries key biomolecules such as RNA,
DNA, Proteins and Lipids. Exosomes, therefore, mediate physiological activities and intracellular
communication between various cells, including constituent cells of the tumor microenvironment,
namely stromal cells, immunological cells, and tumor cells. In recent years, a surge in studying
tumor-associated non-coding RNAs (ncRNAs) has been observed. Subsequently, studies have also
reported that exosomes abundantly carry different species of ncRNAs and these exosomal ncRNAs
are functionally involved in cancer initiation and progression. Here, we discuss the function of exoso-
mal ncRNAs, such as miRNAs and long non-coding RNAs, in the pathophysiology of lung tumors.
Further, the future application of exosomal-ncRNAs in clinics as biomarkers and therapeutic targets
in lung cancer is also discussed due to the multifaceted influence of exosomes on cellular physiology.

Keywords: extracellular vesicles; exosomes; non-coding (nc)RNAs; siRNA; miRNA; cancer therapeutics;
lung cancer

1. Introduction

Lung cancer (LC) is the leading type of cancer and is responsible for high cancer
mortality in the world [1]. Histologically LC is of two primary subtypes: Small-Cell
Lung Carcinoma (SCLC) and Non-Small Cell Lung Carcinoma (NSCLC), which together
make up 15% and 85%, respectively, of all LC cases. Squamous Cell Carcinoma (SCC),
Adenocarcinoma (AD), and large cell carcinoma (LCC) are the other three primary forms of
NSCLC. SCC and LCC, which account for 25–30% and 5–10% of all instances of lung cancer,
respectively, are highly associated with cigarette smoking [2,3]. Between 40 and 45 percent
of all occurrences of lung cancer are of the AD type, which is the most prevalent among
both smokers and non-smokers. Such an extensive prevalence of LC has created an intense
need to find effective treatment modalities for LC. However, despite an extensive effort
to find a cure, the average 5-year survival rate of LC patients has been dismal at around
19% [4]. The major reason for this unfavorable response is that most lung cancer patients
receive their diagnosis when the disease has already progressed to an advanced stage,
making surgical resection challenging and raising the chance of recurrence after surgery [5].
Further, the response rate of chemo-, immune-, and radiation therapy with late-stage cancer
is usually not successful. The unfavorable scenario is further exacerbated because, in the
past, significant effort was on finding a single ubiquitous solution for all LC. After decades
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of studies and with the advent of novel technologies, it has now been realized that genetic
heterogeneity in LC have a crucial role in disease manifestation. Therefore, the emphasis
is currently on developing precision medicine approaches to treat LC, which relies on
the identification of perturbation at the molecular and gene levels. Several studies have
shown that in LC transcriptomic and epigenetic landscapes are significantly altered and
have been explored as a resource discovering novel diagnostic and prognostic biomarkers
and putative therapeutic targets [6,7]. In recent years, surveillance of bodily fluids chiefly,
blood and urine have been done to detect cancer biomarkers under and collective approach
of liquid biopsy [8,9]. Cell free DNA (cfDNA), Circulating Tumor Cells (CTCs) are the
components of liquid biopsy that are regularly examined in liquid biopsy [10]. Extracellular
vesicles (EVs)/Exosomes are the latest addition to the liquid biopsy fraternity and by
several unique characteristics, have been proven superior to cfDNA and CTCs (Table 1).
Exosomes have recently received much interest due to their potential significance in cancer
physiology [11–14]. Both lung cancer patient’s blood and tumor tissues have been found to
have unique exosome-ncRNAs signatures. As a rich source of ncRNAs exosomes actively
participate in cell-to-cell communications that influence the pathophysiology of cancer
cells [15–17]; therefore, it would be beneficial to learn how exosome ncRNA signaling is
involved in different phases of cancer progression. Exosomes are also viewed as resilient
therapeutic delivery vehicles and studies have been done to use them as therapeutic RNA
delivery systems that have yielded robust treatment responses.

Table 1. Comparison of the analysis capability of CTC’s, cfDNA and exosomes.

CTC cfDNA Exosomes

Origin Intact cells [18] Necrotic/apoptotic
cells/intact cells [19] All cells [20]

Source Peripheral blood [21] Serum or plasma [22] Plasma and almost all
bodily fluids [20]

Early-stage detection N/A N/A Detects early-stage
cancer

Biomarkers
Non-coding RNA,
DNA, and protein can
be evaluated

Only DNA
Non-coding RNA,
DNA, and protein can
be evaluated

Inflammatory protein
markers N/A N/A

Enriched with
inflammatory
markers, chemokines,
and cytokines [23–25]

Clinical trials CELLSEARCH [26] GRAIL UNEX-42
(NCT03857841)

This review critically examines the de novo role of exosomal ncRNA in cancer biology
and their application in cancer diagnosis and therapy.

2. The Identity Crisis: Extracellular Vesicles (EVs) or Exosomes

By definition, a population of sub-micron sized membrane bound vesicular structure
released by cells in its extracellular environment are collectively referred to as Extracel-
lular vesicles or EVs [13,14] Figure 1. All prokaryotic and eukaryotic cells can produce
these structures in a way that has been conserved throughout evolution [15]. Exosomes,
microvesicles (MVs), and apoptotic bodies are the three primary categories of EVs based
on their biogenesis or biological origin [27]. MVs are membranous vesicles with a diameter
of 50 to 1000 nm that may be directly budded from the plasma membrane and discharged
right away [28–31]. Exosomes, which have a diameter of between 30 and 150 nm, have
attracted more interest recently, nevertheless, because of their distinctive qualities. Intra-
cellular multivesicular bodies (MVBs) and intraluminal vesicles (ILVs) are formed during
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several activities that result in the production of exosomes [28,29,31–33]. First, early-sorting
endosomes (ESEs) are created because of the plasma membrane invagination [34]. ESEs
eventually produce MVBs carrying ILVs via inward invagination of the endosomal lim-
iting membrane after evolving into late-sorting endosomes (LSEs) [35–37]. Finally, the
fusion of MVBs with the plasma membrane releases ILVs as exosomes into the extracellular
environment, confirming the endosomal method of exosome formation [36,38]. The endo-
somal mode of exosome formation has been supported by extensive data from genetic and
electron microscopy research [39]. The size, composition, biological markers, source, and
function heterogeneity of EVs are all influenced by their biogenesis. Exosomes may be di-
vided into two separate subsets: big exosomes (90–120 nm in diameter) and tiny exosomes
(60–80 nm in diameter), according to combined asymmetric-flow field-flow fractionation
and real-time monitoring [40]. Further, exosomes per se are very heterogenous in size
and are therefore often confused by overlapping definitions of different types of secreted
vesicles. To circumvent this the international Society of Extracellular Vesicles (ISEV) in
2018 published a statement paper and emphasized to classify all extracellular vesicles
and the term exosomes was replaced by small Extracellular Vesicles (sEVs). However,
since many of the published research discussed in this article uses the term therefore to
maintain the originality of study reports we will continue to use the term ‘Exosomes ‘in this
manuscript. Exosomes can be secreted by all kind of cells including macrophages, nervous
cells, endothelial and epithelial cells, and mesenchymal stem cells [41–46]. One of the
unique feature of the exosomes that the molecular content of exosomes chiefly consisting of
various proteins, lipids, and different species of nucleic acids are representative of the cell
of origin and can bring substantial changes in the recipient cells [47].Thus it is important
to review the molecular content of exosomes and there influence in pathologies related to
lung cancer and for that purpose this article is focus on exosomal small non coding RNA
and their pathophysiological role in lung cancer.
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Figure 1. Release of extracellular vesicles and the functional impact on target cells. Since the cargo
of EVs is solely reliant on the pathophysiological circumstances of the cell at the precise moment
the vesicle is produced, EVs are a heterogeneous population in terms of both form and content. It is
important to consider how the same vesicle, or the same message, might be interpreted differently
depending on the cytotype that receives it when analyzing the intricacy of EV-mediated cell–cell
communication. The recipient cell’s gene expression profile will play a significant role in this. Figure
is created with BioRender.
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3. Biogenesis and Attributes of Exosomes

The outward blebbing or budding of the plasma membrane is commonly used to
generate EVs [48–50]. In addition to cytoplasmic pieces, apoptotic bodies frequently
develop from the direct blebbing of the plasma membrane during death of a cell [51].
A range of intracellular cues, such as chemical stimulation via elevated cytosolic Ca2+

levels and activation of kinases that govern actin dynamics, such as the RHO GTPases,
can be used to stimulate the budding followed by pinching of the plasma membrane that
occurs during the production of MVs [52,53]. Exosomes, on the other hand, were shown
to originate from endosomal compartments and need numerous complex mechanisms to
mediate the cargo sorting and transit processes to enable apposition to the cell membrane
for budding. The endosomal sorting complex needed for transport (ESCRT) machinery
or ESCRT-independent pathways, such as the syndecan/ALIX pathway, ceramide, and
tetraspanins, may play a role in the molecular processes driving exosome formation [54].

Based on cell types, physiological and pathological situations, as well as the manner
of exosomes biogenesis, the unique contents of distinct exosomes may often indicate the
unequal loading of various types of cargo [55]. We now have a growing number of publicly
accessible databases with deposited information on the protein, nucleic acid, and lipid
contents of exosomes, as well as the corresponding separation and purification procedures
used, due to advancements in high throughput technologies like next gen DNA and RNA
sequencing, mass spectrometry and high-resolution imaging [56–59]. These priceless
resources will undoubtedly help in the discovery of the molecular processes behind the
observed variety of exosomes cargos.

Components of the ESCRTs and proteins implicated in the numerous pathways respon-
sible for exosomes formation, such as the RAB family of proteins, tetraspanins, as well as
certain transmembrane proteins, are some of the proteins that are frequently concentrated
in exosomes (Figure 1) [60]. The lipid composition of exosomes was discovered to have
characteristics with that of the donor cells, with lipids including sphingomyelin, ceramide,
cholesterol, and phosphatidylserine being found abundant because of their involvement in
exosomes formation [61].

The nucleic acid contents of exosomes have apparently been observed to have a
distinct profile from that of the donor cells, as opposed to proteins and lipids. For instance,
it was discovered that some RNAs were solely concentrated in exosomes, suggesting the
presence of highly selective loading mechanisms for nucleic acids [62–64]. Furthermore, a
wide variety of nucleic acids, including pieces of mitochondrial and genomic DNA and
various types of RNA have all been found in exosomes [65,66]. Valdi et al. (2007) reported
exosomal shuttle RNA (esRNA) as the first nucleic acid in exosomes [65]. The successfully
demonstrated the RNA from exosomes (isolated from mast cells) when added to human
or mouse mast cells can show translatory effect hence they were also among the first to
present the proof of concept of cell-to-cell communication via exosomes. Currently, a wide
variety of RNAs like have been reported in exosomes [67,68]. However, among all types of
reported RNAs non-coding RNAs present in exosomes have been studied extensively for
putative role in cancer patho-biology and will be described in detail in following sections.

3.1. Small-Non-Coding RNA
3.1.1. microRNA

An endogenous class of small non-coding RNAs is known as microRNAs (miR-
NAs) [69]. The bulk of miRNAs are generated through transcription of DNA sequences into
primary miRNAs, precursors, and mature miRNAs [70]. miRNAs have been implicated
in the processing of cancer through a variety of biological processes, including apoptosis,
metabolism, and differentiation. Numerous studies have shown that miRNAs may fit into
exosomes, which will help to ensure their stability and guard against degradation [71,72].
Much of the time, miRNAs cause mRNA degradation and translational repression by inter-
acting with the 3′ untranslated region (3′ UTR) of target mRNAs [70]. To create a diagnostic
screening approach for lung cancer, the exosomal miRNA profiling from plasma samples
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was evaluated. Exosomal miRNAs may be useful as a screening method for this tumor
because the expression patterns of 12 specific upregulated miRNAs (miR-17-3p, miR-21,
miR-106a, miR-146, miR-155, miR-191, miR-192, miR-203, miR-205, miR-210, miR-212, miR-
214) were similar in the tumor plasma-derived exosomes and different from the control
samples [73]. The exosomal miRNAs miR-378a, miR-379, miR-139-5p, and miR-200-5p have
been found to be upregulated in another study as potential indicators to identify tumor
from normal samples in lung adenocarcinoma. The miRNAs miR-151-5p, miR-30a-3p,
miR-200b-5p, miR-629, miR-100, and miR-154-3p showed higher expression are further
potential indicators to distinguish lung adenocarcinoma from granulomas [74]. More and
more emphasis has recently been paid to the finding of miRNAs in exosomes. Numerous
studies indicate that miRNAs are specifically sorted into exosomes, which take part in
cell-to-cell interaction in the tumor microenvironment and are crucial for the biology of
tumors. Exosomal miRNAs in biofluids are also readily available, abundant, and stable,
making them perfect biomarkers for a variety of malignancies, including lung cancer.

3.1.2. snoRNA

The introns of protein-coding or lncRNA-coding genes include nucleotide sequences
called snoRNAs [75,76]. The C/D box snoRNAs and the H/ACA snoRNAs are the two
primary categories of snoRNAs. Each type of snoRNA is linked to a certain gene [77–80].
The most notable number of members are found in the C/D box snoRNAs, also known as
SNORD. A/C box (RUGAUGA, R = A/G), C’ box (AGUAGU), D box (AGUC), and D’ box
are all contained in the SNORDs (CUGA). In eukaryotic cells, the C/D snoRNAs join with
proteins like Snu13p, Nop56p, Nop58p, and fibrillarin to produce a ribonucleoprotein [81].
For certain snoRNA, no targets have yet been identified. As in the instance of piR30840,
the snoRNAs are also a source of piRNAs [82]. These ncRNAs also have a special role as
splicing machinery components. Some C/D box snoRNAs methylate other RNA species
using their associated methylase activity, or they can establish the basis for alternative
splicing, as in the instance of the snoRNA HBII-52. Like piR30840, the snoRNAs are a
source of piRNAs as well [82]. These ncRNAs also have a special role as splicing machinery
components. Some C/D box snoRNAs methylate other RNA species using their associated
methylase activity, or they can establish the basis for alternative splicing, as in the instance
of the snoRNA HBII-52 [83]. The snoRNAs have a significant impact on lung cancer. It
has been established that SNORD42 has an oncogenic function in maintaining lung cancer
carcinogenesis [84]. The U60, U63, U28, U51, U104, HBII-419, U59B, HBII-142, HBI-100, and
U30 snoRNAs are up-regulated in lung cancer, but HBII-420 is down-regulated, according
to a bioinformatic study based on TCGA data [85]. Additionally, SNORD15A expression is
markedly reduced in tissue from non-smokers compared to smokers. The data also shown
that non-smokers had a more uniform distribution of snoRNAs than smokers in the pattern
of snoRNAs that are differentially expressed in normal tissue vs. malignant tissue [85]. In
lung cancer cells, SNORD78 is overexpressed, which promotes the growth of cancerous
cells, increases EMT, and thus increases their ability for invasion [86]. Furthermore, the stem
phenotype of the tumor-initiating cell is maintained by these RNAs. For instance, tumor-
initiating cells have low levels of the gene SNORD116-26. SNORA42 and SNORA3 are
two more snoRNAs that are overexpressed in tumor-initiating cells [87]. Lung cancer cell
carcinogenesis is reduced in vivo when SNORA42 is silenced in tumor-initiating cells. The
prospective overall survival rate of lung cancer patients is increased by reduced expression
of SNORA42 and SNORA3 in human lung cancers [87]. Exosomal Rpl13a snoRNA released
from one parabiont had a 2-O-methylation impact on the rRNA in the other parabiont in an
interesting recently described mouse model of parabiosis [88]. This peculiar work showed
that snoRNA packing into exosomes is not just a dump of cellular byproducts but is also
able to influence distal gene expression.
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3.1.3. piRNA

The proteins known as P-Element induced wimpy testes (PIWI) can bind with and
silence transposable elements in the genome [89]. piRNAs are a subclass of short ncRNAs
with 24–31 nucleotides, a bias toward the 10th adenosine or the 5′-terminal uridine, and
no distinctive secondary structures [90]. To produce mature piRNA, Zucchini riboendonu-
clease must first cleave intermediate piRNA molecules from the piRNA cluster [91]. A
piRNA/piwi complex, which plays a role in the control of spermiogenesis, germline stem
cell maintenance, genomic rearrangement, transposon silencing, and epigenetic modifica-
tion, is formed when piRNAs bind with the protein piwi [92]. piRNAs have so far been
found in germinal cells as well as somatic tissues, including brain, heart, and plasma
tissue [93]. The potential of exosome piRNAs as diagnostic biomarkers has been revealed
by several research that have examined exosome piRNA profiling in a variety of disorders,
including cancer, heart failure, and Alzheimer’s disease [94–96]. These studies help to
identify healthy volunteers from patients. Cancers also exhibit dysregulation of piRNAs
and piwi proteins, some of which play a role in carcinogenesis, cancer detection, and prog-
nosis [97]. piRNAs have recently been found in exosomes of human semen, plasma, and
cancer cell lines that have been cultivated [98–100]. It has been demonstrated that piRNAs
may be transported by exosomes and influence recipient cells behavior. For instance, De
Luca et al. showed that following exposure to BMSC-derived exosomes, umbilical cord
blood CD34+ stem (UCB-CD34+) cells became less differentiated and more viable. Further
investigation demonstrated that the miRNAs and piRNAs in exosomes control the differen-
tiation and death of UCB-CD34+ cells [101]. In exosomes from the bone marrow of patients
with multiple myeloma (MM), it was discovered that piR-004800, another piRNA, was
overexpressed. This exosome-bound piR-004800 has been found to influence sphingosine-1
phosphate receptor signaling and foster the growth of MM cells, acting as an oncogene [102].
The findings with piRNAs contained within exosomes imply that these RNAs also serve
the exosome-targeted cells. However, the roles played by piRNAs in exosomes have not
been fully investigated. Therefore, more experimental, and clinical research is necessary.

4. RNA Binding Protein/Translocation of RNA to Exosomes

Most of the RNA in cells exists as ribonucleoprotein (RNP) complexes, which is an
essential fact to be aware of. RBPs, or RNA-binding proteins, are crucial regulators of the
post-transcriptional processing and transport of RNA molecules because of their ability
to interact with RNA. RBPs control RNA processing, nucleocytoplasmic transport and
maturation, intra-compartmental localization, and turnover by unique interactions with
their corresponding RNA molecules [103–105]. RBPs exhibit the ability to interact not
just with mRNAs but also with tiny ncRNAs that may create RNP complexes by binding
to both single-stranded and double-stranded RNA. Such a collection of interactions is
thought to be the primary regulator of various facets of cellular metabolism and can have
long-lasting effects [65,106,107]. RNA-binding proteins play a key role in the sorting and
loading of RNA in exosomes. The synaptotagmin-binding cytoplasmic RNA-interacting
protein SYNCRIP, also known as hnRNPQ or NSAP1, has been found by Santangelo et al.
as a part of the hepatocyte exosomal miRNA sorting apparatus [108]. They demonstrated
that SYNCRIP knockdown reduces the ability of exosomes to internalize miRNAs. Hobor
et al. later discovered that SYNCRIP has a segment known as NURR (N-terminal unit
for RNA recognition), which identifies and binds the miRNA motif GGCU/A [109]. This
interaction directs exosome loading of miRNA. Post-translational modification of several
RBPs like YBX1 help in sorting ncRNA inro exosomes, like methylation of YBX1 aids to
sort hY4F which functions as a tumor suppressor which in turn promotes lung cancer
growth [110]. RNA binding proteins aid in RNA function in target cancer cells as well
as RNA loading. RBP, IGF2BP1 is overexpressed in non-small cell lung cancer (NSCLC)
and linked with poor prognosis (in lung adenocarcinoma) at early onset: more than 3-
fold elevated IGF2BP1 expression may be identified in 70% of NSCLCs, and it positively
correlates with a 30% reduction in tumor-specific 5 years survival following surgery [111]. A
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synergistic phenomenon between oncogenic KRAS mutation and IGF2BP1 overexpression
has been documented by Rosenfeld et al. in murine and human lung cancer models [112].
KRASG12V mutant/IGF2BP1 transgenic mice showed an increased tumor development
linked to KRAS mRNA attachment to IGF2BP1 [113]. Non-small-cell lung cancer cells
with annexin A2 (ANXA2) knockdown had an increase in p53 and cell cycle arrest [114].
Major Vault Protein is a 100 kDa ribonucleoprotein that makes up the majority (70%) of
the multimeric vault ribonucleoproteins [115]. In summary, several RNA binding proteins,
alone or in conjunction with other molecular interactors, may regulate RNA sorting inside
exosomes and targeting cancer mechanism.

5. Functional Implications of Exosome ncRNA in Lung Cancer

Exosomal ncRNAs have drawn more interest in recent years for their potential impli-
cations in the emergence of cancer. Exosomal ncRNAs have a key role in the proliferation,
angiogenesis, invasion, metastasis, drug resistance, and immunological regulation of can-
cer cells, all crucial stages in the evolution of the disease (Figure 2). The involvement of
exosomal ncRNAs in various cancer growth pathways will be further discussed in this
section.
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Figure 2. Exosomal ncRNAs and lung cancer. Malignant cells produce exosomes that transport
ncRNAs that can promote tumor growth to distant organs and the cancer microenvironment. ncRNAs
can have a variety of impacts on recipient cells, including: (1) Increase cancer proliferation (2) Increase
cancer drug resistance; (3) Modify immune cell signaling, affecting, and changing the immune
response; (4) Alter the metabolism of cancer cells. Figure is created with BioRender.
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5.1. Cancer Progression

Cancer formation and progression are greatly aided by proliferation, which is defined
by altered expression and/or activity of proteins relevant to the cell cycle. Exosomes facili-
tate the growth of lung cancer cells by transferring genetic information across cells in the
tumor environment via exosomal miRNAs. For instance, Harel et al. discovered that exoso-
mal miR-512 inhibited lung tumor cell growth by targeting TEA domain family member 4
(TEAD4), demonstrating that miR-512 had tumor-suppressive properties [116]. In addition,
miR-208a packed in exosomes from A549 NSCLC cells was found to operate as a transfer
messenger, target p21, and activate the AKT/mechanistic target of rapamycin (mTOR)
pathway, limiting NSCLC cell growth [117]. Furthermore, exosomes from H1299 cells
carrying miR-96 might enhance cell proliferation by specifically targeting and inhibiting
LIM-domain only protein 7 (LMO7) [118].

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was the first
lncRNA shown to be implicated in lung cancer metastasis [119]. Subsequently, Zhang
and colleagues discovered that exosomal MALAT1 was substantially abundant in the
serum of NSCLC patients, which sped up tumor migration and proliferation by inhibit-
ing cell apoptosis and shortening cell cycle [120]. According to this research, exosomal
MALAT1 may function as a non-invasive biomarker for the diagnosis of NSCLC or as
a prospective therapeutic target for NSCLC (Table 2) [121]. Exosomal MALAT1 has a
similar mechanism in many other cancers as well [122,123]. For instance, by preventing
angiogenesis, GAS5 has been shown to be a possible therapeutic target for lung cancer.
Human umbilical vein endothelial cells (HUVECs) are controlled in terms of apoptosis,
proliferation, and tube formation by exosomal GAS5 that is generated from lung cancer.
The homeobox transcript antisense intergenic RNA (HOTAIR) gene has five transcripts, all
of which have been identified as lncRNAs, and is situated on the cytogenetic band 12q13.13.

Table 2. NcRNA’s involved in proliferation and metastasis of lung cancer.

ncRNA Exosome Origin Targeting Pathway Reference

miR-23a A549 TGF-β [124]

miR-23a A549 PHD1/PHD2 and ZO1 [125]

HOTAIR A549, NCI-H1975 miR-203 [126]

UFC1 A549, H1299 PTEN [127]

MALAT-1 A549, H1299 miRNA-491-5p/UBE2C [128]

MMP2–2 A549 TGF-β/MMP2–2/MMP2 [129]

TBILA
AGAP2-AS1 NSCLC patients - [130]

FOXD3-AS1 A549 ELVAL1/PI3K/Akt [131]

LINC00662 NSCLC patients miRNA-320d/E2F1 [132]

H19 A549 H19/miRNA-615-3p/ATG7 [133]

PCAT-1 A549 miRNA-182/217-p27/CDK6 [134]

SCIRT A549 miRNA-665/HEYL [135]

SOX2OT A549 miRNA-194-5p/RAC1 [136]

5.2. Cancer Cell Metabolism

Exosomes have abilities comparable to those of the cells from which they originate.
Exosomes carry information that exhibits traits shared by the cells that produced them.
Therefore, exosomes play a role in how cancer cells metabolisms are altered. Exosomes have
a key role in fostering the development of cancer by transporting enzymes, metabolites,
and non-coding RNAs. For example, IGFBP4-1, a carcinogenic lncRNA discovered in lung
cancer, has been shown to affect energy metabolism and encourage the production of en-
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zymes involved in glycolysis, including HK2, LDHA, and pyruvate dehydrogenase kinase
1. (PDK1) [137]. In NSCLC, the lncRNA BCYRN1 functions as an oncogene. According
to Lang et al., the miR-149/PKM2 axis was activated by BCYRN1, which also boosted
PKM2 expression levels and further enhanced glycolysis in NSCLC cells [138]. CRYBG3
has recently been identified as a powerful tumor-promoting lncRNA that plays a role in
NSCLC tumor spread and aneuploidy [139]. According to Chen et al., CRYBG3 and LDHA
can directly interact to increase the activity of the latter, encouraging aerobic glycolysis and
cell growth in NSCLC cell lines [140]. exosomal lncRNA LINC00662 promoted NSCLC
progression by modulating miR-320d/E2F1 axis [141]. The reprogramming of metabolic
systems by cancer cells to adapt to the stress environment might be a major factor in the
observed occurrence of treatment resistance, hastening the development of cancer. Pyru-
vate dehydrogenase has been found to be regulated by complexes like the miR-182-PDK4
axis, which is crucial for TCA cycle and lipogenesis [142]. The downregulation of miR-22
on ATP citrate lyase (ACLY), which permitted ACLY-mediated lipogenesis and enhanced
metastatic consequences, is another significant target [143]. In NSCLC, miR-126-5p can also
affect MDH1’s enzymatic activity, and at higher concentrations, it can cause cell toxicity.
Non-coding RNAs are crucial for understanding the beginning and development of tumors
because of their function as regulators in a wide range of pathways.

5.3. Modifications of Immune Systems

Immune checkpoint molecules are essential for maintaining self-tolerance and pre-
venting autoimmune disease. Patients with advanced NSCLC have had increased survival
due to the targeting of immune checkpoint molecules, which are mostly represented by
programmed cell death protein 1 (PD1) and its ligand PDL1. It has been shown that a
network of miRNAs regulates immunological checkpoint-related functions. For instance,
it has been demonstrated that miR-34, which is regulated by p53 and directly binds to
the PD-L1 3’UTR to suppress its expression in NSCLC models [144]. Additionally, miR-
200/ZEB1 signaling is regulated by p53. According to Chen et al., the miR-200/ZEB1 axis
strongly correlates with EMT tumors and controls PD-L1 expression [145]. MiR-140 is
another miRNA that binds to and restrains PD-L1. In NSCLC, miR-140 is downregulated,
which increases the production of PD-L1 and, in turn, cyclin E, a gene that dysregulates the
G1-S transition and the S phase in lung tumors to promote their proliferation [146]. These
results collectively imply that targeting of various tumor initiating/suppressive genes by
different non-coding RNAs may affect these immune checkpoints via simulating immune
checkpoint inhibitor activity. Alternatively, circulating miRNAs and circRNA have been
studied as potential techniques for assessing patient response to anti-PD1 treatment in
NSCLCs [147]. According to Peng et al., immunological checkpoints PD1 and CTLA4
exhibit a substantial connection with the lncRNA MIR155HG, suggesting the possibility
of using these models to evaluate immune inhibitors before clinical trials [148]. Denaro
et al. compiled a thorough list describing the function of lncRNAs in various cancers even
though no other lncRNAs have been demonstrated to have a role in immune evasion in
lung cancer like HOTAIRM1 or MIR155HG [149]. Therefore, it is important to research if
any lncRNAs are involved in lung cancer’s host immune system evasion.

5.4. Drug Resistance

One of the primary causes of the lung cancer prognosis being poor is the emergence
of medication resistance. Patients with lung cancer are prone to developing resistance to
molecularly targeted medications like epidermal growth factor receptor tyrosine kinase
inhibitors (EGFR-TKIs), as well as to more traditional chemotherapy treatments [150].
Exploring the probable processes that reduce therapeutic effectiveness would therefore aid
in developing better cancer therapies. Exosomal miRNAs had a role in EGFR-TKI resistance
as well [151]. For instance, Jing et al. demonstrated the transfer of exosomal miR-21 from
gefitinib-resistant H827R cells to gefitinib-sensitive HCC827 cells, where it subsequently
stimulated AKT signaling and resulted in gefitinib resistance [152]. Additionally, it was
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noted that the levels of miR-214 were considerably greater in PC9GR cells that were
resistant to gefitinib and the exosomes that were produced from those cells than in PC9
cells that were sensitive to gefitinib [153]. Gefitinib resistance developed in PC9 cells when
exosomal miR-214 was transferred from PC9GR cells to PC9 cells [154]. Exosomes from
PC9GR cells were transfected with an anti-miR-214, which reversed the development of
gefitinib resistance.

Four exosome-derived lncRNAs have been identified so far as mediating treatment
resistance in lung cancer [155]. According to one study, gefitinib exposure causes NSCLC
cells to express more H19, which is transferred to other cells via exosomes produced by
the main tumor [156]. Additionally, exosomal H19 targets gefitinib-sensitive tumor cells to
spread gefitinib resistance. According to a related study, H19 promotes erlotinib resistance
in NSCLC via the miR-615-3p/ATG7 axis. RP11-838N2.4 is another exosome-mediated
lncRNA in lung cancer that promotes erlotinib resistance in NSCLC [157]. Exosomal RP11-
838N2.4 is transported from erlotinib-resistant NSCLC cells to susceptible cells to induce
erlotinib resistance, according to several research (Table 3).

Table 3. ncRNA’s involved in drug resistance of lung cancer.

ncRNA Exosome Origin Drug Reference

miR-100-5p A549 Cisplatin [158]

H19 HCC827, HCC4006 Gefitinib [159]

H19 Serum, HCC827, A549 Erlotinib [160]

RP11-838N2.4 HCC827, HCC4006 Erlotinib [161]

miR-425-3p A549 Cisplatin [162]

MSTRG.292666.16 Plasma, H1975 Osimertinib [163]

UCA1 HCC827, PC9 Geftinib [164]

FOXD3-AS1 A549 5-fluorouracil [165]

AGAP2-AS1 A549, H460 and H1299 Radioresistance [166]

cicHIPK3
cicPTK2 A549 Pexidartinib [167]

cic0014235 Non-small cell lung cancer Cisplatin [168]

miR-96 H1299 Cisplatin [169]

miR-222-3p A549-GR Gemcitabine [170]

6. Diagnostic Potential of Exosomes-ncRNA in Lung Cancer

Numerous studies have identified cargo ncRNAs as lung cancer biomarkers. miRNAs
discovered to be dysregulated in lung cancer patients. Exosomes relative to healthy controls
include miRNA-21, miRNA-23b-3p, miR-10b-5p, miRNA-139-5p, miRNA-200b-5p, miRNA-
378a, miRNA-379, and miRNA-4257 [171]. Circulating miRNAs can be employed as
diagnostic, prognostic, and predictive biomarkers for lung cancer, including miRNA-21,
miRNA-16, and let-7. Examples of these biomarkers are miRNA-21, miRNA-122, and
miRNA-205 [172]. Exosome-derived lncRNA MALAT1 may be a viable biomarker for
NSCLC screening, according to a recent meta-analysis, however more validation is needed
because to its limited specificity [173]. MALAT-1 levels in serum-derived exosomes are
positively correlated with the tumor stage and lymphatic metastasis, according to Zang
et al. [123]. Growth arrest-specific transcript 5 (GAS5), a lncRNA, was downregulated in
NSCLC patients [174]. The expression of this lncRNA was inversely related to tumor stage.
Exosome lncRNA HAGLR and CTCs were demonstrated to be potential biomarkers in
NSCLC patients by Rao et al. in 2019 [175]. Drug resistance has also been linked to exosome
lncRNAs. For instance, lncRNA H19 was connected to gefitinib resistance whereas lncRNA
RP11-838N2.4 was linked to erlotinib resistance in NSCLC [176].
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Serum exosomal piR-hsa-26925 and piR-hsa-5444 might be used as possible biomarkers
for the diagnosis of Lung adenocarcinoma and piRNAs in lung cancer.

Liquid biopsy is a less invasive technique for examining solid tissues, blood, and
other bodily fluids. Exosomes are an excellent signal for liquid biopsies since they are
easily found in practically all human bodily fluids. Exosomes from various cell types and
states have been found to contain unique RNA profiles, especially ncRNAs. These novel
analytes offer a different method for diagnosing, tracking, and determining how effectively
a treatment is working for tumor processes as well as other human illness processes, such
those in viral and parasite diseases. Important cellular signaling regulators known as
ncRNAs may be found and packed inside exosomes to be released into the bloodstream
with great stability. Therefore, the use of exosomal ncRNAs offers intriguing potential
for liquid biopsy in the case of disorders and may remain a focus of fascinating study in
the area.

A few exosome databases are already being built to gather different publicly available
exosome sequencing data (Table 4). High-throughput sequencing and exosome databases
work well together to understand the profile of exosomal ncRNAs under certain patho-
physiological settings, allowing for quick identification of exosomal ncRNAs that needs
further investigation.

Table 4. Open-source curation of exosome ncRNA.

Database Weblink Type of
ncRNA

No. of ncRNA
Expressed Reference

EVatlas
http://bioinfo.life.hust.edu.cn/

EVAtlas/#/rna (accessed on
6 October 2022)

miRNA 2527

[177]

snoRNA 1953

piRNA 22,546

snRNA 1771

rRNA 1294

tRNA 432

yRNA 4

exoRBase
http://www.exorbase.org/

exoRBaseV2/toIndex (accessed on
6 October 2022)

lnRNA 15,637

[62]mRNA 19,643

cirRNA 79,085

Vesiclepedia
http:

//microvesicles.org/index.html#
(accessed on 6 October 2022)

miRNA 10,520
[178]

mRNA 27,646

ExoCarta
http://exocarta.org/index.html

(accessed on 6 October 2022)

miRNA 2839
[56]

mRNA 46,879

7. Exosome-ncRNA as a Therapeutic Tool in Lung Cancer

Non-coding RNAs have been used in few documented clinical studies for therapy,
while being widely used as early detection biomarkers and diagnostic indicators. The first
miRNA target treatment to be approved for use was MRX34, a miR-34a mimic used to
treat hepatocellular carcinoma, lung cancer, and other cancers that had metastasized to
the liver (NCT01829971). The viability of non-coding RNAs as possible treatments was
established by this clinical experiment. A study from The Asbestos Diseases Research
Institute (NCT02369198) examined the relationship between malignant pleural mesothe-
lioma, a rare form of lung cancer, and miRNA expression. To determine if medication
that modifies the regulation of non-coding RNAs would be advantageous for long-term
treatment, researchers used this study to examine miRNAs from the miR-15 family and
drug sensitivity. They used a synthetic miRNA called TargomiRs, especially a miR-16

http://bioinfo.life.hust.edu.cn/EVAtlas/#/rna
http://bioinfo.life.hust.edu.cn/EVAtlas/#/rna
http://www.exorbase.org/exoRBaseV2/toIndex
http://www.exorbase.org/exoRBaseV2/toIndex
http://microvesicles.org/index.html#
http://microvesicles.org/index.html#
http://exocarta.org/index.html


Int. J. Mol. Sci. 2022, 23, 13637 12 of 24

mimic, to do this. Only one of the 26 participants showed any sort of partial response to
the medication. Patients with NSCLC were examined with the combined chemotherapy
treatment Cisplatin and Vinorelbine in different clinical research by Berghmans et al. They
looked at whether mRNA and miRNA may function as prognostic biomarkers. There
were no definite findings when comparing transcriptome assessments of possible miRNA
biomarkers from earlier studies with actual expression in the patients. It is challenging for
researchers to discover distinct biomarkers due to restrictions brought on by the diverse
histology of lung malignancies and separation of miRNA expression. There will be antici-
pation for more clinical studies as non-coding RNA treatment in 3-D models advances. It is
uncertain currently if non-coding RNAs have a role in potential treatments.

7.1. Exosome Mediated Delivery of Therapeutic Small RNAs

The unique properties of exosomes as a natural carrier for biomolecules, high bio-
compatibility and minimal systemic toxicity have now allowed them to be explored as an
attractive candidate for in vivo anti-cancer therapeutic delivery system. Thus, it has been
widely used as nano vectors to deliver therapeutics in medicine especially for cancer ther-
apy [179]. Additionally, the possibility of surface functionalization of exosomes membranes
with different tumor targeting moieties allows for more precise delivery targeting (Figure 3).
Further, Exosomes ability to shield their payload from destruction in the extracellular
environment and transport it to destination cells makes them promising candidates for
precise delivery (both in vitro and in vivo) of therapeutically important RNA (most often
short RNAs (siRNAs and miRNAs) targeted at treating a variety of disorders including
cancer [180]. Exosomes can integrate desired therapeutic RNA directly through exogenous
ways (Physical methods e.g., electroporation, sonication, freeze thaw cycle and chemical
methods e.g., RNA cholesterol conjugation, Exosome and liposomal hybrid) or indirectly
through endogenous methods by genetically altering the donor cells (RNA transfection,
RNA encoding plasmid transfection, virus transfection, RNA and RNA binding sequence
engineering) to manufacture desired RNA loaded Exosomes [181].
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7.2. Exosomes for siRNA Delivery

The transfer of synthetic interfering RNAs via exosomes is an efficient technique
for tumor RNA interference (RNAi) therapy. Bioengineered exosomes loaded with siR-
NAs targeting genes involved in oncogenes like BCL-2, PLK1, KRAS, the survivin protein
prevents cell migration and proliferation and forms a strong foundation of exosome me-
diated siRNA treatment to the tumor cells. According to a study, exosomes produced
by mesenchymal cells that resemble fibroblasts were designed to carry siRNA targeted
at the oncogenic KrasG12D. The modified Exosomes (iExosomes) then demonstrated im-
proved targeting to cancer-causing Kras as compared to liposomes in various pancreatic
cancer mice models [182]. Wang et al. reported tumor-suppressing effects after treating
hypopharyngeal carcinoma cell line (FaDu cells) with Exosomes/transient receptor po-
tential polycystic 2 (TRPP2) siRNA conjugates [183]. In another work, an iRGD peptide
produced on the surface of exosomes increased exosome-Breast cancer cell fusion and
siRNA administration into tumor cells [184].

In attempt to have an enhanced therapeutic effect in lung cancer therapy exosomes
have been electroporated with KRAS siRNAs and were administered to A549 tumors
in vivo, KRAS was knocked down, and the tumor was subsequently suppressed. Similarly,
SOX2 siRNA-engineered tLyp-1 exosomes given to NSCLC lowered proliferation and
growth of cancer cells [185]. Notably, the potential of exosomes as potent carrier for
siRNA is slowly being realized and a phase 1 clinical trial using MSC-derived exosomes
with siRNA targeting mutant KRAS is now being conducted [NCT03608631] to treat
metastatic pancreatic cancer. In a study, Lin et al. modified the surface of exosomes with
PD-L1 antibody and two additional chemical moieties PEG and PEI. The Exo-PEG-PEI-PD
modified targeted exosomes could target and identify tumors. The surface PEI of the
modified exosomes interacted ionically to load siRNA that was specifically targeted to PD-
L1. Following that, in vitro cytotoxicity and tumor cell identification and inhibition tests
were performed. The findings show that the PD-L1 targeting exosome can be employed
as a safe and effective nanocarrier for siRNA distribution, which is a key component of
tumor-targeted gene therapy [186].

7.3. Exosomes as Carriers for miRNA Delivery

Like siRNA synthetically generated miRNAs can also be packaged in exosomes and
delivered as an effective cancer treatment molecule. In castration-resistant prostate cancer
patients, for example, miR-1290 and miR-375 in exosomes were favorably related with
overall survival [187,188]. In osteosarcoma, hepatocellular carcinoma (HCC), non-small cell
lung cancer (NSCLC), breast cancer, and glioma, the transport of miRNAs by MSC-derived
exosomes has demonstrated promising anti-tumor effects [189]. In a recent work, modified
exosomes (miR-449a Exo) that can actively distribute miR-449a were created by genetic
engineering. It was demonstrated that miR-449a Exo was preferentially taken up by A549
cells and had strong homologous targeting capability. Furthermore, miR-449a Exo exhibited
a good in vitro and in vivo miR-449a delivery efficiency. They showed that miR-449a Exo
efficiently prevented the A549 cells from proliferating and encouraged their apoptosis.
Furthermore, miR-449a Exo was discovered to slow the growth of mice tumor and lengthen
the lifespan in vivo [190]. Another study examined the anti-tumor and anti-angiogenic
effects of miRNAs on NSCLCs cultivated in 2D and 3D microfluidic systems.

It has also been documented that exosomes can transport miRNA inhibitors (anti-
miR-9, anti-miR-214, and anti-miR-374) to cancer cells [191]. Li et al. have combined the
exosomes marker protein CD9 with HuR, an RNA binding protein that has a high affinity
for miR-155, to increase the loading efficiency of particular miRNAs into exosomes. The
fused CD9-HuR efficiently enriches miR-155 into exosomes after cell transfection and the
generation of Exosomes [192].

To transport more miRNA to tumor cells and strengthen the therapeutic effect, geneti-
cally modified Exosomes can target tumor cells by attaching functional ligands modified
on exosomes surface to overexpressed receptors on the tumor surface. For instance, Liang
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et al. discovered that endocytosis by the SR-B1 receptor was required for the Apo-A1-
modified Exosomes (Apo-Exo/miR-26a) to specifically bind to HepG2 cells. The findings
showed that Apo-Exo/miR-26a-treated cells could upregulate miR-26a expression by about
threefold, downregulate key cyclins CCNE2 and CDK6 expression by about onefold, and
significantly inhibit cell migration by about twofold compared to HepG2 cells treated with
EVs loaded with miR-26a [193]. Ohno et al. administered GE11-targeted exosomes carrying
miRNA let-7a to mouse breast cancers overexpressing EGF. Exosomes with GE11 targeting
displayed more tumor suppression than the control. Exosomes made from donor cells
that were miRNA-transfected also reduced cancer cells [194]. Recent research has shown
that chemotherapeutics and miRNAs can be co-encapsulated within modified Exosomes to
produce an even better anti-tumor effect [195,196].

Additionally, Exosomes loaded with exogenous miRNAs have been tried in numerous
experimental cancer treatments. EVs can also be loaded with miRNA using electroporation.
According to studies, each Exosome included roughly 3000 miRNA molecules. Exo-FectTM
Exosome transfection reagent, HiPerFect transfection reagent, and Lipofectamine 2000
and 3000 are a few other commercially available transfection reagents that are used to
load miRNA directly into Exosomes [197–202]. Additionally, during heat shock, CaCl2 can
facilitate the transfection of miRNAs or their inhibitors into exosomes, and these RNAs have
functional activity once they have been delivered to the target cells [203]. Hyaluronic acid-
polyethyleneimine (HA-PEI)/hyaluronic acid-polyethylene glycol (HA-PEG) combined
nanoparticles were used by Trivedi et al. to successfully introduce miRNA125b into SK-LU-
1 lung cancer cells [204]. This successfully increased miRNA-125b expression in exosome
secreted by the lung cancer cells. Table 5 discussed about the recent in vivo delivery of
therapeutic ncRNA by EVs.
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Table 5. Lists studies exploring exosomes for in vivo delivery of therapeutic ncRNA as treatment modality.

Exosomes Source of
Exosomes Delivery Cargo Loading Method Target Gene Mechanism of Loaded

Therapeutics
Cancer Types
(Cell Lines) Therapeutic Effects Reference

Engineered
exosomes

(iRGD peptide
modified)

HEK293T cells KRAS siRNA Lipofectamine 2000
transfection reagent KRAS Knock-down KRAS gene

expression Lung cancer (A549) tumor growth
Inhibition [205]

Engineered
exosomes

(tLyp-1-modifed
EVs)

HEK293T cells siR1, siR2, siR3 Electroporation SOX2 Knock-down the SOX2 gene
expression

Non-small cell lung
cancer (A549)

Silenced the target gene
expression and reduced the

stemness of cancer stem cells
[206]

Engineered
exosomes

(EGFR RNA
aptamer- modified)

HEK293T Survivin siRNA ExoFect
exosome transfection survivin Silencing the expression of

survivin
Non-small-cell lung

cancer (A549)

Leading to sufficient gene
silencing, chemotherapy

sensitization, and regression
of tumor

[207]

Engineered
exosomes

with PDL-1 antibody
(Exo-PEG-PEI-PD)

A549 Cells PD-L1 siRNA Incubation PD-L1 Silencing PD-L1 gene expression Lung cancer (A549)
In vitro Inhibition of tumor

cell proliferation and
promoted the apoptosis

[186]

Engineered
exosomes

With TAT peptide
modification

A549 cells miR-449a Interaction with TAT
protein Bcl-2 BCL-2 expression Non-small cell lung

cancer (A549)

Promoting
cell apoptosis by inhibition of

cell proliferation
[189]

Human cell-derived
exosomess HEK293T cells Mimic of

miRNA-497 Transfection
YAP1, HDGF,

CCNE1,
VEGF-A

Knockdown of YAP1,
HDGF, CCNE1, VEGF-A

expression

Non-small cell lung
cancer (A549)

Angiogenesis
and inhibition of tumor

growth
[191]

exosomes isolated
from

SK-LU-1 cells
SK-LU-1 cells miRNA-125b

Chemical transfection by
Hyaluronic

acid-polyethyleneimine
(HA-PEI)/hyaluronic

acid-polyethylene glycol
(HA-PEG)

p53

Modulation of wt-p53 and
miR-125b expression and

reprogramed global miRNA
profile for activation of pathways
associated with apoptosis as well

as p53 signaling

SK-LU-1 lung cancer
cells

miR-449a Exo was found to
control the progression of

mouse tumors and prolong
their survival

in vivo

[203]

Lung cancer derived
exosome A549 cells miR-563 electrophoresed Bcl-2 Inhibiting the function of Bcl-2 Non-small cell lung

cancer (A549)

miR449a significantly
inhibited the expression of
apoptosis inhibitor protein

Bcl-2 in A549 cells and
thereby promoted cell

apoptosis. Tumor regression
and improved survival of

in vivo

[208]
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8. Conclusions and Future Perspective

Exosomal non-coding RNAs are emerging as excellent liquid biopsy analytes because
they can be detected in bodily fluids. However, there are several issues that must be
resolved before clinical translation. The process of producing pure and homogeneous
exosomes is a technological challenge worth highlighting. The methods for isolating exo-
somes that are now most often employed are conventional ultracentrifugation, exosome
precipitation reagents, density gradient separation, immunomagnetic beads, and ultra-
filtration. However, these approaches have several limitations, including a reliance on
particular equipment, labor-intensive and lengthy processes, low production, and purity.
As a result, there is a critical need for more accurate, trustworthy, and accessible methods
for the separation and characterization of exosomes. On the one hand, these techniques may
make the exosome isolation processes simpler and increase exosome production or purity.
However, there is still a dearth of preclinical procedures and experience with laboratory
testing. Hopefully soon, a standardized procedure for isolating exosomes will be created.
Additionally, cancer is a very heterogeneous illness with various gene expression patterns
in various locations and biofluids. Since various human blood fractions had varied miRNA
profiles, Chen et al. revealed that certain biomarkers might only be found in a limited
number of biofluids [209]. As a result, appropriate biofluids must be chosen in accordance
with the features of various cancers, and they must be simple to access using minimally or
non-invasive methods.

Non-coding RNAs have mostly been the subject of clinical research in the past that
were primarily concerned with using them as diagnostic markers; however, more recent
clinical trials are focusing on how non-coding RNAs may be utilized as prognostic and clin-
ical response indicators. Models that forecast dysregulation in various microenvironments
may be built using artificial intelligence based on computer science. Limitations include
developing a standard set of biomarkers owing to variations in cancer histology, however
applying artificial intelligence might possibly source numerous datasets and identify the
most efficient non-coding RNAs. Modification of microRNAs has been shown to have
multiple roles. Further studies needed to ensure the ancillary effects of these ncRNA.
The significance of non-coding RNAs and therapeutic treatment may be assessed and,
hopefully, moved toward additional clinical trials using more sophisticated clinical models
that simulate the lung tumor microenvironment.
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