~ International Journal of
Molecular Sciences

Review

Helicobacter pylori in the Oral Cavity: Current Evidence and
Potential Survival Strategies

Lin Zhang "%, Xi Chen ">, Biao Ren (0, Xuedong Zhou 12 and Lei Cheng 1>*

check for
updates

Citation: Zhang, L.; Chen, X,; Ren, B.;
Zhou, X.; Cheng, L. Helicobacter pylori
in the Oral Cavity: Current Evidence
and Potential Survival Strategies. Int.
J. Mol. Sci. 2022, 23, 13646. https://
doi.org/10.3390/ijms232113646

Academic Editors: Mara Di Giulio,
Silvia Di Lodovico and

Alberto Antonelli

Received: 12 September 2022
Accepted: 5 November 2022
Published: 7 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University,
Chengdu 610041, China

Correspondence: chenglei@scu.edu.cn

t These authors contributed equally to this work.

Abstract: Helicobacter pylori (H. pylori) is transmitted primarily through the oral-oral route and
fecal-oral route. The oral cavity had therefore been hypothesized as an extragastric reservoir of H.
pylori, owing to the presence of H. pylori DNA and particular antigens in distinct niches of the oral
cavity. This bacterium in the oral cavity may contribute to the progression of periodontitis and is
associated with a variety of oral diseases, gastric eradication failure, and reinfection. However, the
conditions in the oral cavity do not appear to be ideal for H. pylori survival, and little is known about
its biological function in the oral cavity. It is critical to clarify the survival strategies of H. pylori
to better comprehend the role and function of this bacterium in the oral cavity. In this review, we
attempt to analyze the evidence indicating the existence of living oral H. pylori, as well as potential
survival strategies, including the formation of a favorable microenvironment, the interaction between
H. pylori and oral microorganisms, and the transition to a non-growing state. Further research on oral
H. pylori is necessary to develop improved therapies for the prevention and treatment of H. pylori
infection.
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1. Introduction

H. pylori is a microaerophilic pathogen with a typical spiral or arc form that infects
about 50% of the world’s population [1]. Although most H. pylori-positive individuals are
asymptomatic, long-term infection with H. pylori has been associated with the development
of gastric malignancies, particularly gastric cancer and gastric mucosa-associated lymphoid
tissue lymphoma [2]. Hence, this organism was identified as a class I carcinogen by the
World Health Organization in 1994. A combination of at least two diagnostic methods is
often required to detect H. pylori infection and related diseases. Moreover, the emergence
of drug-resistant strains poses considerable challenges to current treatment [3]. Therefore,
it is beyond dispute that H. pylori is associated with a heavy disease burden worldwide.

It is generally accepted that H. pylori transmits between the human population through
the oral-oral route, the fecal-oral route, and the gastro—oral route [4,5]. The oral cavity is
the first channel for H. pylori into the human body, and its function in H. pylori infection of
the human body generates considerable concerns among researchers. Many scholars have
employed molecular techniques, immunological or biochemical approaches, and classic
culture techniques to identify oral samples as H. pylori-positive [6]. Accordingly, studies
have been carried out to detect H. pylori infection using saliva samples. Such a non-invasive
test might be more acceptable to individuals [3]. In addition, some studies have shown
that H. pylori in the oral cavity could adversely affect the clinical outcome of eradication
therapy [7,8], and oral H. pylori is considered a risk factor for the recrudescence of gastric H.
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pylori infection [9]. Consequently, it is hypothesized that the oral cavity might be a potential
source for H. pylori gastric reinfection [10].

The environment of the oral cavity differs considerably from that of the stomach. It
is generally accepted that H. pylori is a microaerophilic microorganism that requires high
CO; tension to thrive and survive for long periods of time [11,12]. However, owing to the
communication with the outside environment, a lower CO, concentration and a higher O,
concentration are detected in the oral cavity than in the stomach. The microbial composition,
temperature, and mechanical scouring within the oral cavity differ considerably from those
of the stomach. For instance, Streptococcus mitis (S. mitis) and Streptococcus mutans (S.
mutans) may inhibit the growth of H. pylori in vitro [13,14]. Furthermore, eating can cause
an unstable oral temperature, and the mechanical flushing of saliva might be a barrier to
the long-term oral survival of H. pylori (Figure 1). Therefore, the inconsistencies between
clinical detections and unfavorable conditions represent a challenging question concerning
how H. pylori adapt to the environment of the oral cavity.
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Figure 1. The oral cavity is a potential source for H. pylori gastric reinfection. However, the oral cavity
seems not to be an ideal habitat for H. pylori, owing to the unstable temperature, high O, tension,
and varied bacterial composition [13,14]. Therefore, survival strategies of living H. pylori in the oral
cavity remain to be investigated. The green arrows symbolize the common transmission pathway of
H. pylori. PCR, polymerase chain reaction; RUT, rapid urease test.

In this review, we analyze various lines of evidence regarding the persistent survival
of H. pylori in the oral cavity and discuss three potential strategies favoring its survival in
order to better comprehend the role of this bacterium in the oral cavity and to inspire the
development of adjunctive treatment for improved control of H. pylori.

2. The Evidence for the Persistent Survival of Oral H. pylori
2.1. Various Samples from the Oral Cavity Can Be Detected as H. pylori-Positive

H. pylori need to reach and continue to survive in the oral cavity, which is considered
the first channel of H. pylori transmission into the stomach. Many scholars have applied
molecular biology and immunology methods to detect oral H. pylori in dental plaque [15],
saliva [16,17], the tongue coating [18], and dental pulp [19-21]. Recently, Sruthi et al. [22]
suggested that H. pylori can also be detected on deep carious surfaces in the oral cavity of
children, with a positivity rate of 70%. In comparison, dental plaque is more likely than
saliva to be detected by PCR as H. pylori-positive [6], possibly due to the continuous flow
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of saliva reducing the bacterial load [17]. In a study detecting H. pylori in dental pulp, most
H. pylori-positive specimens from the same teeth remained positive after an interval of one
to two weeks, indicating that H. pylori colonized the inflamed pulp tissue [20].

Although most studies have reported positive detection of oral H. pylori by molecular
biology, such results are unsatisfactory because they cannot reflect the viability of H. pylori
in the oral cavity. Several studies have attempted to culture oral H. pylori, indicating that
H. pylori appears to be an organism that lives in the oral cavity for the long term. In 1989,
Krajden et al. [23] successfully isolated and cultured H. pylori in dental plaque for the first
time; saliva cultures from all 71 patients included in the study failed to show any positive
results. Since then, a small number of published studies [6,21] have described the successful
isolation and culture of H. pylori from dental plaque, saliva, or pulp samples. However,
most of these studies confirmed the isolate as H. pylori by oxidase test, catalase test, urease
tests, or microscopic observations, which cannot rule out the influence of other H. pylori-like
microorganisms. Therefore, further study with a focus on whole-genome sequencing of the
isolated bacterial strain is suggested [6].

2.2. The Association between Gastric H. pylori Infection and Oral H. pylori Positivity

Several clinical studies in recent years have reported a close association between gastric
H. pylori infection and oral H. pylori positivity (Table 1). A meta-analysis of 23 studies (1861
patients) found that the rate of coinfection with H. pylori in gastric and dental plaque was
49.7% [24]. In theory, the high coexistence rate of H. pylori in oral and gastric samples
may imply that the oral cavity serves as a reservoir of H. pylori. Some scholars further
used H. pylori virulence marker genes for genotyping and found that the vacuolating
cytotoxin A (vacA) genotype was concordant in 51.1~58% of saliva and biopsy from the
same patient, suggested that H. pylori strains in that oral cavity and stomach are likely to
be homologous [4,25]. However, some scholars found that H. pylori was commonly present
in the oral cavity with no clear relation to H. pylori infection of the stomach [16,26,27],
indicating that H. pylori in the oral cavity exhibited a degree of independence.

Table 1. Summary of data regarding H. pylori coinfection in gastric biopsy and oral samples.

H. pylori Detection

Oral Sample Sample Size Method in Oral Samples Coinfection Rate Ref.
Saliva 689 H. pylyrl-asgoaated PCR-16S rRNA and ureA 79.79% [28]
gastritis patients gene
24%; 51.1% agreement in
Saliva 162 pa'tlen.ts with PCR vacA. genotype in saliva [25]
gastric disease and biopsy from the same
patients
10.72%; high homology
. 300 patients with PCR-ureC, cagA, and vacA  (58%) in vacA genotype in
Saliva .. . . [4]
gastric disease gene saliva and gastric samples
from the same patients
Dental plaque 235 patients with chronic PCR-163 rRNA 56.52% [29]
gastritis
Dental plaque 164 dyspeptic patients Enzyme Immunoassay 82.1% [30]
65 patients with gastric H. o .
Dental plaque pylori infection among 134 RUT 89.2 /(? among gastric H. [31]
d . . pylori-positive patients
yspeptic patients
Subgingival plaque 101 dyspeptic patients RUT 66% [32]




Int. . Mol. Sci. 2022, 23, 13646

40f19

Table 1. Cont.

H. pylori Detection

Oral Sample Sample Size Method in Oral Samples Coinfection Rate Ref.
o . . Nested PCR- 860bp o
Subgingival plaque 443 dyspeptic patients fragment 71.86% [33]
Subgingival plaque 67 dyspeptic patients PCR-ureA gene 25.4% [34]
Dental plaque and . . . PCR-16S rRNA and 23S Dental plaque (77.6%);
saliva 70 children with dyspepsia RNA saliva (75.9%) [26]

Dental plaque and
saliva

Dental plaque and
saliva

Dental plaque and
saliva

Supragingival plaque,
subgingival plaque,
and saliva

50.8%; 38.7% genotype
concordance between oral

61 patients with dyspepsia PCR-ureA gene and gastric samples from [35]
the same patients
62 patients with dyspepsia PCR-16S-rRNA All oral samples (68%) [36]
60%; 98% agreement
. . . between gastric DNA H.
30 patlen’fs with gastric PCR-cagA gene pylori sequence and their [37]
disease . .
corresponding saliva or
dental plaque DNA
All oral samples (41.1%);
. o supragingival plaque
5 Ztgiz;ttrsl;ih”y le(zloggis’zg PCR-165 rDNA (26.8%); subgingival [38]
p P plaque (30.4%); saliva
(21.4%);

ureA, x-subunit of the urease gene; cagA, cytotoxin-associated gene A; vacA, vacuolating cytotoxin A.

2.3. H. pylori in the Oral Cavity Is Associated with Oral Diseases and Gastric Infection

The survival of H. pylori in the oral cavity threatens oral health. In recent years, the
pathogenic role of oral H. pylori has attracted the attention of many researchers. A meta-
analysis by Liu et al. [39] showed that oral H. pylori, especially in supragingival plaque,
is a risk factor for periodontitis. The total proportion of periodontal pathogens in oral
H. pylori-positive subgingival plaque samples was higher than that in H. pylori-negative
samples [40], indicating that oral H. pylori infection may promote periodontal disease by
altering the microecology. Preincubation of Porphyromonas gingivalis (P. gingivalis) with H.
pylori affects P. gingivalis virulence, including biofilm formation, bacterial internalization
into oral keratinocytes, and hemagglutination, indicating that the direct interaction between
P. gingivalis and H. pylori in subgingival plaque may increase the severity or progression of
periodontitis [41]. In addition, the expression of periodontitis-related protein Wnt5a and
cytokines IL-8, IL-6, and INF-y was significantly increased after cagA + H. pylori stimulated
the human leukemia mononuclear cell line, suggesting that H. pylori can aggravate inflam-
mation progression [40]. In addition to periodontitis, oral H. pylori has been reported to
be associated with erosive oral lichen planus (OLP) [42,43] and oral squamous cell carci-
noma (OSCC) [44]. However, wing to the heterogeneity in interstudy design, conflicting
findings have been reported [44-46], and the pathogenic role of oral H. pylori in these
diseases remains unclear. In the next step, detection methods with high sensitivity and
specificity should be used to clarify the role and specific mechanism of oral H. pylori in the
development of oral diseases.

Oral H. pylori increases the severity of gastric infections and the difficulty of eradi-
cation. On the one hand, oral H. pylori was linked to an increased incidence of grade II
gastroesophageal reflux, esophageal sphincter relaxation, and duodenitis in a case—control
study including 567 patients [7]. On the other hand, the gastric H. pylori eradication success
rate was significantly lower in oral H. pylori-positive patients than in oral H. pylori-negative
patients (52.2% vs. 91.6%, respectively, p = 0.0028) four weeks after eradication therapy [8].
The association between oral H. pylori and gastric infection suggests that the oral cavity
may be the source of gastric reinfection.
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2.4. Effects of Oral Hygiene Management on H. pylori Infection

Given the disparity in eradication success rates between gastric H. pylori and oral
H. pylori eradication therapy (85.8% vs. 5.7%, respectively, OR 55.59, p < 0.00001) [47],
eradicating oral H. pylori with systemic therapy remains difficult in ordinary clinical ap-
plications [48]. In such cases, adjuvant topical treatment to eradicate oral H. pylori seems
necessary (Table 2). For instance, eradication therapy combined with periodontal ther-
apy can increase the eradication rate of gastric H. pylori [49,50]. Consistently, the OR for
the unsuccessful gastric eradication increased 64-fold if periodontal treatment failed to
eliminate oral H. pylori [51]. Oral hygiene management can reduce H. pylori in the oral
cavity and help to control its migration from to the stomach and can be used as an adjuvant
treatment option for gastric H. pylori eradication therapy. Attention should be paid to the
development of oral healthcare products with anti-H. pylori effect to contribute to oral
defense against H. pylori.

Table 2. Oral hygiene management strategies against H. pylori infection.

Effects on Gastric H. pylori

Oral Hygiene Management Eradication Therapy Infection Ref.
Scaling and /or combined with root 10-day course of triple therapy The eradication rate in the combined
planing and oral hygiene instructions consisted of a PPI combined with therapy group was higher than that in [51]
on brushing with the modified Bass amoxicillin (2 x 1 g daily) and the triple therapy only group (64.71%
technique clarithromycin (2 x 500 mg daily) vs. 51.06%, respectively, p = 0.17).
q Y g aaily P Y, p
Lweek trliple therapy (esqmepraque The recurrence rate of gastric H. pylori
20 mg twice per day, clarithromycin . .
500 mg twice per day, or in the combined therapy group was
Scaling and root planing; oral . " lower than that in the triple therapy
hvei . . metronidazole 400 mg three times per o o [28]
ygiene instruction . . : - only group (2.04% vs. 15.27%,
day (if clarithromycin-resistant), as . o
. s . respectively; OR 0.69; 95% CI 0.52 to
well as amoxicillin 1000 mg twice per
0.99; p = 0.001).
day)
0 I;/;(; /utck;lfé?ﬁ;((lod?je/; ng;(z)(i&agjl d Triple therapy consisted of The eradication rate in the combined
e . amoxicillin (1.0 g) and esomeprazole  therapy group was higher than that in
in the mouth for 5 min for 10 d; . . . o [52]
ultrasonic periodontal scaling twice a (20 mg) twice a day and levofloxacin  the triple therapy only group (94.7%
month (0.5 g) once a day for 10 d vs. 78.4%, respectively, p = 0.012).
7-day course of triple therapy The eradication rate in the combined
Basic periodontal therapy during consisted of amoxicillin 2 g/day therapy group was higher than that in (53]
triple therapy (g/d), clarithromycin 1 g/d, and the triple therapy only group (77.3% )
pantoprazole 80 mg/d vs. 47.6%, respectively, p = 0.044).
The eradication rate in the combined
Oral hygiene education, dental 14-day PPI o triple therapy therapy group was higher than that [54]

cleaning, and scaling

in triple therapy only group (62.8% vs.

32.4%, respectively, p < 0.05).

The evidence presented thus far supports the idea that H. pylori is likely to survive in
the oral cavity and be involved in gastric infection. However, currently, we can only reduce
the negative effects of oral H. pylori by some oral hygiene treatments. Therefore, further
investigation of the details of oral H. pylori survival is required to achieve the effective
eradication of H. pylori infection.

3. Pangenome and Virulence Factors

The prevalence of H. pylori infection is not always correlated with the incidence of
gastric diseases. Only a small percentage of those infected progress to peptic ulcers or
even gastric cancer. Some countries in Africa and Asia have lower rates of gastric cancer
and higher rates of H. pylori infection, whereas others exhibit the opposite trend. Such a
phenomenon of clinical diversity is determined by the genetic variability of the infecting
H. pylori strains; the genetic background and immunity of different ethnic groups; gastric
and intestinal microbiota; and environmental factors, such as geographic location and
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dietary habits [55-58]. For example, H. pylori infection status can change oral microor-
ganism composition and alter the interactions between microorganisms, whereas the oral
host-microbial interactome could provide signals to impact health and disease [59]. The
oral microbiota of the host may cause carcinogenesis via various potential mechanisms,
including the induction of chronic inflammation, the inhibition of the host’s immune sys-
tem, antiapoptotic activity, and the production of carcinogenic substances that may fuel the
progression of cancer [60].

Geographically stratified H. pylori subpopulations have emerged as a result of the
mode of intrafamilial transmission and long-term coevolution with human hosts [61]. The
whole-genome sequencing of H. pylori indicated a high rate of gene recombination and
unusual genetic flexibility; these traits enable the bacteria adapt to the dynamic environ-
ment [62,63]. Therefore, systematic analysis of the whole-gene repertoire, termed the
pan-genome, is important for understanding bacterial intraspecies diversity, population
genetics, and evolution. Sequence-alignment-based multilocus sequence typing (MLST)
of H. pylori grouped H. pylori isolates into seven types connected to geographic informa-
tion [64], and the conserved regions and genes among H. pylori genomes were potentially
associated with H. pylori pathogenicity and adaptation, such as cag pathogenicity island
(cagPAI) [62,63]. A pangenome Fst analysis showed that variation in virulence genes was
more common in the Americas than other regions [65]. A total of 22 of the 35 genes with the
highest Fst values encode recognized virulence factors and membrane proteins, suggesting
that virulence plays a strong role in H. pylori adaption to specific human populations [65].

H. pylori virulence factors can be categorized to be related with three main pathogenic
steps: bacterial colonization, immune evasion, and disease induction [66]. The helical
shape and flagella enable H. pylori to penetrate the mucous layer and subsequently adhere
to cellular surface receptors via adhesins [67]. Urease hydrolyses urea, thus neutralizing
acidic pH and forming a neutral layer favorable to H. pylori survival [67]. The blood
group antigen-binding adhesion (BabA) and sialic acid-binding adherence (SabA) are two
of the most extensively studied H. pylori outer-membrane proteins, which function as
adhesins that mediate H. pylori binding to gastric epithelial cells [68]. The surface features
and various virulence proteins have been identified to contribute to immune evasion and
disease induction.

CagA and VacA are the main H. pylori virulence factors involved in immune evasion
and disease induction and are likely to cause disease in the oral cavity [69]. cagPAl is
a 35-40 kb DNA segment located on the H. pylori chromosome and carries more than
30 genes. The variability of H. pylori is reflected in the frequency of possession of the cagPAI,
as the carriage of cagPAI varies from almost universal presence in hpEastAsia and hpAfrical
through intermediate presence (hpEurope) to complete absence (hpAfrica2) [70]. cagPAI
encodes an antigenic effector protein (CagA). The odds ratio for dysplasia was reported
to be higher in cagA-positive individuals compared with cagA-negative individuals (15.4
vs. 0.90, respectively), suggesting that cagA is associated with increased gastric cancer
risk [71]. The Western-type CagA and East Asian-type CagA were further described
based on the repeat sequence Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs at the N-terminus of
CagA and their binding activity to Src homology 2 (SH2)-containing tyrosine phosphatase
SHP-2, whereas East Asian-type CagA was reported to confer stronger SHP-2 binding
and morphologically transforming activities compared to Western CagA, making East
Asian-type CagA more virulent [67,72]. In addition, genes encoding proteins of type IV
secretion systems (T4SS) are located in cagPAIL CagA can be delivered into the cytoplasm
via the T4SS and can subsequently interact with at least 10 host cell components in both
a phosphorylation-dependent and phosphorylation-independent manner, altering the
cellular signal transduction system [73]. cag+ H. pylori strains also showed diversity in
terms of levels of CagA production, whereas strains producing higher levels of CagA were
associated with increased risk of premalignant lesions [74,75].

VacA is another extensively studied virulence factor that can be produced by all H.
pylori strains. VacA can induce the formation of large cytoplasmic vacuoles in host cells
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and is involved in immune evasion of H. pylori. However, there are differences between
strains at the level of VacA production or secretion and in the amino acid sequence among
VacA proteins [76]. Several vacA subtypes can be divided according to combinations of the
signal sequence (sla, slb, slc, and s2), mid-region (m1, m1T, and m2), and the intermediate
region (i1, i2, and i3) [67]. As a result, infection with strains carrying combinations of
these hypervirulence genes (e.g., vacAslmlcagA +) is associated with a higher risk of
invasive disease than infection with strains carrying combinations of less virulent alleles
(e.g., vacAs2m2cagA—) [57].

The genetic diversity of H. pylori may be associated with their adaptation to the host
and disease progression. Attention should be paid to the virulence characteristics and
genetic background of oral H. pylori. Further pangenomic analysis of the genes related to
H. pylori colonization can facilitate an improved understanding of the survival strategies of
H. pylori in the oral cavity.

4. Interactions between H. pylori and Microenvironments in the Oral Cavity

The oral cavity might be the prime habitat for H. pylori colonization and gastric re-
infection; however, how H. pylori adapt to the environment of the oral cavity is still unclear.
The mutual interaction of H. pylori with the local oral environment can be considered on
two levels. The first focuses on biofilm formation; the biofilm matrix plays a synergistic
role in protecting H. pylori against unfavorable factors. The second concerns the physical
contact with host cells, whereby the adhesion and invading capability of H. pylori may
favor its oral survival.

4.1. Oral Microenvironment and H. pylori

As mentioned above, H. pylori has been detected in plaque samples collected from
carious cavities and periodontal pockets, suggesting that it can survive in the microenviron-
ments of these niches, where biofilm provides various benefits for bacterial reproduction,
metabolism, and defense and is the favored method of long-term survival for many col-
onizers. Therefore, H. pylori is often found in dental plaque, where the detection rate is
often higher than that in saliva. The layered morphology of biofilm suggests that there can
be gradients in nutrients, gas concentration, and pH value. When observed at the micron
scale, supragingival plaque has a complex microbial consortium called “hedgehog” com-
posed primarily of Corynebacterium, a multitaxon filament-rich annulus, and a periphery of
Streptococcus-containing corncob structures [77,78]. In corncob structures, Streptococcus cells
consume carbohydrates and O, to generate CO;, thus generating a CO,-rich environment
for survival of microaerophilic and anaerobic microbes, which might be favorable to H.
pylori survival. Typically, cariogenic microorganisms in dental plaque produce acids upon
exposure to carbohydrates, resulting in a decrease in pH value, which challenges the sur-
vival of H. pylori. Oral H. pylori also needs to adapt to the changing pH value of cariogenic
dental plaque. In this case, urea-metabolizing capacity is important for the survival of
alkali-producing symbionts in dental plaque [79], and the same may also hold true for H.
pylori, which can use urease to convert urea into ammonia and CO, with a certain buffering
capacity, leading to medium alkalization around itself [57]. The formation of biofilms in
these niches enables the long-term adhesion of H. pylori without being affected by saliva
flushing or food chewing. Moreover, bacteria surviving in biofilms are usually resistant
to host defense systems and antimicrobial medicines, protecting them from the adverse
effects of drugs during systemic treatment [80,81], which may be among the reasons why it
is so difficult to eliminate oral H. pylori.

4.2. Oral Host Cells and H. pylori

Interaction with the host is also an important strategy for H. pylori survival in dental
pulp. H. pylori surviving in biofilm may reach pulp through caries cavities and survive
in dental pulp, as pulp H. pylori-positive teeth often have deep cavities, whereas those
with milder caries are rarely detected with pulp H. pylori positivity [21,82]. For instance, H.
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pylori has the ability to adhere to host cells in dental pulp. H. pylori ATCC 51932, H. pylori
26695, and H. pylori ]99 all displayed adhesion capabilities in human dental pulp fibroblast
cells (HDPFs), whereas the other two cagA-positive strains showed higher adhesion rates
than cagA-negative H. pylori ATCC 51932 [20]. In studies involving gastric epithelial cells,
CagA (cytotoxin associated antigen) was reported to disrupt host cell polarity, enabling
adherent H. pylori to replicate and grow on the cell surface [83,84].

Helicobacter outer-membrane protein Q (HopQ) was recently found to bind to the
receptor carcinoembryonic antigen-related cell adhesion molecule family (CEACAMs)
exposed on the host cell surface [85,86]. Consequently, this interaction allows bacteria to
adhere to host cells and is required for the injection of CagA into host cells via the type
IV secretion system (T4SS) [85,86]. However, unlike gastric epithelial cells, oral epithelial
cell-derived cell lines HN, CAL-27, and BHY were reported to be resistant to CagA injection
due to the lack of CEACAM expression, suggesting that healthy oral epithelium cells
may lack an H. pylori docking site [87]. However, the ceacam1 gene is highly upregulated
during palate development [88]. Moreover, CEACAM expression in the oral cavity is
upregulated in patients with oral cancer, periodontitis, and oral lichen planus, as well as in
smokers [89-92]. Therefore, in some pathological conditions, the increased expression of
oral CEACAMSs may favor H. pylori adhesion to oral host cells and even create favorable
conditions for CagA injection into oral cells, inducing inflammatory factors. Unfortunately,
no in vivo evidence exists to support these ideas.

In addition, CEACAM]1 functions as an inhibitory receptor on various immune cells,
including T and NK cells [93]. H. pylori HopQ can inhibit interferon-gamma (IFN-y)
secretion of CD4 cells and suppress T or NK cell cytotoxicity by interacting with CEACAM]1,
and the inhibition of immune cells may help protect developing gastric tumors from
immune cell attack [94]. For H. pylori survival, this inhibitory effect may also benefit the
peaceful coexistence of the H. pylori immune system, which is consistent with the fact that
the majority of H. pylori-positive individuals are asymptomatic. The interaction of H. pylori
with human immunity is discussed further in Section 4.3.

H. pylori is able to invade gastric epithelial cells and complete the entire biological
cycle, including proliferation and apoptosis, within the cells [95-97]; a similar phenomenon
has been observed in the oral cavity. Coccoid forms of H. pylori SS1 were localized and sur-
rounded by vacuoles in the cytoplasm of human periodontal ligament fibroblasts (hPDLFs),
and the invasion of H. pylori SS1 can adversely affect basic cellular functions of hPDLFs,
resulting in G2 phase arrest and inhibition of cell proliferation [98]. Interestingly, H. pylori
can also invade immune cells and survive within them by affecting autophagy [99,100].
This intracellular location could facilitate H. pylori evasion of host immune surveillance
and antibiotic pressure, allowing H. pylori to intracellularly persist, proliferate, and spread
to adjacent tissues. At present, it is still unclear whether invading H. pylori can be released
from the cells, and more studies are necessary to establish the effects on cell functions.

4.3. Human Host Immunity and H. pylori

The host immune system can produce antimicrobial peptides, activate the cellular
autophagy pathway, and enhance oxidative stress against H. pylori infection [73]. The
survival tactics of H. pylori in stomach mucosa have been well-studied; one of the strategies
of H. pylori is to modulate surface features that interfere with host immune system recogni-
tion [101]. For example, the negatively charged group on H. pylori lipopolysaccharide (LPS)
is replaced, which reduces the surface negative charge and thus resists cationic antimicro-
bial peptide action [102]. LPS from H. pylori is less able to activate the Toll-like receptor
(TLR), and a recent study revealed that H. pylori specifically binds human annexins via lipid
A and strongly inhibits LPS-mediated TLR4 signal transduction to avoid its recognition by
the innate immune system [103].

As mentioned previously, HopQ-CEACAM interaction suppresses immune cell func-
tion. In addition, H. pylori controls the production and secretion of chemokines in im-
mune cells via HopQ-CEACAM interaction and survives within neutrophils in a HopQ-
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dependent manner [104]. The classically activated macrophages (M1 macrophages) highly
express proinflammatory cytokines IL-1, transforming growth factor-3 (TNF-f3), and
nitric oxide synthase (iNOS), leading to the reduction in bacterial load and enhanced
pathology [105]. To achieve long-term survival in the host, H. pylori has been found to
inhibit macrophage phagocytosis and suppress T-cell activation by hindering expression of
human leukocyte antigen-II (HLA-II) and IFN-y production from macrophages [106]. The
expression of programmed cell death ligand 1 (PD-L1) has been suggested as an immune
modulatory mechanism for persistent infection of H pylori, and dendritic cells expressing
higher levels of PD-L1 have been found to impede H. pylori-induced inflammation but
allow persistent H. pylori colonization in mice [107].

H. pylori virulence factors are often considered to contribute to the progression of
gastric pathology. However, from the bacterial perspective, the virulence factors may be
mechanisms supporting escape from host immune clearance and maintenance of chronic
infection [108]. For example, VacA is able to suppress phagocytosis, induce tolerogenic
dendritic cells, and block effector T-cell response, thus inhibiting the function of various
immune cells [66]. In addition, H. pylori can affect cell autophagy via VacA to benefit
its intracellular survival [73]. The interaction between H. pylori and host immunity may
influence the success of H. pylori colonization. Because H. pylori is often detected in infected
dental pulp and periodontal pockets, the interaction between H. pylori and local immunity
warrants further research.

5. The Synergistic Interactions of Oral H. pylori with Oral Microorganisms

Clinically, people with caries or periodontitis are more likely to be infected with oral
H. pylori [26,109,110]. Survival of H. pylori in the oral niches may benefit from interactions
with oral microorganisms in these lesions, such as S. mutans [111,112], Candida albicans (C.
albicans) [113], P. gingivalis [114], and Fusobacterium nucleatum (F. nucleatum) [115] (Table 3).

Table 3. Interaction between H. pylori and oral microorganisms.

Interaction between H. pylori and Oral

Interaction Type Oral Microorganisms Microorganisms Ref.
H. pylori can penetrate the biofilm formed by S. [111]
S. mutans mutans.
S. mutans contributes to the formation of
“hedgehog” in the dental plaque, which could [77]
generate a CO,-rich environment.
H. pylori can adhere to F. nucleatum and might
F- nucleatum . help to colonize the dental plaque. i [15,115]
H. pylori has the ability to coaggregate with P. [14]
gingivalis.
P oineivalis P. gingivalis with a specific filamentous appendage
Mutualistic relationship - 88 (fimA) genotype may be involved in the [114]
colonization by H. pylori.
H. pylori can adhere to yeast pseudohyphae. [116]
H. pylori can anchor on C. albicans and form [117]
polymicrobial biofilms.
H. pylori can invade yeast cells. [118,119]
C. albicans Nutrient deprivation, acidic pH, and amoxicillin [116,120,121]

may stimulate the entry of H. pylori into Candida. T
H. pylori entering yeast cells can propagate [118]

vertically to the vacuoles of progeny yeast cells.

C. albicans releases H. pylori as a vesicle-encased

or free bacterium, which may facilitate H. pylori [122]
invasion of new yeast cells.
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Table 3. Cont.
Interaction Type Oral Microorganisms Interaction be.tween H. P ylori and Oral Ref.
Microorganisms

The diffusible factors released by S. mitis can

S. mitis inhibit the growth and induce the coccoid [13]
conversion of H. pylori during coculture in vitro.

_— . . Bacteriocin-like inhibitory proteins against H.
Antagonistic relationship S. mutans, etc. pylori could be produced by oral bacteria. [14]

Culture supernatants of these bacteria showed
S. mutans and growth inhibitory activity against H. pylori and [123]

Prevotella intermedia caused the formation of the coccoid form of H.

pylori in vitro.

S. mutans is the most common cariogenic microorganism; there may be a synergistic
relationship between S. mutans and H. pylori. H. pylori can grow throughout the biofilm
formed by S. mutans in vitro, and the location of H. pylori in biofilms was reported to
be dependent upon the presence or absence of S. mutans [111]. Streptococcus in biofilm
contributes to the generation of a CO,-rich environment, which might be related to H. pylori
benefiting from S. mutans in biofilm coculture. Moreover, the production of mutant proteins
and the acid of S. mutans could be induced by H. pylori supernatant, with S. mutans showing
a competitive advantage over S. sanguinis, indicating that H. pylori could create favorable
conditions for S. mutans [112]. Based on these existing studies reporting positive feedback
between S. mutans and H. pylori, S. mutans could provide a colonization environment for
oral H. pylori, whereas oral H. pylori can create a competitive advantage for S. mutans.

P. gingivalis and F. nucleatum are the main anaerobic pathogens of periodontal disease.
H. pylori is known to have the ability to coaggregate with P. gingivalis, which can facilitate
the long-term persistence of H. pylori in periodontal pockets [14]. H. pylori may promote the
severity of periodontitis. Preincubation of P. gingivalis with H. pylori enhanced P. gingivalis
virulence, including biofilm formation, bacterial internalization into oral keratinocytes,
and hemagglutination [41]. In addition, the role of F. nucleatum in the survival of H.
pylori is worthy of further investigation, as H. pylori-negative chronic gastritis patients
were reported to have lower levels of F. nucleatum in saliva than healthy subjects [124].
Generally, F. nucleatum plays a critical role in the formation and maturation of dental plaque
biofilms, owing to its long and narrow rod-like structure and the expression of a variety
of adhesins [125,126]. H. pylori adheres to F. nucleatum and thus colonizes dental plaque
through coaggregation [14,115]. Therefore, F. nucleatum may act as a bridge and make an
important contribution to the long-term survival of H. pylori in oral biofilms.

However, oral organisms such as S. mutans and Prevotella intermedia (P. intermedia)
can also inhibit the growth of H. pylori during coculture in vitro [14,123]. The intricate
and dynamic interactions between H. pylori and oral microorganisms might make in vitro
cultivation of H. pylori difficult.

Fungus is another important component of the oral microbiome. C. albicans is one of
the most prevalent fungi in humans involved in oral infectious diseases. Clinical studies
have reported the coexistence of C. albicans and H. pylori in the vagina and stomach [127,128].
Complex cross-kingdom interactions occur between the two organisms [113,116]. Sanchez-
Alonzo et al. [116] observed an accumulation of coccoid and bacillary bacteria on yeast
pseudohyphae cocultured with H. pylori. Furthermore, several surface interaction mech-
anisms, including hydrophobic interactions between non-polar peptide chains and lipid
structures, hydrogen bonds, and thiol-mediated surface interactions, occur between H. py-
lori and C. albicans, eventually contributing to the formation of polymicrobial biofilms [117].
These synergistic interactions may be related to C. albicans in mixed-species biofilm consum-
ing oxygen to support the milieu changes from aerobic to anaerobic, favoring the growth of
anaerobes [129].
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H. pylori can invade the C. albicans yeast cells and was strained green by live/dead Ba-
cLight staining, indicating that H. pylori can survive within C. albicans [118,119]. Consistent
with this phenomenon, fast-moving bacteriolar-like bodies (BLBs) were observed within
the vacuoles of the C. albicans yeast cells and were subsequently identified as H. pylori using
PCR and fluorescence in situ hybridization (FISH) techniques [122,130]. Some non-adaptive
conditions, such as nutrient deprivation [116], acidic pH [121], amoxicillin [120], and other
stress factors, can further induce H. pylori to invade yeast cells. As a consequence, the
invading H. pylori can survive unfavorable factors, such as high temperature, desiccation,
and antibiotic exposure while expressing proteins [131] and showing an active motility state
in vacuoles [120]. H. pylori-carrying C. albicans has been found in food [132] and in many
other ecological niches, such as the human oral cavity [133] and vagina [134]. Therefore,
yeast cells may provide H. pylori with an intracellular niche that protects H. pylori from
unfavorable conditions.

Interestingly, Candida not only harbors intracellular H. pylori but also contributes to
the transmission of H. pylori. Invading H. pylori can propagate vertically to the vacuoles
of daughter cells of yeasts in consecutive subcultures of yeasts [118]. Moreover, vesicle-
encased or free H. pylori can be released by C. albicans, and the released H. pylori may
invade new C. albicans yeast cells [122]. In addition to transmission between yeast cells, the
H. pylori can spread within yeast cells to various human bodies and niches. For instance,
normally born babies had a higher frequency of H. pylori-invaded C. albicans in the oral
cavity than babied born by cesarean birth [128,134], indicating that H. pylori-carrying C.
albicans in the vagina may support H. pylori transmission to newborns. As a result, reducing
the yeast content of the oral cavity might be beneficial in terms of controlling the infection
and transmission of oral H. pylori [122].

In conclusion, H. pylori interacts with various oral microorganisms to survive in the
oral cavity for a long time and can even invade C. albicans yeast cells to protect itself from
harsh conditions. The antagonistic relationship and the invasion of H. pylori into yeast cells
may lead to difficulties associated with isolating and culturing H. pylori in vitro.

6. Non-Growing State of H. pylori: Viable but Non-Culturable State and
Dormant State

Despite the existence of some synergistic factors, the oral environment is complex and
hostile. Non-sporulating bacteria can transmit to the viable but non-culturable (VBNC) state
when exposed to harmful stimuli. In the VBNC state, bacterial cells are reduced in size and
metabolic activity and become unculturable in vitro [135]. However, the transformation
to the VBNC state is reversible, and several VBNC bacterial cells were able to recover to a
culturable state under specific conditions [135].

When cultured in the laboratory, H. pylori transform into a spherical shape and lose of
culturability under various adverse conditions, such as anaerobic culture [136], nutrient
deprivation [137,138], and long-term liquid culture [139,140]. However, there is evidence
that these unculturable H. pylori are capable of active transcription and translation pro-
cesses [136,138,141-144], possibly cells in the VBNC state. VBNC H. pylori cells have been
found to be distributed in freshwater and seawater [139,143,145,146], but no resuscitation
technology has been found for H. pylori in vitro [139].

H. pylori in the VBNC state also has certain pathogenic abilities. H. pylori and phys-
iological changes were detected in mouse stomachs after inoculation of VBNC H. pylori
suspension, suggesting that VBNC H. pylori can colonize the gastric wall of mice and induce
mucosal tissue damage, although less virulently than helical H. pylori [147]. However, there
appear to be differences in the infectivity of VBNC H. pylori of different strains. For instance,
H. pylori SS1 in the VBNC state in drinking water was unable to infect mice [148]. In another
study, H. pylori strain 553/93 in the VBNC state produced more severe inflammation than
the other two tested VBNC strains [149].

Another common survival strategy under adverse conditions is dormancy. In a stress-
ful environment (e.g., pH and temperature changes, nutrient deficiencies, and antimicrobial
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drugs), microorganisms can escape threats by reversibly transitioning from an active state
to an inactive (dormant) state [150,151]. In the dormant state, bacteria exhibit little or low
metabolic activity [152], remain unreplicated for long periods of time, and have increased
resistance to extreme stress [150]. Dormant and VBNC states are similar but differ in
terms of performance, which has led to some controversy in distinguishing the two. Some
scholars believe that in both the VBNC state and the dormant state, bacteria can survive
under adverse conditions but cannot be cultured. Therefore, the two terms can be used to
describe the same physiological state; alternatively, the VBNC state is a type of dormant
state [150]. Other scholars believe that bacteria still exhibits a certain metabolic activity
in the VBNC state, which should be distinguished from the dormant state that does not
exhibit obvious metabolic activity [153].

Some bacteria in the oral cavity may have an antagonistic relationship with H. py-
lori [154], and parts of biofilm have suboptimal growth conditions (e.g., reduced nutrient
concentrations or acidity, hypoxia) [79,155], thereby promoting the transition of H. pylori
to a VBNC or dormant state. VBNC or dormant H. pylori are highly resistant to adverse
environments, which may contribute to the survival of oral H. pylori. Few isolated cultures
of oral H. pylori can be associated with these non-growing states. Although H. pylori coccoid,
similar to dormant or VBNC states, have been found in oral samples [21,98], the exact
status of this coccoid form of H. pylori and its role in survival are still unclear. At present,
little is known about the physiological changes and survival status of oral H. pylori.

7. Conclusions

Numerous studies have shown the existence of H. pylori in a variety of oral niches,
including dental plaque, infected pulp, and periodontal pockets, implying that H. pylori
may be able to survive in the oral environment through certain survival strategies. The
formation of biofilms in these niches enables the long-term adhesion of H. pylori without
being affected by saliva washing or food chewing. In addition, H. pylori can adhere to and
invade host cells in the oral cavity. Furthermore, H. pylori can coaggregate with a variety
of oral bacteria and yeast cells, and the invading H. pylori is able to escape from some
extracellular pressure. Additionally, transitioning to a non-growing state may be another
important strategy for H. pylori to adapt to unfavorable oral cavity conditions, which,
together with invading cells and growth inhibition by other microorganisms, explains why
oral H. pylori is difficult to culture (Figure 2).
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Figure 2. Potential survival strategies of H. pylori in the oral cavity. H. pylori can hide within dental
plaque biofilm in caries cavities and periodontal pockets. Moreover, this organism has the ability to



Int. . Mol. Sci. 2022, 23, 13646 13 0of 19

adhere to and invade host oral cells in these niches. Synergistic interaction with oral microorganisms
and transition to a VBNC or dormant state may also help H. pylori adapt to adverse conditions in the
oral cavity.
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