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Abstract: MSClustering is an efficient software package for visualizing and analyzing complex
networks in Cytoscape. Based on the distance matrix of a network that it takes as input, MSClustering
automatically displays the minimum span clustering (MSC) of the network at various characteristic
levels. To produce a view of the overall network structure, the app then organizes the multi-level
results into an MSC tree. Here, we demonstrate the package’s phylogenetic applications in studying
the evolutionary relationships of complex systems, including 63 beta coronaviruses and 197 GPCRs.
The validity of MSClustering for large systems has been verified by its clustering of 3481 enzymes.
Through an experimental comparison, we show that MSClustering outperforms five different state-
of-the-art methods in the efficiency and reliability of their clustering.

Keywords: phylogenetic tree; network visualization; minimum span clustering; Cytoscape tools

1. Introduction

Clustering is an important step in studying the present diversity and past evolutionary
history of complex systems. For example, Linnaean taxonomy is a hierarchical classification
of life on Earth that permits the clustering of related species into clades and phylogenetic
trees, allowing the identification of the evolutionary lineages of organisms from their
common ancestors [1]. Clustering and classification are both computational approaches for
sorting objects into one or more categories based on their features. In general, clustering
does not require predefined categories and thus holds enormous potential in its applicability
to the modeling of unlabeled data [2–5].

As many important real-world clustering problems are intrinsically hierarchical, a
key desideratum of clustering tools is efficiency in clustering complex systems at various
characteristic levels. Typical algorithms are too slow for large datasets and require the
number of clusters in the system to be defined a priori. For example, hierarchical clustering
is used to cluster an N-node system, either using a bottom-up approach or a top-down
approach [6]. The standard algorithm has a time complexity of O(N3) for the bottom-up
approach and O(2N) for an exhaustive search for the top-down approach. In addition to the
high computational cost for large datasets, the prerequisite input of the number of clusters
is generally unknown for the systems under investigation. To overcome these obstacles,
we developed the minimum span clustering (MSC) algorithm for the efficient, automated,
and hierarchical clustering of complex systems. Based on the MSC algorithm, we further
developed MSClustering, a Cytoscape app to visualize the hierarchical clustering and
phylogenetic information of complex systems.

In this work, we demonstrate the validity of MSClustering as a distance-based phylo-
genetic approach for uncovering the evolutionary relationships between different species
and understanding their evolution. In general, the phylogenetic tree of a system can be
constructed based on its distances or characters [7]. Character-based methods, such as
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maximum likelihood [8] or Bayesian inference [9], calculate a score for each tree by consid-
ering one character at a time and then optimize the score to derive a phylogenetic tree after
comparing all sequences in the alignment. Due to computational costs, an exhaustive search
is possible only for small datasets; heuristic searches are implemented for large datasets.
Meanwhile, distance-based methods, such as the neighbor-joining (N-J) method [10] or
MSC [4], measure the genetic distance between species and construct a phylogenetic tree
by linking closely related species together. In this article, we compare the reliability and
efficiency of various methods of phylogenetic analysis.

The MSClustering app, which is freely available in Cytoscape [11], enables immediate
visualization and statistical analysis of complex systems at various levels, as well as the
exporting of publication-quality images from network views in various formats. We link
to its user manual and example input files in the Supplementary Information (part III). A
Python version of MSClustering is also available upon request.

2. Results and Discussion

We find that MSClustering is generally an efficient and reliable tool for the hierarchical
clustering of complex networks. By running MSClustering on an Intel Core i9-9900KF
desktop computer, the average hierarchical clustering time (T) for a network of N elements
can be approximated by T = 0.0000036 N2 + 0.0050 N (s) with R2 = 0.992, as shown
in Figure 1. For N ≤ 1500, T almost increases linearly with N. The Python version of
MSClustering is about 5 times faster, and its computing time can be approximated by
T = 0.0000009 N2 + 0.0004 N (s) with R2 = 0.997. To further demonstrate the performance
of MSClustering, we compared it with five other methods to perform the phylogenetic
analyses of two biological networks, including a network of 63 beta coronaviruses and a
network of 197 GPCRs.
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Figure 1. Average computation time (T) of MSClustering in Cytoscape and in Python for the hierar-
chical clustering of a network of N elements on an Intel Core i9-9900KF CPU desktop computer. The
solid lines show the curve of best fit.

2.1. Comparing Phylogenetic Trees of Coronaviruses

We considered a previously studied coronavirus network that contains 63 beta coron-
aviruses (Table S2 in the Supplementary Information). By inputting the distance matrix
from S protein evolution in the WAG model [12], MSClustering provides an automatic
clustering of the network at three levels, as shown in Figure 2. Here, blue squares represent
nodes at specific levels, and pink squares represent clusters of nodes. These squares are
labeled by their sequence IDs or cluster IDs (e.g., “L2G1” denotes “level 2 group 1”). A
double-headed arrow represents a core link (i.e., the closest node pair in a cluster), while a
single-headed arrow is a non-core link. At level 1, we see clusters of SARS-CoV-2 sequences
(L1G1), SARS-CoV sequences (L1G9), and MERS-CoV sequences (L1G8). The virus Bat-SL-
RaTG13 (node 4) is a close relative (96.1% nucleotide similarity) of SARS-CoV-2 and is in the
same cluster as SARS-CoV-2 sequences (nodes 1–3 and 10) [13]. L1G1 is found to be closely
related to L1G2, which contains SARS-CoV-2-like coronaviruses found in pangolins [14].
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At level 2, L1G1 and L1G2 merge into group L2G1. L2G4, a group of MERS-CoV sequences,
is distinct from other L2 groups containing SARS-CoV (L2G3) and SARS-CoV-2 (L2G1)
sequences. Two outliers, L1G6 and L1G12, are detected at level 2. At level 3, we find closer
relationships between lineages A and C, and between lineages B and D. From Figure 2,
we conclude that this beta-coronavirus network contains four distinct lineages, A, B, C,
and D; L1G1 and L1G9 are in lineage B, while L1G8 belongs to lineage C. Our results are
consistent with a previous phylogenetic analysis on a similar dataset [15].
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Figure 2. Multi-level clustering of the beta coronavirus network by MSClustering.

By combining results at all three levels, MSClustering builds an MSC tree as shown in
Figure 3, where the clustering level of edges is denoted by their color: black for intra-cluster
links at level 1, red for intra-cluster links at level 2, yellow for intra-cluster links at level
3, and green for inter-cluster links at level 3. The shortest evolutionary distance between
clusters is noted on their connecting edge; the long lengths shown on the green edges
imply that there are substantial differences between sequences in different lineages, while
sequences in lineage B are evolutionarily closer than those in lineage C.
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The MSC tree is consistent with the best character-based phylogenetic tree (Figure 4)
created by IQ-TREE [16] based on the S protein evolution. Table S3 (Supplementary
Information) shows the AIC and BIC scores of phylogenetic trees constructed with various
evolution models. Both metrics suggest that the WAG (+F, empirical AA frequencies; +R4,
default free-rate heterogeneity) model is the best empirical maximum likelihood model in
this case. The Jaccard similarity in lineage classification is 1.0 between the MSC tree and
that predicted by IQ-TREE. Thus, we find that MSClustering enables the inference of past
evolutionary events while also delivering information about evolutionary processes based
on protein sequences.
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2.2. Comparing Phylogenetic Trees of GPCRs

To compare the efficiency and reliability of clustering methods, we also performed
a phylogenetic analysis of 197 GPCRs as listed in Table S4 (Supplementary Informa-
tion). We constructed phylogenetic trees of the GPCRs using three distance-based al-
gorithms (MSClustering, N-J, and the Louvain method) [4,10,17] and three character-
based algorithms (IQ-TREE, PhyML, and ProtTest3) [16,18,19]. For distance-based al-
gorithms, the distance is Ed, where the E-value is calculated by BLAST and d = 1 or
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d = 0.02. For character-based algorithms, the best substitution model with the lowest AIC
is Q.mammal+R6 for IQ-TREE, JTT+R6 for PhyML, and JTT+I+G+F for ProtTest3. Table 1
lists the computation time of these algorithms (without visualization) on an Intel Core
i9-9900KF desktop computer. Character-based methods require much more computation
time than distance-based methods. From our experience, it is difficult to obtain reliable
results with character-based methods for N > 1000 due to the long computation time as
well as convergence issues.

Table 1. Computation time of analyzing 197 GPCRs with distance-based or character-based methods.
The first five algorithms were performed on an Intel Core i9-9900KF CPU (3.6 GHz), while ProtTest3
was executed on an Intel(R) Xeon(R) Gold 6154 CPU (3.0 GHz).

Methods (Without Visualization) Computation Time (s)

Distance-based
MSClustering 0.0021

Neighbor-joining 0.036
Louvain 2.5

Character-based
IQ-TREE 1462
PhyML 4243

ProtTest3 29,760

The clustering of the GPCRs by MSClustering predicts 47 clusters at level 1, 15 groups
at level 2, and 7 classes at level 4 for either d = 1 or d = 0.02; as the level 3 clustering is
similar to level 4, we do not consider it here. Figure 5 displays the MSC tree of the 47 level-1
clusters, which combines information regarding their phylogenetic relationships as well
as the clustering at levels 2–4. Each level-1 cluster is colored and labeled according to the
GPCRdb’s classification [20]. Inter-group edges are noted with their E-value. Detailed
results of MSClustering are shown in Table S4. Specific protein information in Table S4
is obtained from UniProtKB [21]. We find that MSClustering returns the same result for
both d = 1 and d = 0.02. At level 4, the system is divided into seven classes, including P2Y
receptors (I), P1 receptors (II), prostanoid receptors (III), thyrotropin-releasing hormone
receptors (IV), gonadotropin-releasing hormone receptors (V), cannabinoid receptors (VI),
and orphan receptors (VII). GPCRdb classifies both P2Y and P1 receptors as nucleotide-
like receptors, but they belong to two different groups in the rhodopsin-like family of
GPCRs according to comprehensive sequence comparisons and phylogenetic analyses [22].
Our results show that receptors of cannabinoids, thyrotropin-releasing hormones, and
gonadotropin-releasing hormones are closer to P1 receptors, while platelet-activating factor
receptors are closer to P2Y receptors. At level 2, we find that class II decomposes into
groups 5 (A1 and A3 receptors) and 8 (A2A and A2B receptors). Among the human P1
receptors, the most similar are A1 and A3 receptors (~50% sequence similarity) and A2A
and A2B receptors (~60% similarity). Indeed, A1 and A3 receptors mainly activate the Gi/o
proteins, which inhibit cAMP production; while A2A and A2B receptors mainly activate Gs
proteins, which stimulate cAMP production [23]. According to UniProtKB, Nu17, Nu22,
Nu29, and Nu30 are clusters of orphan receptors. We find them to be closer to the P1
receptors, but with long distances.

Figure 6 displays the predicted phylogenetic tree of the GPCRs by IQ-TREE with the
Q.mammal+R6 model. We find good consistency between the results of MSClustering
and IQ-TREE: Each terminal branch of the phylogenetic tree is associated with a level-
1 MSC cluster (as labeled), with the structure of branches (as circled by ellipses) being
generally consistent with the multi-level MSClustering results shown in Figure 5. The only
discrepancies are the positions of Nu17 and Nu30. We find that the closest cluster of Nu17
is Nu15 if the distance is Ed, but is Nu29 if the distance is derived from the Q.mammal+R6
model. These discrepancies disappear if MSClustering adopts the distance matrix from
the Q.mammal+R6 model. Figure 7 displays the phylogenetic trees obtained from PhyML
with JTT+R6 (A) and from ProtTest3 with JTT+I+G+F (B). Overall, the tree morphology of
Figure 7A is the same as that of Figure 6. In Figure 7B, the four orphan receptor clusters
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(Nu17, Nu22, Nu29, and Nu30) are located on the side of the P2Y receptors, which is
inconsistent with the results of MSClustering, IQ-TREE, and PhyML (where they are on the
side of the P1 receptors).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 5. A distance-based phylogenetic tree of the GPCR network, as constructed by MSClustering. 
The clustering structure of the network is shown for MSC levels 2–4. Each node, colored according 
to GPCRdb’s classification, is a level 1 MSC cluster. Numerical edge labels show the smallest E val-
ues between clusters. 

Figure 6 displays the predicted phylogenetic tree of the GPCRs by IQ-TREE with the 
Q.mammal+R6 model. We find good consistency between the results of MSClustering and 
IQ-TREE: Each terminal branch of the phylogenetic tree is associated with a level-1 MSC 
cluster (as labeled), with the structure of branches (as circled by ellipses) being generally 
consistent with the multi-level MSClustering results shown in Figure 5. The only discrep-
ancies are the positions of Nu17 and Nu30. We find that the closest cluster of Nu17 is 
Nu15 if the distance is Ed, but is Nu29 if the distance is derived from the Q.mammal+R6 
model. These discrepancies disappear if MSClustering adopts the distance matrix from 
the Q.mammal+R6 model. Figure 7 displays the phylogenetic trees obtained from PhyML 
with JTT+R6 (A) and from ProtTest3 with JTT+I+G+F (B). Overall, the tree morphology of 
Figure 7A is the same as that of Figure 6. In Figure 7B, the four orphan receptor clusters 
(Nu17, Nu22, Nu29, and Nu30) are located on the side of the P2Y receptors, which is in-
consistent with the results of MSClustering, IQ-TREE, and PhyML (where they are on the 
side of the P1 receptors). 

Figure 5. A distance-based phylogenetic tree of the GPCR network, as constructed by MSClustering.
The clustering structure of the network is shown for MSC levels 2–4. Each node, colored according to
GPCRdb’s classification, is a level 1 MSC cluster. Numerical edge labels show the smallest E values
between clusters.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. A character-based phylogenetic tree of the GPCR network, as constructed by IQ-TREE 
using the Q.mammal+R6 model. Each branch is colored according to GPCRdb’s classification. 

 
Figure 7. Character-based phylogenetic trees of the GPCR network, as constructed by PhyML using 
the JTT+R6 model (A) and by ProtTest3 using the JTT+I+G+F model (B). Each branch is colored ac-
cording to GPCRdb’s classification. 

Based on the above comparisons, we conclude that MSClustering is much more effi-
cient than character-based methods and its accuracy is comparable with the best charac-
ter-based models. For systems with large N, MSClustering can efficiently find a reliable 
clustering, while character-based methods would have difficulties converging. The valid-
ity of MSClustering for large systems can be seen from its clustering of 3481 enzymes in 

Figure 6. A character-based phylogenetic tree of the GPCR network, as constructed by IQ-TREE
using the Q.mammal+R6 model. Each branch is colored according to GPCRdb’s classification.



Int. J. Mol. Sci. 2022, 23, 14240 7 of 11

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. A character-based phylogenetic tree of the GPCR network, as constructed by IQ-TREE 
using the Q.mammal+R6 model. Each branch is colored according to GPCRdb’s classification. 

 
Figure 7. Character-based phylogenetic trees of the GPCR network, as constructed by PhyML using 
the JTT+R6 model (A) and by ProtTest3 using the JTT+I+G+F model (B). Each branch is colored ac-
cording to GPCRdb’s classification. 

Based on the above comparisons, we conclude that MSClustering is much more effi-
cient than character-based methods and its accuracy is comparable with the best charac-
ter-based models. For systems with large N, MSClustering can efficiently find a reliable 
clustering, while character-based methods would have difficulties converging. The valid-
ity of MSClustering for large systems can be seen from its clustering of 3481 enzymes in 

Figure 7. Character-based phylogenetic trees of the GPCR network, as constructed by PhyML using
the JTT+R6 model (A) and by ProtTest3 using the JTT+I+G+F model (B). Each branch is colored
according to GPCRdb’s classification.

Based on the above comparisons, we conclude that MSClustering is much more effi-
cient than character-based methods and its accuracy is comparable with the best character-
based models. For systems with large N, MSClustering can efficiently find a reliable
clustering, while character-based methods would have difficulties converging. The validity
of MSClustering for large systems can be seen from its clustering of 3481 enzymes in
Figure S4 (at levels 4–6), where the color of nodes represents the enzyme commission (EC)
category. Our results also show that the BLAST E-value provides a good estimation of the
evolutionary distance between related proteins.

Figure 8 displays the distance-based clustering results of N-J (A) and Louvain (B) with
d = 0.02. Detailed clustering information can be found in Table S5 of the Supplementary
Information. The N-J tree of 47 clusters in Figure 8A is roughly consistent with the phy-
logenetic trees in Figures 5–7: Most level-1 clusters are unchanged, six clusters are split
(e.g., Th01* denotes the division of Th01 into two clusters), and five clusters are merged
(e.g., Nu22/29 contains Nu22 and Nu29). The discrepancy between Figures 6 and 8A
can also be seen from the positions of Nu24 and Pl01. The Jaccard similarity between the
results of MSClustering and N-J is 0.89 for d = 0.02. We note that N-J’s clustering results
are sensitive to monotonic transformations of the defined distance. The N-J trees of the
GPCRs are shown in Figure S5 for d = 0.02 (A) and d = 1 (B) in a polar layout. The Jaccard
similarity between N-J’s results with d = 0.02 and d = 1 is only 0.32. In Figure 8B, we display
Louvain’s clustering results of the 47 groups by re-coloring the tree of Figure 6 (since Lou-
vain only provides clustering information). Only P2Y receptors (group 1) and prostanoid
receptors (group 2) are properly clustered by Louvain. Group 3 mixes up different types
of GPCRs, and groups 4–47 contain only one sequence each. Overall, this suggests that
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the Louvain method has limited clustering reliability. Based on this comparison, we find
that MSClustering outperforms N-J and Louvain in the efficiency and reliability of the
clustering that it produces.
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Figure 8. Distance-based phylogenetic trees of the GPCR network, as constructed by the N-J method
(A) and by the Louvain method (B). In (A), each branch is colored according to GPCRdb’s classification.
The * symbol denotes the splitting of a cluster into two sub-clusters. In (B), the first three groups are
colored with distinct colors, while groups 4–47 are colored in black.

2.3. Comparing Clustering Plugins in Cytoscape

Table 2 shows a high-level comparison of the five most popular clustering plugins
in Cytoscape (AutoAnnotate, clusterMaker2, MCODE, CytoCluster, and ClusterViz) with
MSClustering. We include more detailed comparisons in the Supplementary Information
(Table S1). MSClustering reads the raw distance matrix of a network as an input, while the
other plugins can only operate on a previously created and selected Cytoscape network.
The first four plugins use multiple algorithms for clustering, while MCODE and MSCluster-
ing are implementations of specific clustering algorithms. MSClustering is the only plugin
that performs a hierarchical clustering of the network at various characteristic resolutions
while not requiring the desired number of clusters to be specified as input. In terms of
applications, the MSC tree generated by MSClustering shows specific linkage information
at various resolutions and can be applied to phylogenetic studies. Clustermaker2 unifies
a variety of algorithms for clustering network attributes as well as for ranking clusters
based on potentially orthogonal data. MCODE detects densely-connected regions in a
network that can be used to identify potential molecular complexes in protein–protein
interaction networks. Finally, the automatic annotation of AutoAnnotate and the GO en-
richment analysis of ClusterViz and Cytocluster have potential utility for the investigation
of biological networks.
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Table 2. A high-level comparison of the five most popular clustering plugins in Cytoscape with
MSClustering.

Plugin Features Clustering Algorithms Input

AutoAnnotate finds clusters and visually annotates them
with labels and groups

MCL, AP, CF, CC, CCC,
and SCPS selected Cytoscape network

clusterMaker2

unifies a variety of algorithms for
clustering networks and attributes as well
as for ranking clusters based on potentially

orthogonal data

AP and 20 others selected Cytoscape network

ClusterViz found cluster can be subjected to GO
enrichment analysis

FAG-EC, MCODE, and
EAGLE selected Cytoscape network

CytoCluster analyzes and visualizes clusters from a
selected Cytoscape network

HC-PIN, DCU, IPCA,
OH-PIN, IPC-MCE, and

ClusterONE
selected Cytoscape network

MCODE clusters a given network based on the
topology to find densely connected regions MCODE selected Cytoscape network

MSClustering
an efficient app for hierarchical clustering

and phylogenetics of large complex
networks

MSC distance matrix

3. Materials and Methods
3.1. Reading the Input File

MSClustering takes as input the distance matrix of a network and outputs its clustering
at various levels. Before running the app, the pairwise distances between network elements
must be defined (strict triangle inequality is not required) and calculated. For the protein
sequences that we studied in this work, we modeled the distance as the evolutionary
distance derived from substitution models or as the BLAST E-value. The evolutionary
distance denotes the number of substitutions per site that separates a pair of homologous
sequences since their divergence from a common ancestral sequence. The E-value is a
statistic that describes the number of hits expected to be seen by chance when searching
for the best-matched region between sequences in a database. A lower E-value indicates a
more significant match and thus a smaller distance.

To improve the consistency of clustering, two parameters (m and Nlimit) are required
in the input file. The parameter m is used for detecting outliers, which are defined as
nodes with a distance greater than a threshold m × Lmed (Lmed is the median of the shortest
distance list). The parameter Nlimit is the minimum number of groups that are desired for
the final level of clustering.

3.2. Multi-Level Clustering

Based on the MSC algorithm with the flow chart in Figure S3, MSClustering efficiently
performs a hierarchical cluster analysis of networks in four steps, as shown in Figure
S4: simplification, clustering, renormalization, and outlier detection. We provide a more
detailed algorithm description in the Supplementary Information. In step 1, for a network
of N nodes, the distance matrix of N2 elements is converted to the shortest-distance list of
length N. Since the clustering in step 2 is performed with this simplified list, the clustering
speed for large N is greatly improved. In step 3, each cluster is considered a node at the
next level of clustering, and steps 1 and 2 are repeated until the number of groups is smaller
than Nlimit. In step 4, to improve the clustering consistency, MSClustering detects outliers
using the threshold m × Lmed at the last two levels of clustering. Each outlier is considered
an individual cluster.
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3.3. Network Visualization and Analyses

After receiving the distance matrix as input, MSClustering visualizes the clustering at
various levels, as shown in Figure S5. It further integrates multi-level results into an MSC
tree. In Figure S5A, the “Network” panel shows the clustering at three levels along with the
MSC tree. For example, the level-2 clustering displays 6 groups, each bounded by a pink
square and labeled as L2Gn (n is the group ID). The group L2G2 contains 3 level-1 clusters
(L1G3, L1G10, and L1G11), in which the double-headed arrow denotes the group’s shortest
link. The arrows between pink squares show the clustering at the next level; unconnected
pink squares are outliers. Furthermore, this app is equipped with style-setting tools for
preparing publication-quality figures. As shown in Figure S5B, the “Style” panel displays
options for changing the properties of nodes or edges. Figure S5B displays the MSC tree,
wherein the clustering level of edges follows the color scheme in Figure 3. Statistical
analyses of the resulting networks can be performed with other Cytoscape tools, such as
CytoNCA, for calculating network centrality measures [24].

4. Conclusions

The MSClustering app is designed to be an easy-to-use Cytoscape tool for visualizing
the hierarchical clustering and phylogenetic information of complex systems. Its clustering
time is roughly linear in the size (N) of the system for N < 1500 and is quadratic otherwise.
For the coronavirus and GPCR systems that we studied, the MSClustering-generated tree
enables the inference of past evolutionary events while also delivering information about
evolutionary processes. By comparing MSClustering with five different state-of-the-art
methods, we show that it outperforms these methods in the efficiency and reliability of
clustering and phylogenetic tree construction.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232214240/s1.
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