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Abstract: Metabolic stable isotope labeling followed by liquid chromatography coupled with mass
spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies of individual proteins on
a large scale and with high throughput. Turnover rates of thousands of proteins from dozens of time
course experiments are determined by data processing tools, which are essential components of the
workflows for automated extraction of turnover rates. The development of sophisticated algorithms
for estimating protein turnover has been emphasized. However, the visualization and annotation of
the time series data are no less important. The visualization tools help to validate the quality of the
model fits, their goodness-of-fit characteristics, mass spectral features of peptides, and consistency of
peptide identifications, among others. Here, we describe a graphical user interface (GUI) to visualize
the results from the protein turnover analysis tool, d2ome, which determines protein turnover rates
from metabolic D2O labeling followed by LC-MS. We emphasize the specific features of the time
series data and their visualization in the GUI. The time series data visualized by the GUI can be saved
in JPEG format for storage and further dissemination.

Keywords: in vivo protein turnover; heavy water metabolic labeling; isotope distribution; time series
of isotope labeling; graphical user interface for mass spectral data

1. Introduction

Cellular proteins are in a dynamic equilibrium. Protein concentrations are maintained
while they are continuously synthesized and degraded. The equilibria are tissue-specific,
and they shift during organismal development, aging, and diseases. Metabolic stable
isotope labeling followed by liquid chromatography and mass spectrometry (LC-MS)
has been a powerful tool to study in vivo protein turnover on a large scale and high
throughput [1,2]. As a labeling agent, heavy water (drinking water enriched in D2O)
is easy to use, cost-efficient, and does not require adaptation period [3]. Low (<8%)
concentrations of D2O enrichments are normally used in drinking water [4]. It results
in the composite spectra of unlabeled and labeled forms of a peptide in MS1. Statistical [5]
and analytical [6] approaches to de-convolve the spectra have been described. A recent
study [7] revealed that the precursor enrichment in D2O labeling was nearly instantaneous,
and a single exponential curve was sufficient for the modeling. In contrast, the precursor
enrichment in heavy amino acid labeling [8] was delayed and tissue specific [7]. Therefore,
the modeling of label incorporation in amino acid labeling was more complex and required
more parameters.

Since the data are generated for thousands of proteins from tens of thousands of pep-
tides at every time point of labeling, manual data processing is impractical. Several publicly
available software tools [7,9,10] have been developed to process the mass spectral data and
database search results to automate protein turnover rate estimations. The turnover rates
are obtained from the exponential decay modeling of the monoisotopic relative isotope
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abundance (RIA). The tools generate protein turnover rates and goodness-of-fit (GOF)
measures of the model, such as coefficient of determination (R2), Pearson correlation, and
standard deviation, among others. The results are normally reported in tables and saved
in output files formatted in csv format. Though the turnover estimation tools automate
data processing, the visualization and annotation of the results are as important. The csv
formatted files can be read and processed using scripts in R [11] or Phyton environments.
However, it requires familiarity with these environments. Therefore, a graphical user
interface (GUI) to enter input data, easily access results for each protein/peptide, and
obtain information about the statistical GOF measures is important. A protein turnover
estimation software tool [12] for metabolic labeling with a heavy amino acid (13C6-Lys)
contained a GUI, ApplE Turnover, to facilitate the data analysis. Another tool for pro-
tein turnover estimation from [5,5,5-2H3] Lue labeled samples, TurnoveR [13], used the
functions of Skyline [14], an MS data analysis platform. Here, we report on our imple-
mentation of a GUI for a software tool, d2ome [10], to estimate protein turnover rates
from D2O labeling. The GUI facilitates several manually laborious steps in the data input,
the selection of data processing parameters, and, importantly, it plots experimental time
points and theoretical fit, shows the GOF measures, and spectral features (mass-to-charge
ratio, m/z, the monoisotopic abundance, charge state, and the number of exchangeable
hydrogens) of the peptide and its amino acid sequence. Every protein can be located by an
easy search or from a drop-down list of alphabetically sorted protein names. mzML [15]
(mass spectral) and mzid [16] (database search results) files are automatically matched in
the input. Considering that the data for protein turnover is highly voluminous, the GUI
will facilitate the data analysis, visualization, and validation of the results.

2. Results and Discussions

The time series data used in protein turnover studies is more complex than the static
proteomics data. Thus, in static proteomics, the proteome is normally characterized by
peptide sequence and its post-translational modifications, abundance, chromatographic
retention time, m/z, and charge state. In contrast, protein turnover data, in addition
to the listed information, requires the number of exchangeable hydrogens, body water
enrichment in deuterium, the number of experiments in which the peptide was quantified,
GOF measures (R2, RMSE, SD) between the experimental data and the theoretical fit,
the monoisotopic abundance, and the accuracy of the isotope distribution between the
estimated and LC-MS data for the unlabeled sample. A typical workflow of experimental
and data processing steps is shown in Figure 1.
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Figure 1. The figure shows the workflow of the main experimental and data processing of protein 
turnover studies and the role of the graphical user interface (GUI). The GUI aids in setting up the 
protein turnover rate estimations (creating input data from mzML and mzid files) and visualizing 
the results to facilitate the validations. 

Figure 1. The figure shows the workflow of the main experimental and data processing of protein
turnover studies and the role of the graphical user interface (GUI). The GUI aids in setting up the
protein turnover rate estimations (creating input data from mzML and mzid files) and visualizing the
results to facilitate the validations.
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2.1. Data Input and Data Processing Parameters

Figure 2 presents a sample screenshot of the GUI for data and parameter input. The
GUI enables users to input sets of database search results and corresponding mass spectral
data, body water enrichment in deuterium, peptide and protein consistencies (the minimum
number of experiments in which a peptide and a protein are identified in MS/MS), and
the corresponding labeling duration in a tabular format. The software has a feature to
automatically populate pairs of input files from the source folder by matching the file
names. It allows users to reload all configurations from the previous runs for re-runs
with different parameters. The GUI allows users to optimize the quantification results
by customizing the input parameters. The parameters include spectral mass accuracy,
retention time window for peak detection and integration, the threshold of peptide score
(Mascot [17] Ion score), and expectation.
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matographic elution profile corresponding to m/z and charge state at the allowed chroma-
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time alignment strategy using raw mass spectral profiles [18]. The time window in which 
the missing peptide features will be searched is adjustable in the GUI. MBR increases pro-
teome coverage across the labeling duration time series. 
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Figure 2. The graphical user interface (GUI) to input data and parameters for the protein turnover
rate estimations. Time and BWE are the labeling duration and body water enrichment in deuterium
for the corresponding mzML and mzid files (experiments).

Consistent identifications of peptides and proteins from tandem mass spectra are
essential in time series experiments. Since DDA is semi-stochastic in the selection of ions
to be fragmented, we implemented a match between-runs (MBR) approach to enable
the quantification of peptides that are missing in some experiments, but their features
(chromatographic elution profile corresponding to m/z and charge state at the allowed
chromatographic time elution window) are detectable. The approach implemented the
retention time alignment strategy using raw mass spectral profiles [18]. The time window
in which the missing peptide features will be searched is adjustable in the GUI. MBR
increases proteome coverage across the labeling duration time series.
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2.2. The Output of Data Processing

d2ome [10] computes turnover rates for proteins and peptides using the non-linear
least squares regression on the monoisotopic RIA. It generates two main outputs: En-
tryName.RateConst.csv and EntryName.Quant.csv. The first entry in the file names is
the Uniprot [19] entry name for a protein. The *.Quant.csv file contains comprehensive
information about each peptide of a protein. Each peptide entry is a row of information that
contains the amino acid sequence, the charge state of the precursor, theoretical m/z of the
peptide sequence, theoretical isotope abundances (natural isotope abundances), precursor
m/z, the highest Mascot Ion score, Mascot expectation, mass accuracy (in ppm), scan
number, the integrated (from MS1 scans in LC-MS) abundance of the mass isotopomers
(six), elution start and end times that were used to calculate the isotopomer abundances,
and the monoisotopic peak width in the mass-to-charge domain (used only for data in
profile mode).

The rows of *.RateConst.csv file of a protein contain: the peptide sequence, its unique-
ness (distinct or shared with other proteins), peptide rate constant and corresponding
confidence intervals, the correlation value between theoretical fit and experimental data,
RMSE, the absolute deviation between the theoretical and experimental isotope profiles
(before the start of labeling), peptide charge, sequence m/z, the number of accessible hy-
drogens (NEH), the number of data points (NDP), R2 of the theoretical fit, and the average
abundance of the monoisotope.

2.3. Visualization of the Results

The visualization tab of d2ome has two main charts that depict the time series [20]
data used for peptides and protein degradation rate computation, Figure 3. It provides easy
access to turnover rate estimation results for each protein. For every protein peptide, the
monoisotopic RIAs estimated from the isotope profiles in comparison with the theoretical fit
can be visualized. This approach visualizes the correspondence between the experimental
points and the expected theoretical values, which are computed based on the degradation
rate constant.

The estimation of the monoisotopic RIA requires accurate measurements of the abun-
dances of all mass isotopomers of a peptide. Since mammalian samples are complex,
peptide species often co-elude and interfere with the mass profile of the target peptide.
This GUI enables users to graphically validate the quality of experimental input data (the
time series of monoisotopic RIA) in comparison with the theoretical fit. Figure 4 shows the
monoisotopic RIAs estimated from the isotope profiles in comparison with the theoretical
fit for the peptide sequence, SDEAVKPLGVK+2 from FAS_MOUSE protein. For this protein,
the experimental isotope distributions of each peptide at every time of labeling are in the
FAS_MOUSE.Quant.csv file. The unlabeled and labeled [7] (7 and 31 days) isotope profiles
of the SDEAVKPLGVK+2 peptide are presented in Figure 5. The monoisotopic RIA was
computed as the ratio of monoisotopic abundance to the sum of abundances of all mass
isotopomers. The data can be used as additional validation of the label incorporation.
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Figure 4. The graphical user interface enables comprehensive visualization of the results of protein
turnover studies from metabolic D2O labeling and LC-MS experiments. Time series of monoisotopic
RIAs (y-axis) are shown along the labeling duration (x-axis). The solid line shows the fit from the
computed degradation constant for SDEAVKPLGVK+2 peptide from FAS_MOUSE protein.
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Figure 5. The monoisotopic RIA depletes with the labeling duration. Isotope profiles of
SDEAVKPLGVK+2 peptide (A) from an unlabeled sample (B) from a labeled sample (day 7) (C) from
a labeled sample (day 31).

As mentioned above, the quantifications using MBR transfers are important in stable
isotope labeling experiments. The MBR procedure may result in false positive transfers [21].
The GUI provides the opportunity to examine the quality of the label incorporation estima-
tion from the data obtained by using the MBR. Thus, the labeling time points, which were
quantified using MBR, can be shown in red; it is demonstrated in Figure 6 for the peptide
sequence NLLSVAYK+2 from the 1433B_MOUSE protein. Shown in red are the labeling time
points (experiments) in which the peptide was not identified from an MS/MS spectrum.
Instead, the quantification was performed based on the MBR. The use of MBR increases
proteome coverage across the labeling time points. It is helpful to visually examine the
MBR quantified time points, and the GUI provides this opportunity.
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The GUI also graphically shows the overall label incorporation from all peptides of
a protein. It is illustrated in the time series of the FS. Figure 7 shows the protein FS in
comparison with the theoretical fit for the FAS_MOUSE protein. The graph presents each
peptide’s experimental FS as a scatter plot and the theoretical fit based on the protein
rate constant as a solid line. Both figures can be exported as high-quality JPEG images.
Furthermore, the software enables users to export charts separately or in a batch mode
for all identified proteins and peptides. The GUI is a user-friendly application that makes
searching and visualizing all proteins and peptides simpler. Users can easily switch between
the visualizations of different proteins/peptides.
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Figure 7. Protein turnover rate is computed from the median of the degradation constant of quantified
peptides. The scatter plot indicates the fractional value of peptides in the FAS_MOUSE protein. The
solid line shows the fit from the computed turnover rate for the protein.

The visualization window also contains comprehensive information about each pep-
tide of a protein in a tabular format. Each peptide entry is a row of information that contains
the amino acid sequence, the charge state of the precursor, the theoretical m/z of the peptide
sequence, the correlation between theoretical fit and experimental time series, RMSE, the
absolute deviation between the theoretical and experimental isotope profiles, NEH, NDP,
R2 of the theoretical fit, and the monoisotopic average abundance.

The currently available software tools for protein turnover studies from LC-MS-
MS/MS data of deuterium-labeled samples (such as DeuterRator [9] and Riana [7]) simplify
data analyses also by means of a GUI component. The GUI in DeuteRator [9] simplifies
data entry and parameter selection. It plots and saves the FS time series and its theoretical
fit for each protein. Output from Riana can be visualized in the R environment using
supplied scripts. Our approach to the GUI development was motivated by that of ApplE
Turnover [12]. A user can search for each protein, plot the experimental time series and
theoretical fit of the monoisotopic RIA for every peptide, display the experimental time
series and corresponding theoretical fit for the FS of a protein, export all figures, and view
several GOFs of each peptide of a protein. It is possible to review previously processed
results. We believe the GUI features address user needs in many cases. Our main goal in
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developing the GUI was to facilitate the visualization, quality assessment, validation, and
dissemination of the turnover rate estimation.

2.4. Future Plans

The GUI developed in this work provides visualization of the theoretical fit to the
experimental data points, the GOF measures, and spectral features for a peptide. An
additional element for visual validation is the experimental isotope distribution of the
peptide at the apex of its elution. This visualization of the distribution would allow us
to validate the quality of the monoisotopic RIA estimation. We plan to implement this
interactive feature in a future iteration of the GUI. Currently, the GUI interfaces with the
database search output from Mascot. We intend to include support for other search engines.

3. Methods

In data modeling from metabolic D2O labeling and LC-MS experiments, the pep-
tide/protein turnover rate is estimated by exponential decay modeling of the time course
of the depletion of the monoisotopic RIA, I0(t), with the labeling duration, t:

I0(t) = Iasymp
0 +

(
I0(0)− Iasymp

0

)
e−kt (1)

where I0(0) is the monoisotopic RIA of an unlabeled peptide, I0
asymp is the monoisotopic

RIA at the plateau of labeling, and k is the turnover rate (degradation rate constant) of a
peptide. I0

asymp is obtained from the body water enrichment in deuterium (pW) and the
number of hydrogens accessible to deuteriums in the water (NEH):

Iasymp
0 = I0(0)

(
1 −

pw
1 − pH

)NEH

The turnover rate is obtained from the non-linear regression of the experimental time
series data of I0(t) on the theoretical decay function in Equation (1). The modeling is
central to the turnover rate estimation. The GUI depicts experimental time points and the
theoretical curve resulting from the regression for every peptide.

Another property used for the analyses of protein turnover is the fractional synthesis.
For every peptide, the fractional synthesis (FS) is defined as:

FS(t) =
I0(0)− I0(t)

I0(0)− Iasymp
0

= 1 − e−kt (2)

In Equation (2), the explicit dependency on the number of exchangeable hydrogens
and natural monoisotopic RIA, which are characteristics of each peptide, are removed. The
GUI depicts the FSs of all peptides of protein in a single figure.

The GUI in d2ome is a Windows Forms application developed in C# programming
language. Windows Forms is a .Net Framework GUI library that provides an interface
to develop multipurpose applications. It is composed of controls such as combo boxes,
buttons, labels, list boxes, charts, and containers such as panels, group boxes, and others.
In the course of the development of the GUI for the d2ome software tool, we had used a
tab layout to switch between computation and visualization windows, a data grid view
to display detailed peptide information in a tabular format, charts to display peptides
time course data, and buttons to execute tasks such as loading data, searching proteins,
exporting charts, and others. The GUI can be initiated either from the command line or
from the application icon.

The GUI interfaces with d2ome in two stages, Figure 1. In the first stage, the GUI
automates data input (matching pairs of mzML [22] and mzid files, body water enrichment,
and labeling time course) and the specification of parameters (mass accuracy, the required
number of labeling time points, database search scores, etc.). There is no limitation on the
number of experiments (input files for processing). The GUI uses the experimental data
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and parameters to create an input set for d2ome to compute peptide/protein turnover
rates. d2ome writes out the results for every protein in .Quant.csv and .RateConts.csv
files. The .Quant.csv file of a protein contains information about the amino acid sequence,
theoretical isotope distribution of unlabeled peptide, m/z, charge, scan number of MS/MS
identification, mass accuracy, database search score, and mass isotopomer abundances
(M0-M5) from each experiment for every identified and quantified peptide of the protein.
The .Rate.Const.csv file of a protein contains the results of rate constant (turnover rate)
calculations for every peptide, GOF to the theoretical model, Equation (1), and statistical
properties of the computed rate constant, such as standard deviation (SD), root-mean-
squared-error (RMSE), coefficient of determination (R2), Pearson correlation, averaged
(from all experiments) monoisotopic abundance, and protein turnover rate. Normalized (by
the median of medians of base peak abundances from each experiment) protein abundance
is also reported in the file. These data are depicted by the GUI in the second stage of
interfacing with d2ome. All figures (experimental time series and its theoretical fit, FS for a
protein) can be exported as high-quality JPEG images. Furthermore, the software enables
users to export charts separately or as a batch process for all identified proteins and peptides.
The tool is available in the GitHub repository, https://github.com/rgsadygov/d2ome
(accessed on 17 November 2022).

Data Used in This Work

The figures and examples shown in the paper were obtained from processing a publicly
available data set of mouse liver proteome [7]. Labeling and LC-MS experiments are
described in the original publication. In brief, adult male C57BL/6JOlaHsd mice were
labeled with deuterium oxide. Murine liver tissues were collected at twelve labeling time
points: 0, 1, 2, 3, 6, 7, 9, 13, 16, 21, 24, and 31 days. The body water enrichment in deuterium
was determined to be 0.046 in all labeled samples. The mass spectral data were acquired in
the data-dependent acquisition mode (DDA) using a Q-Exactive HF quadrupole-Orbitrap
mass spectrometer. The raw mass spectral data are available on ProteomeXchange at
accession PXD029639.

4. Conclusions

We developed a graphical user interface to facilitate the data analysis of protein
turnover studies from time series data of metabolic labeling with D2O and LC-MS. The
turnover rate calculations use a large number of experimental inputs (time series of label
enrichment) and parameters (body water enrichment, mass accuracy, peptide/protein
identification consistency, etc.). The GUI automates data input and parameter selection.

The validation of the protein turnover results requires information about various
spectral features (m/z, the abundance of the monoisotopic RIA, NDP, etc.) and statistical
measures of GOF (R2, Pearson correlation, SD, RMSE, etc.). The GUI depicts the theoretical
fit to the experimental time series data, thus allowing a visual evaluation of the fit. The
statistical measures of the model show the quality of the GOF, which also helps to estimate
the quality of the theoretical fit. All generated figures for every peptide of a protein can be
exported in JPEG format for further dissemination.
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