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Abstract: Aurora kinase B (AKB) is a crucial signaling kinase with an important role in cell division.
Therefore, inhibition of AKB is an attractive approach to the treatment of cancer. In the present work,
extensive quantitative structure-activity relationships (QSAR) analysis has been performed using a
set of 561 structurally diverse aurora kinase B inhibitors. The Organization for Economic Cooperation
and Development (OECD) guidelines were used to develop a QSAR model that has high statistical
performance (thr =0.815, QZLMO =0.808, R%oy = 0.814, CCCeyx = 0.899). The seven-variable-based
newly developed QSAR model has an excellent balance of external predictive ability (Predictive
QSAR) and mechanistic interpretation (Mechanistic QSAR). The QSAR analysis successfully identifies
not only the visible pharmacophoric features but also the hidden features. The analysis indicates that
the lipophilic and polar groups—especially the H-bond capable groups—must be present at a specific
distance from each other. Moreover, the ring nitrogen and ring carbon atoms play important roles
in determining the inhibitory activity for AKB. The analysis effectively captures reported as well as
unreported pharmacophoric features. The results of the present analysis are also supported by the
reported crystal structures of inhibitors bound to AKB.

Keywords: aurora kinase B; QSAR; pharmacophore modeling

1. Introduction

The machinery for cell division, also known as mitosis, is completely regulated. Any
irregularity or imperfect mitosis results in nondiploid DNA content, which ultimately
causes cancer [1]. Researchers have therefore become interested in developing cancer
chemotherapeutics that target centrosome maturation and separation, mitotic spindle as-
sembly, chromosomal separation, and cytokinesis involving the participation of numerous
important signaling kinases, including aurora, polo-like-kinase (Plk), and cyclin-dependent
kinase (Cdk) [2,3]. The successful transition to mitosis depends on the aurora kinase family
of serine/threonine kinases [4-7]. Since their discovery in 1995 and the initial detection
of their expression in human cancer tissue in 1998 [2,5,7-9], these kinases have received
a great deal of attention. This is due to their aberrant and excessive expression in a wide
range of solid and liquid tumors, such as pancreatic, lung, liver, and breast tumors, as well
as their oncogenic activity [2,4,5,7-11].

The aurora kinase family consists of three isoforms (A, B, and C), each of which differs
in the length and amino acid composition of the N-terminal domain, but they share a
common and conserved ATP binding site [2,12]. In order for the centrosome to mature,
and for spindle assembly, meiosis, and metaphase spindle orientation to occur, aurora-A
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is essential [2,12]. In order to achieve precise chromosomal segregation and cytokinesis,
aurora kinase B (AKB) is required [2,12]. Massive polyploidization and failure to bio-
orientate chromosomes result from AKB inhibition [2,12]. Since aurora kinase C (AKC),
which complements the activity of AKB, has received less attention to date, we decided to
focus only on AKB in this investigation, due to a lack of data for AKC [12].

Aurora kinases have been suggested as prospective targets for anticancer treatments
due to their crucial function in controlling the cell cycle. At this time, none of the ATP-
competitive inhibitors targeting AKB that are in clinical development (Figure 1) have been
granted approval [4,5,13].
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Figure 1. Structures of some known aurora inhibitors in different clinical trial stages.

In these conditions, a quick and effective strategy to find AKB inhibitors is still a key
goal for medicinal chemists. To fulfill this goal, there is a need to use modern methods
such as computer-aided drug design (CADD) to reduce time, costs, trial-and-error proce-
dures, and other required resources [14,15]. The vibrant and developing field of CADD
is successful due to the result-oriented performance of molecular docking, QSAR, and
its other branches [14-16]. In QSAR, a mathematical model is created to connect chemi-
cal descriptors (structural features) to a desired bioactivity profile using a wide range of
machine learning techniques [17,18]. In a more pragmatic sense, QSAR allows one to prior-
itize compounds with desirable attributes for a subsequent (and presumably successful)
biological evaluation [17-19]. Traditional QSAR concentrates on producing statistically
significant models [17-19]. Previously, different researchers have reported QSAR models
for AKB using different techniques. For example, Neaz et al. [20] reported a 3D-QSAR
model for a dataset of forty-eight quinazoline derivatives possessing other heterocyclic
rings. The developed model had a leave-one-out cross-validated correlation coefficient
(Q2LOO) of 0.56. Another 3D-QSAR and molecular docking study of azaindole derivatives
as AKB inhibitors was accomplished by Lan and co-workers [21]. The best developed
QSAR model based on forty-one molecules had Q2LOO = 0.575. Likewise, Ashraf et al. [22]
used a dataset of 57 acylureidoindolin derivatives to develop a 3D-QSAR model, which
had Q2LOO = 0.641, and indicated that electrostatic and hydrophobic fields determine the
activity of compounds. Thus, AKB has been the subject of QSAR research; however, the
developed QSAR models find little usage due to a lack of generalizability, low predictive
power, being based on small datasets comprising limited scaffolds, or a combination of
these factors. Therefore, there is a need to develop a robust and balanced QSAR model
based on a larger dataset, encompassing diverse structural scaffolds. Consequently, in the
present work, a QSAR model has been developed that possesses high external predictive
ability and extensive mechanistic interpretations supported by X-ray-resolved structures.

2. Results

As stated in Section 1, the focus was on developing a genetic algorithm-multilinear
regression (GA-MLR) model with a combination of mechanistic interpretation and high
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predictive power. We have discovered several structural features in the current inves-
tigation. The recently constructed seven-parameter model and its statistical validation
parameters are as follows.

Model A: pIC50 = 4.611 (£0.224) + 0.559 (£0.105) x fringNplaN4B + 0.436 (£0.11) x
fsp3Csp2N5B + 0.253 (£0.038) x N_H_2B + 0.164 (£0.035) x fsp20sp2C5B + 0.1 (0.015)
x da_lipo_5B — 0.317 (£0.056) x fringNC6B — 0.262 (£0.048) x fOringC6B.

Statistical parameters associated with model A: R%; = 0.815, RMSEtr = 0.468,
MAEtr = 0.401, CCCtr = 0.898, s = 0.473, F = 277.836, R2cv (Q2LOO) = 0.808, RMSEcv
=0.477, MAEcv = 0.408, CCCcv = 0.895, Q2LMO = 0.807, R2Yscr = 0.016, Q2Yscr = —0.02,
RMSEex = 0.446, MAEex = 0.373, R%¢ = 0.814, Q2-F1 = 0.811, Q2-F2 = 0.811, Q2-F3 = 0.833,
CCCex =0.900.

Model A is statistically robust, as shown by the high values of various statistical
parameters, such as the coefficient of determination (R%;) and cross-validated coefficient of
determination for leave-one-out (R2cv or Q2LOO), the external coefficient of determination
(R%ey), Q2-Fn and the Concordance Correlation Coefficient (CCCey), etc., and the low
values of lack-of-fit (LOF), root mean square error (RMSEtr), and mean absolute error
(MAE). As a result, model A has high external predictive ability [23-30], is devoid of
random correlations [31,32], and meets suggested threshold values for key parameters. The
Supplementary Materials contain the formulae to determine these parameters. A Williams
plot was used to evaluate the model’s applicability domain [33-36]. As a result, it complies
with all the OECD-recommended standards and requirements for developing a valuable
QSAR model. Different graphs associated with model A are depicted in Figure 2.
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Figure 2. Different graphs related to model A: (a) experimental vs. predicted pIC50 (the solid line
represents the regression line); (b) experimental vs. residuals; (c¢) Williams plot for applicability
domain (the vertical solid line represents h* = 0.053 and horizontal dashed lines represent the upper
and lower boundaries for applicability domain); (d) Y-randomization plot.
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There are seven descriptors in model A, which have been calculated by PyDescrip-
tor [37] and tabulated in Table 1. Of the seven descriptors, five descriptors, viz. fringN-
plaN4B, fsp3Csp2N5B, N_H_2B, fsp20sp2C5B, and da_lipo_5B, have positive coefficients
in model A, implying that increasing their value could lead to a better activity profile,
whereas the reverse is true for the remaining two descriptors, fOringC6B and fringNC6B,
which have negative coefficients in model A. Each molecular descriptor, which is a numeric
representation of structural features [37-39], has correlations with different types of phar-
macophoric features, which govern the inhibitory profile. However, it is to be noted that a
single structural feature can neither explain nor fully determine the final biological activity
(IC50) of a molecule. The biological activity IC50, etc., is an outcome of a combination of
different structural features and some unknown factors. Some features enhance the desired
pharmacological activity, whereas others are responsible for reversing it. It is believed
that two or more pharmacophoric groups concomitantly decide the biological activity
(pharmacophore synergism).

Table 1. Different molecular descriptors present in model A and their descriptions.

Molecular Description
Descriptor P
fringNplaN4B Frequency of occurrence of planer nitrogen atoms exactly at 4 bonds from ring nitrogen atom
fsp3Csp2N5B Frequency of occurrence of sp2-hybridized nitrogen atoms exactly at 5 bonds from sp3-hybridized carbon
atoms
N_H_2B Total number of nitrogen atoms present within 2 bonds from hydrogen atoms

fsp20sp2C5B Frequency of occurrence of sp2-hybridized carbon atoms exactly at 5 bonds from sp2-hybridized oxygen atoms

da_lipo_5B Total number of lipophilic atoms present within 5 bonds from H-bond donor cum acceptor atoms
fOringC6B Frequency of occurrence of ring carbon atoms exactly at 6 bonds from oxygen atoms
fringNC6B Frequency of occurrence of carbon atoms exactly at 6 bonds from ring nitrogen atoms

3. Discussion

Of the seven descriptors in model A, five descriptors, viz. fringNplaN4B, fsp3Csp2N5B,
N_H_2B, da_lipo_5B, and fringNC6B, indicate the importance of different types of nitrogen
atoms in determining the inhibitory activity for aurora kinase B. The same is true for
carbon, which is present in four descriptors, viz. fsp3Csp2N5B, da_lipo_5B, fringNC6B,
and fOringC6B. The relevance of oxygen is due to its presence in three descriptors, viz.
fsp20sp2C5B, da_lipo_5B, and fOringC6B. At the same time, it should be noted that the
descriptors present in model A are highly interlinked; that is, increasing the value of one de-
scriptor could significantly change the value of another descriptor. This leads to substantial
changes in the biological profile of a molecule, pointing toward pharmacophore synergism,
as molecular descriptors are mathematical representations of pharmacophores. For exam-
ple, the values of descriptors fringNplaN4B and fringNC6B vary with the presence/absence
of ring nitrogen atoms. Therefore, increasing the value of fringNplaN4B by escalating ring
nitrogen atoms could also lead to a higher fringNC6B value. Therefore, in the present work,
we have adopted an approach that involves the concomitant consideration of two or more
molecular descriptors to explain the variance in the activity profile of matched molecular
pairs (MMP). Accordingly, the molecular descriptors whose values have changed for MMP
have been discussed concurrently with relevant examples in Section 3.

da_lipo_5B:

The descriptor da_lipo_5B is simultaneously associated with two important aspects
of a molecule: lipophilic character and H-bonding-capable (donor and acceptor) atoms. It
is to be noted that, in the present work, a carbon atom is non-lipophilic while calculating
da_lipo_5B, if oxygen or nitrogen is attached to it. The average value of da_lipo_5B for the
top one hundred active molecules (IC50 = 0.26 to 4.3 nM) is 15.29, and the value for the
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least active one hundred molecules (IC50 = 611 to 16,000 nM) is 8.51. This reveals that the
higher the number of lipophilic atoms within five bonds of a H-bond-capable atom, the
higher the activity. This gives an initial impression that lipophilicity (mostly represented
by logP [40]) is the only governing factor. However, the calculated logP (clogP), which
represents molecular lipophilicity, has a weak correlation of 0.077 with pIC50, whereas
da_lipo_5B has a value of 0.533. Therefore, the conditional occurrence of lipophilic atoms
in the vicinity of H-bonding-capable atoms is a better choice. A plausible reason could
be the composition of the active site of AKB, which consists of the persistent presence of
lipophilic residues such as Gly, Leu, Val, Phe, etc., between the acidic or basic residues
such as Glu, Asp, Lys [22]. This is why an aurora kinase B inhibitor also requires the
presence of H-bond-capable atoms, preferably with separation by five bonds and the
concomitant occurrence of lipophilic atoms in their vicinity. This observation is confirmed
by the reported X-ray-resolved structure of aurora kinase B (pdb: 4c2w [41]) (see Figure 3).

=) Os_NH, OsNH,

). D) 402 314

NH 1Csy=14nM NH IC50=1.2nM
da_lipo_5B =17 da_lipo_5B =18
...._:Caly 0 0
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12 — 45 " OH\, carbon due B C
"7 to-OH

(a) (b)

Figure 3. (a) A 2D depiction of active site of aurora kinase B (pdb: 4c2w). The dotted line represents
the contour proximity of active site residues. Acidic and basic residues have been highlighted using
red- and blue-colored circles. (b) Comparison of molecule 402 with 314 with respect to da_lipo_5B
(blue-colored bonds and numbering).

The importance of da_lipo_5B highlights the significance of determining the numbers
of donor cum acceptor atoms required to obtain better activity. The average value of donor
cum acceptor atoms for the top one hundred active molecules (IC50 = 0.26 to 4.3 nM) is
3.21, and the value for the least active one hundred molecules (IC50 = 611 to 16,000 nM) is
2.24. A comparison of the following pairs of molecules as representative examples further
highlights the importance of da_lipo_5B: 314 with 402 (see Figure 3), 355 with 347, 206 with
207, 103 with 101, 103 with 99, 61 with 142, 57 with 58, etc.

fringNplaN4B:

fringNplaN4B stands for the frequency of occurrence of planer nitrogen atoms exactly
at four bonds from a ring nitrogen atom. If the same planer nitrogen atom is also present
at <4 bonds from the same or any other ring nitrogen atom through any path, then it is
excluded while calculating fringNplaN4B. The importance of fringNplaN4B is reflected by
the fact that the most active 110 molecules with IC50 values ranging from 0.26 to 5.9 nM
have one or more combinations of planer and ring nitrogen atoms. The reverse is true for
less active molecules (IC50 = 16,000 to 611 nM), with some exceptions, such as molecule
numbers 213, 73, 71, 66, 20, etc. Moreover, it was observed that replacing fringNplaN4B
with its corresponding equivalents, fringNplaN3B and fringNplaN5B, for three and five
bonds led to a reduction in the performance of model A (R2 = 0.770, for both). Moreover,
fringNplaN3B and fringNplaN5B have a correlation of R = 0.084 and 0.028 with pIC50,
respectively, whereas fringNplaN4B is a better choice as a descriptor, with R = 0.628.
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However, at first sight, it appears that, individually, ringN (number of ring nitrogen
atoms) or nplanN (number of planer nitrogen atoms) could be an alternative to fringN-
plaN4B. However, both have a weak correlation of 0.207 and 0.374 with pIC50, respectively.
Moreover, a loss in the statistical performance of model A on replacing fringNplaN4B with
ringN (R? = 0.772) or nplanN (R? = 0.770) again confirmed the importance of fringNplaN4B.
Therefore, a combination of ring and planer nitrogen atoms separated exactly by four bonds
is an important structural feature to obtain a better pIC50 for AKB.

A literature survey reveals that for pyrrolopyrazole derivatives, a substituted 3-
aminopyrazole moiety is important due to its ability to interact with the hinge region
of the ATP binding site [2]. The three nitrogen atoms of the N-C-N-N pattern present in
3-aminopyrazole are responsible for binding with the receptor [2]. Unfortunately, it appears
that the reported pattern is exclusive to pyrrolopyrazole derivatives bearing a substituted
3-aminopyrazole moiety. Interestingly, the terminal nitrogen atoms of the N-C-N-N pattern
are actually ring and planer nitrogen atoms, thereby suggesting the possible presence
of fringNplaN4B. However, in many active molecules of the present dataset bearing a
substituted 3-aminopyrazole moiety, the value of fringNplaN4B is zero; this is because the
planer nitrogen of the N-C-N-N pattern is also present within <4 bonds of the other ring
nitrogen atom. However, in several active molecules for AKB, fringNplaN4B is present
due to other scaffolds (see Figure 4). In other words, instead of the N-C-N-N pattern or a
substituted 3-aminopyrazole moiety, an emphasis on the simultaneous presence of planer
and ring nitrogen atoms separated by four bonds in the molecule is a better strategy to
enhance the inhibitory profile against AKB. Hence, the present work successfully identified
a novel aspect of a reported pattern (N-C-N-N) and extended it for other scaffolds.

HN HN

NH

305
N ICs0(nM):12
fringNplaN4B:2
547 M0 545 N
ICso(NM):316.23 | ICso(NM):100 | .
fringNplaN4B:0 fringNplaN4B:1

0 G

F F
N N 8
4 s -
PN | N 7 ] NQ( \©\N
oNT 2 N H
H (. AN
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at 4 bonds from two
&Planer nitrogen atom HNG O

4
NH . )
3 4 ring nitrogen atoms
at 4 bonds from only J 3 /2</"\(
one ring nitrogen atom 2 3 N/N
H

N\

= 1
292 | _N 488
IC50(NM):0.46 _ICso(nM).15_
fringNplaN4B:2 cl fringNplaN4B:0

Figure 4. Representation of influence of fringNplaN4B on activity profile of AKB inhibitors. The
numbers (blue/red) indicate the counting of number of bonds between ring and planer nitrogen.

N_H _2B:

The positive coefficient for N_H_2B indicates that the presence of hydrogen in the
vicinity of nitrogen is beneficial to increase the inhibitory activity for aurora kinase B.
In many molecules, N_H_2B exists due to the direct attachment of a hydrogen atom to
a nitrogen atom (N-H) or due to hydrogen atoms bonded to carbon atoms adjacent to
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nitrogen (N-CHn fragment). N_H_2B favors two important structural features that could
lead to a better inhibitory profile: (1) the presence of polar hydrogen atoms as N-H or N-
CHn fragments; (2) steric hindrance or bulkiness in the vicinity of nitrogen atoms, because
hydrogen is the smallest among all the elements. The lesser the bulkiness around nitrogen
atoms, the better the inhibitory profile. These two structural features in combination allow
the polar interactions or H-bond formation between the ligand and the receptor. This
observation, and the significance of N_H_2B as well as da_lipo_5B, is confirmed by the two
forms of the ligand VX-680 (molecule number 14) in the pdb 4b8m [42].

The ligand VX-680 exists in two different forms, labeled as TA and TB in the present
work, in the two chains of pdb 4b8m. From Figure 5 and Table 2, it is clear that the TA
form consists of a higher number of hydrogen atoms than TB, especially in the vicinity of
nitrogen atoms. This led to different values for N_H_2B for the two forms (see Figure 5).
The form TA, having a higher N_H_2B value, has a higher number of interactions with
the receptor, because the additional hydrogen atoms attached to the nitrogen atoms of
the pyrazole (designated as N19 and N20) ring and aminopyrimidine (designated as N14)
are responsible for H-bond interactions with Glul71, Phel72, and Alal73 (see Table 2).
Meanwhile, these interactions are absent for TB, even though the respective atoms N19 and
N14 of TB are more proximate to receptor atoms. The TB form has only one prominent
interaction with the receptor due to the nitrogen (designated as N20) of the pyrazole ring
in the form of a H-bond with Ala173.

Leu

D
@ Phe
Ala 172
120 a @

@ &
170 )4
274

17¢
L !
@) A =R
H PO e
Q\‘(N@ A 5 ) ¢ N
G ® Ll Y
® o - @
233 303
@ g %
L 99
N_H_2B=6 - _
Gl o Vo -
& @ da_lipo_58 = 12 103 @ N_H_2B=3
A N 8 C29
’

S

,,
)

Figure 5. Pictorial representation of N_H_2B using VX-680 (pdb 4b8m) as an example.

Table 2. Distances of different atoms of TA and TB forms of VX-680 (molecule number 14) from the
receptor atoms (pdb 4b8m).

TA Form TB Form
Residue R;ii:;:e Lli%z:;d Distance Residue R;ii:::e L;%(a;rr;d Distance
GLU171 0] N19 297 GLU171 (@) N19 2.74
PHE172 CA N20 3.47 PHE172 CA N20 3.52
ALA173 N N20 2.84 ALA173 N N20 2.74
ALA173 0] N14 293 ALA173 (@) N14 291
HOH2005 (@] N13 3.32 HOH2005 @) N30 2.80
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The following comparisons of molecules further highlight the importance of N_H_2B
(see Figure 6): 108 with 75 and 101, 486 with 487 and 484, and 148 with 144, to list a
few. A simple analysis of these examples indicates that the presence of a pyrazole ring
leads to a better IC50 for a molecule (see Figure 6). However, it has a negative correlation
(R = —0.177) with pIC50. A plausible reason appears from the present work suggesting that
H-bond-capable polar groups are more suitable near the periphery of a molecule, rather
than a pyrazole ring, to achieve good interactions with the receptor.

o gj
o
H i
101 108 H
ICs0(nM):59 s Ing(nM) 50 ICso(nM):18

N_H_2B:4 N_H_2B:4 N_H_2B:6
da_lipo_5B: 16 da_lipo_5B: 17 da_lipo_5B: 16 F
N
>\\/ >\( / \
HN . N
) \ N
487 I “ \\ 484 486 N
ICso(nNM):271.5 ICso(NM):191.5 ICs0(nM):98.5 @ :
N_H_2B:6 N_H_2B:7 N_H_2B:7 :

Figure 6. Representative examples to understand N_H_2B.

fsp3Csp2N5B:

The descriptor fsp3Csp2N5B is associated with two features, viz. sp2-hybridized
nitrogen and sp3-hybridized carbon atoms. As it has a positive coefficient in model 1,
increasing the numbers of such atoms favors the augmentation of pIC50. At the same
time, increasing fsp3Csp2N5B could influence the values of da_lipo_5B and N_H_2B, as
these descriptors are associated with carbon and nitrogen too. Therefore, it indicates that
pharmacophore synergism determines the final inhibitory ability of a molecule for AKB.
This is clearly reflected when molecule 435 is compared with molecule 438.

The pdb 4c2v contains two different tautomeric forms of ligand YJA in two different
chains, A and B. The influence of fsp3Csp2N5B along with N_H_2B is observed for the two
tautomeric forms of co-crystallized ligand “YJA’ in the pdb 4c2v [41]. The two tautomeric
forms show that YJA-T1 and YJA-T2 (see Figure 7) of ligand YJA have different values for
fsp3Csp2N5B and N_H_2B (see Table 3). The online tautomer generator from Chemaxon
(https:/ /disco.chemaxon.com/calculators/demo/plugins/tautomers/, accessed on 28 Oc-
tober 2022) indicates that the ligand YJA can exist in seven different tautomeric forms.
However, only two tautomeric forms, YJA-T1 and YJA-T2, predominate, with approxi-
mately 16 and 84 percent, respectively. The rest of the tautomeric forms have less than a
0.1% probability of existence.

A comparison of the interactions of YJA-T1 and YJA-T2 with the receptor and the
solvent indicates that the two forms have established H-bonds with the similar amino
acid residues of the receptor but with different distances (see Figure 8). The YJA-T2 has
an additional H-bond with the solvent (HOH2108). Moreover, it has a higher number of
interactions with the receptor and the solvent (H,O) within 5 A compared to YJA-T1. Thus,
the increased value of fsp3Csp2N5B and N_H_2B for these two tautomeric forms correlates
with a higher number of receptor atoms in the vicinity, which ultimately leads to an
augmented number of interactions. Additional details related to the interactions of YJA-T1
and YJA-T2 with the receptor are available in Table S1 in the Supplementary Materials.
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YJA-T2

Figure 7. Tautomeric forms of ligand YJA (pdb 4c2v). The red colored numbers have been used for
indication of nitrogen atoms involved in tautomerism.

Table 3. A comparison of two tautomeric forms, YJA-T1 and YJA-T2.

H-Bond§ List of Receptor Heavy Atoms List of Receptor Heavy Atoms
. Formed with v cir. H
Tautomer with . e, within within 5 A of N1 Atom of
. Distance (A) with Angle 2 . .
Descriptor Value (Donor-Hydrogen—Acceptor) 5 A of N3 atom of Ligand . Ligand .
yarogen=accep (Residue-Atom-Distance in A) (Residue-Atom-Distance in A)
(Cut-Off: 5 A)
LEU99-CD1-4.259,
ALA120-CB-4.501,
GLU171-C-4.888,
GLU171-0-4.058,
PHE172-N-4.808,
VAL107-CB-4.672, PHE172-CA-3.818,
YJA-T1 VAL107-CG1-4.351, PHE172-C-3.832,
fsp3Csp2N5B = 0 LYS122 at 1.668 with 159.8°, VAL107-CG2-4.419, PHE172-CB-4.641,
pN I—? OB = 6_ GLN145 at 2.251 with 142.4, LU177-OE2-4.842, PHE172-CG-4.403,

fsp20sp2C5B = 3

ALA173 at 1.952 with 163.9°

LEU223-CG-4.608,
LEU223-CD1-3.627,
LEU223-CD2-4.406

PHE172-CD1-3.550,
PHE172-CE1-4.156,
ALA173-N-2.936,
ALA173-CA-3.743,
ALA173-C-4.208,
ALA173-0-3.930,
ALA173-CB-3.623,

LEU223-CD1-4.121
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Tautomer with
Descriptor Value

H-Bonds
Formed with
Distance (A) with Angle
(Donor-Hydrogen—Acceptor)
(Cut-Off: 5 A)

List of Receptor Heavy Atoms

within

5 A of N3 atom of Ligand
(Residue—Atom-Distance in A)

Ligand

List of Receptor Heavy Atoms
within 5 A of N1 Atom of

(Residue-Atom-Distance in A)

PHE104-CG-4.358,
PHE104-CD2-3.203,
PHE104-CE2-3.058,

LEU99-CD2-3.977,
ALA120-CB-4.707,
GLU171-C-4.734,
GLU171-0-3.872,
PHE172-N-4.690,
PHE172-CA-3.669,
PHE172-C-3.814,

YAT2 LY5122 at 2361 with 1578 , PHE104-CZ-4.124, PHE172-CB-4.567,
fsp3Csp2N5B=1  GLN145 at2.323 with 115.7,
: : VAL107-CB-4.591, PHE172-CG-4.418,
N_H_2B=7 ALA173 at 1.946 with 174.4°,
(o2OACEE — 3 OHAL08 295 with, 106.7° VAL107-CG1-4.413, PHE172-CD1-3.618,
SpEepaob = os Wit 2. VAL107-CG2-4.142, PHE172-CE1-4.265,
LEU223-CD1-4.047, ALA173-N-2.953,
LEU223-CD2-4.948 ALA173-CA-3.799,
ALA173-C-4.271,
ALA173-0-3.915,
ALA173-CB-3.635,
LEU223-CD1-4.165
fsp20sp2C5B:

The molecular descriptor fsp20sp2C5B underlines the influence of a specific combina-
tion of sp2-hybridized carbon with sp2-hybridized oxygen in determining the inhibitory
profile for AKB. The positive coefficient for fsp20sp2C5B indicates that increasing such a
combination of oxygen and carbon could lead to a better inhibitory profile. In the present
dataset, there are 426 molecules with the presence of at least one such combination of
oxygen and carbon. Likewise, the 200 most active molecules with IC50 values in the range
of 0.26 to 24 nM, except molecule numbers 36 and 469, also possess fsp20sp2C5B >1. A
comparison of molecule number 167 with 168 further strengthens this observation (see
Figure 9).

A closer analysis revealed that the sp2-hybridized carbon with sp2-hybridized oxygen,
required for the existence of fsp2Osp2C5B are, in general, aromatic carbon atoms and
oxygen of the carbonyl group, especially the amide group, respectively. This further
highlights the importance of aromatic rings—and in turn lipophilic atoms—as aromatic
carbons are mostly lipophilic in nature. The need for an amide group in conjugation
point outs the necessity of a polar group to enhance the interactions with the receptor.
The two tautomeric forms of YJA-T1 and T2 possess such a combination and it results in
enhanced interactions with the receptor (see Figure 8). Obviously, a sp2-hybridized carbon
atom will be at a respective distance of three and five bonds from the nitrogen and oxygen
atoms of the same amide group; therefore, we also checked the importance of famdNsp2C3B
(frequency of occurrence of sp2-hybridized carbon atoms exactly at three bonds from amide
nitrogen atoms). It was observed that fsp2Osp2C5B and famdNsp2C3B have a correlation
of 0.64 and 0.58, respectively, with pIC50. Therefore, fsp20sp2C5B is a better choice to be
considered for future optimizations and activity predictions.
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Figure 8. Depiction of prominent interactions of YJA-T1 and T2 with the receptor (pdb: 4c2v).

Bl

1C5¢(nM) = 13 ICs5¢(nM) =79
fsp20sp2C5B =6 fsp20sp2C5B =5

Figure 9. Representation of fsp20sp2C5B using molecule numbers 167 and 168 as representative
examples. The black circle represents the sp2-hybridized carbon at five bonds from sp2-hybridized
oxygen.

fOringC6B:

The descriptor fOringC6B is associated with the simultaneous and conditional occur-
rence of polar (oxygen) and lipophilic characters (ring carbons) with an exact separation
by six bonds. If a ring carbon is also present within five or less bonds of any other oxygen
atom, then it is omitted while calculating fOringC6B. The molecular descriptor fOringCé6B
has a negative coefficient in model 1, which means that a higher number of such carbon
atoms could reduce the inhibitory profile of a molecule for AKB. This is confirmed when
the following pairs of molecules are compared: 526 with 511, 526 with 521, 204 with 205,
229 with 231, 477 with 485, and 256 with 257. The descriptor has been depicted in Figure 10.
The red dots indicate the ring carbons, which contribute to fOringC6B at exactly six bonds
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from the oxygen atom. The six bonds separating such carbon and oxygen atoms have been
labeled with numbers.

526 511 521
1C50=2681.51M
fOringC6B = 1

1Csp =894 nM
fOringC6B =0

IC50=2320.6 nM
fOringC6B =2

231
ICsp=63.2n0M s
fOringC6B =3

Not counted for fOringC6B
as present within 5 bonds
from another oxygen (blue
colored)

ICo=102nM ¢
fOringC6B =2

Figure 10. Representative examples for fOringC6B. The numbers (red) indicate the counting of
number of bonds between ring carbon and oxygen atom.

It appears that reducing the number of ring carbon atoms is a feasible solution to
achieve a lower value of fOringC6B, but this will affect negatively other descriptors, viz.
da_lipo_5B, fsp20sp2C5B. Instead, a solution is to reduce the number of oxygen atoms or
alternatively increase their presence within five or less bonds of ring carbon atoms. The
second solution is observed in the case of molecule number 229. The additional -OCH3
led to a decreased value of fOringC6B, because, while calculating fOringC6B, if a ring
carbon atom was simultaneously present within six bonds of two or more oxygen atoms, it
was excluded.

fringNC6B:

The molecular descriptor fringNC6B provides crucial information about the upper
limit for separation required between the lipophilic (carbon atoms) and polar (nitrogen
atoms) moieties to achieve a better activity profile. While calculating fringNC6B, if a carbon
atom is also present within five bonds of any other ring nitrogen, then it is omitted. If a
carbon atom is present exactly at a distance of six bonds from a ring nitrogen atom, then
it contributes negatively; therefore, such a combination should be avoided. Reducing the
bond gap between carbon and ring nitrogen is a feasible and justified solution, as other
descriptors, viz. da_lipo_5B and fsp3Csp2N5B, also indicate the same. As stated earlier,
a plausible reason for this could be the active site of AKB (see Figure 11). The influence
of fringNC6B on activity is confirmed when following pairs of molecules are compared: 5
with 500, 5 with 506, 374 with 406, 507 with 514, to list a few.

As stated earlier, the descriptors present in model A are entangled. Therefore, chang-
ing one descriptor could result in changes in other descriptors. For example, the descriptors
fringNplaN4B and fringNC6B indicate the importance of ring nitrogen atoms. The fringN-
plaN4B has a positive correlation with pIC50 but fringNC6B has the opposite relation.
Therefore, increasing the value of fringNplaN4B by escalating the ring nitrogen atoms
could also lead to a higher fringNC6B value. Hence, a balance of the appropriate number
and types of nitrogen, carbon, and oxygen could lead to significant inhibitory activity for
aurora kinase B.
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At two bonds

N

N

TN

NH \(\,/NH
HN=N HN@N
5 500 506
1Cs5p(nM):858 1C59(nM):5070 [Cso(nM): 11,500
fringNC6B: 0 fringNC6B: 2 fringNC6B: 1
fOringC6B:0 fOringC6B:0 fOringC6B:3

Figure 11. Depiction of fringNC6B using molecule numbers 5, 500, and 506 as representative examples.
The carbon present at six bonds from ring nitrogen has been depicted using black dots. The numbers
(black) indicate the counting of number of bonds between ring nitrogen and carbon.

4. Materials and Methods

In this work, we adhered to the OECD’s and other researchers’ suggested standards
and recommendations [17-19,32,43,44] for a successful QSAR analysis. The various pro-
cedures for creating a model included meticulous dataset selection, data curation, 3D
structure production for all molecules, computation and trimming of molecular descrip-
tors, model creation and extensive validation, and mechanistic interpretation [45,46]. To
eliminate bias and ensure proper model validation, these stages were carried out one at
a time.

4.1. Selection of Dataset

The success and efficacy of a QSAR analysis in the drug discovery pipeline are signifi-
cantly influenced by the size, composition, and structural diversity of the selected dataset
used for the analysis [17-19,32,43,44]. As a result, a sizable dataset of 3398 reported AKB
ligands was downloaded from BindingDB (https://www.bindingdb.org/bind /index.jsp,
accessed on 14 January 2022). The dataset was then reduced to 561 molecules only after
duplicates (average value for duplicates), salts, metal derivatives, rule-of-five violators,
molecules with undefinable Ki values, etc., were eliminated during data curation [47]. The
condensed dataset still included a variety of molecules, such as stereoisomers, positional
and chain isomers, various heterocyclic and aromatic scaffolds, etc. Thus, it covered a broad
chemical space. The experimental IC50 ranged from 0.26 to 16,000 nM. The experimental
IC50 values were converted to pIC50 for a better QSAR analysis (—logy9IC50). Figure 12
and Table 4 comprise some molecules that are very active and those that are least active, to
help the readers to understand the structural variation present in the dataset.

Table 4. SMILES notation, IC50 (nM), and pIC50 (M) of five most and least active molecules of the
selected dataset.

Mol ID SMILES IC50 (nM) pIC50 (M)
339 O=C(Nclecc(CNe2nenc3c¢(C(=0)N)ceee23)cccl)clenc(NC)ecl 0.26 9.585
326 O=C(Nclcc(C(Nc2nenc3c(C(=0)N)cccc23)C)cccl)cl [nH]ne(C(C)C)cl 0.27 9.569
350 O=C(Nclcc(CNc2nene3¢(C(=O)N)cece23)cecl)cl [nH[nc2c1CCCC2 0.3 9.523
316 O=C(Nclec(C(Nc2nene3c(C(=0)N)ccec23)C)eccl)clenc(C)ecl 0.32 9.495
383 O=C(Nclcc(CNe2nenc3e(C(=0)N)cece23)cccl)cl[nH]ne(C(C)C)cl 0.33 9.481
191 0=C10Cc2¢(C)c(O)c(O)c(O)c12 8690 5.061
506 O=C(cInc(Nc2n[nH]c(C)c2)c2c(nl)ccec?)clececcl 11,500 4.939
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Mol ID SMILES IC50 (nM) pIC50 (M)
202 O=C(C)clscc(-c2enc3[nH]c(-c4ccc(OC)ccd)nc3c2)cl 12,100 4917
427 O=C(O)clene(Ne2ncee(/C=C\3/C(=0)N(C)/C(=N/c4ccc(CC)cc4)/S/3)c2)ccl  12,505.05 4.903
194 O(C)cle(Ne2nec3c([nH]c(-c4c(C)onc4C)c3)c2)ccecl 16,000 4.796

350
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Figure 12. Representative examples from the selected dataset (five most active and five least ac-

)
é;

tive molecules).

4.2. Calculation of Molecular Descriptors and Objective Feature Selection (OFS)

The next step involved applying the proper methodology to convert SMILES notations
into 3D-optimized structures. OpenBabel 3.1 [48] was used to translate SMILES to SDF for
this. Then, utilizing PM3 as a force field for structure optimization and partial charge assign-
ment, SDF was converted to MOL2 using MOPAC [49] 2016. After this, PyDescriptor [37]
and PaDEL [50], which together offered more than 40,000 molecular descriptors for each
molecule, were used for molecular descriptor calculation. Although using a large number
of molecular descriptors increases the likelihood that a QSAR analysis will be effective,
with a balance of predictive and mechanistic interpretation abilities, it also raises the risk of
overfitting due to noisy redundancy in the descriptors or chance correlations. As a result,
OFS was carried out using QSARINS 2.2.4 [51], which eliminated molecular descriptors that
were nearly constant (for 90% of molecules) and highly inter-correlated (IR | > 0.90). After
extensive OFS, only 1150 descriptors were finally included in the reduced set of molecular
descriptors, but they nevertheless covered a wide descriptor space because they included
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fingerprints, charged-based, 1D to 3D, and a good number of atom-pair descriptors. The
likelihood of a mechanistic interpretation of the model increased because a significant
portion of the descriptors could be readily interpreted in terms of structural traits.

4.3. Splitting the Dataset into Training and External Sets and Subjective Feature Selection (SFS)

SFS is one of the most important steps in the QSAR model-building process that
involves choosing the right feature selection technique with an adequate number and
set of molecular descriptors. Before developing the QSAR model, the dataset was ran-
domly divided into a training set (80%, or 449 molecules) and a prediction set (20%, or
112 molecules), to allow for proper training and validation of the model. In order to elimi-
nate bias, reduce information leakage [32], confirm the model’s external predictive ability
to predict for molecules other than the training set, and to improve the composition of
the training and prediction sets, the dataset was randomly divided at a ratio of 80:20. The
selection of molecular descriptors was done using the training set only. The prediction set,
also known as the test set or external set, was used exclusively for judging the external
predictive ability of the model.

To prevent over- and underfitting, the QSAR model must have an ideal number of
molecular descriptors (variables). Consequently, the ideal number of descriptors for the
model was identified using a straightforward graphical (or breaking point) method [45,46,52].
The value of Q2LOO typically increases considerably when a new variable (molecular de-
scriptor) is added in stages to an MLR model until the desired elevation is reached. After this,
the value of Q2LOO increases slightly or negligibly. As a result, the number of molecular
descriptors that match the elevation point is ideal for creating a QSAR model. A graph of this
is shown in Figure 13. The last elevation point in Figure 13 corresponds to seven molecular
descriptors. Therefore, the genetic algorithm (GA) in combination with multi-regression
(GA-MLR) method, using QSARINS 2.2.4, was used for the exhaustive search to identify
seven molecular descriptors to develop the QSAR model. For GA-MLR, Q2LOO was used
as the fitness parameter.

1
0.9
0.8
0.7
0.6
0.5

0.4

2
QLOO —

0.3

0.2
0 1 2 3 4 5 6 7 8 9 10

Number of Descriptors =—p

Figure 13. Plot of number of descriptors against leave-one-out coefficient of determination (Q2LOO)
to identify the optimum number of descriptors.

4.4. Building Regression Model and Its Validation

Different combinations of various molecular descriptors were eventually found during
the search for seven molecular descriptors for the QSAR model using GA-MLR. However,
due to the statistical performance and the satisfaction of adhering to strict parameters and
criteria, which have been recommended [17-19,23,27,32,33,44-46,52-57] by a significant
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number of researchers, only one combination of molecular descriptors was chosen. The
following threshold values and conditions were used to select the model:

R2 > 0.6, Q2LOO > 0.5, Q2LMO > 0.6, RZ > Q2LOO, R, > 0.6, RMSEtr < RMSEcv,
AK > 0.05, CCC > 0.80, Q2-Fn > 0.60, r2m > 0.5, (1-r2/r02) < 0.1,09 < k < 1.1 or (1-
12/102) <0.1,09 < kK’ < 1.1, | ro2— r'02| < 0.3, RMSEex, MAEex, R%, Q2F1, Q2F2, Q2F3,
and low R2Yscr, RMSE and MAE.

The model’s application domain must be identified for additional validation. In
order to assess the application domain of the QSAR model, we employed a Williams plot
(standardized residuals vs. hat values).

5. Conclusions

In relation to different features influencing the inhibitory activity for AKB, the present
analysis successfully highlighted the significance of different types of atoms, groups,
patterns, and tautomerism. Additionally, it emphasized the significance of specific patterns
of atoms of different hybridization and their inter-relations in determining the final activity.
The conditional presence of lipophilic (carbon) atoms or groups with respect to nitrogen
atoms was also successfully recognized by model A as being beneficial for obtaining higher
inhibitory for AKB. The present work, for the first time, pointed out the role played by
tautomerism for AKB inhibitors. Model A performed statistically well, which was indicative
of its strong external prediction power. As the current work successfully recognized both
previously described and novel pharmacophoric properties associated with AKB inhibition,
the results are of immense use throughout the drug discovery pipeline for the development
of lead /drug candidates against AKB.

Supplementary Materials: The following supporting information can be downloaded at: https:
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