
Citation: Petrovsky, D.V.; Rudnev,

V.R.; Nikolsky, K.S.; Kulikova, L.I.;

Malsagova, K.M.; Kopylov, A.T.;

Kaysheva, A.L. PSSNet—An

Accurate Super-Secondary Structure

for Protein Segmentation. Int. J. Mol.

Sci. 2022, 23, 14813. https://doi.org/

10.3390/ijms232314813

Academic Editor: Wajid Zaman

Received: 28 October 2022

Accepted: 24 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Communication

PSSNet—An Accurate Super-Secondary Structure for
Protein Segmentation
Denis V. Petrovsky, Vladimir R. Rudnev, Kirill S. Nikolsky, Liudmila I. Kulikova, Kristina M. Malsagova * ,
Arthur T. Kopylov and Anna L. Kaysheva

Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”,
109028 Moscow, Russia
* Correspondence: kristina.malsagova86@gmail.com; Tel.: +7-499-764-98-78

Abstract: A super-secondary structure (SSS) is a spatially unique ensemble of secondary structural
elements that determine the three-dimensional shape of a protein and its function, rendering SSSs
attractive as folding cores. Understanding known types of SSSs is important for developing a deeper
understanding of the mechanisms of protein folding. Here, we propose a universal PSSNet machine-
learning method for SSS recognition and segmentation. For various types of SSS segmentation,
this method uses key characteristics of SSS geometry, including the lengths of secondary structural
elements and the distances between them, torsion angles, spatial positions of Cα atoms, and primary
sequences. Using four types of SSSs (βαβ-unit, α-hairpin, β-hairpin, αα-corner), we showed that
extensive SSS sets could be reliably selected from the Protein Data Bank and AlphaFold 2.0 database
of protein structures.

Keywords: super-secondary structure; data bank; AlphaFold 2.0; graph neural network; machine
learning; protein features

1. Introduction

Protein folding mechanisms have fascinated scientists for a half of a century [1–3].
According to the “nucleation–condensation” model of protein folding, self-folding proteins,
such as molecular chaperones [4], that do not participate in the protein machinery, become
unstructured tangles immediately after translation. Folding nuclei (a time-limiting stage)
are formed and condensed in coils, and the process is completed by spontaneous packing
into a native three-dimensional structure [5–7]. In relation to this concept, attention has
been focused toward simple motifs such as super-secondary structures (SSSs) that comprise
several secondary structure elements with unique and compact folding of a polypeptide
chain. Super-secondary structures serve as a bridge between the secondary and tertiary
structure of a protein and probably are autonomously stable (i.e., stable outside the protein
globule) [8,9].

The use of SSSs to solve biomedical problems is rather desirable, as the alpha-helical
and beta-hairpin types of SSSs can serve as initial unique structures for the construction
of protein epitope mimetics (PEMs) [10,11]. These PEMs mimic the structural and con-
formational properties of their target epitopes (SSS), as well as their biological activity
(protein–protein and protein–nucleic acid interactions). It is possible to optimize biological
activity to maintain antimicrobial activity, for example, by transferring an epitope from a
recombinant to a synthetic scaffold [11].

In previous studies, we reported the possibility of studying SSSs in aberrant protein
forms caused by post-translational modifications (PTMs). We observed that PTMs that
have been detected in patients with various types of cancer are frequently localized in the
SSS (alpha-structural motifs, beta-hairpins) [12]. So far, it is obvious that a comprehensive
study of the known SSS types is essential for deeper insights of protein folding mechanisms
and to solve some challenges in biomedical research [9].
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Predicting the secondary and supersecondary structures of proteins by their 3D-
structures (PDB, AlfaFold) is becoming a top priority in structural biology research. Nu-
merous approaches for prediction are currently known but the most commonly used are
based on (1) probabilistic models, such as kernel density estimation (KDE) [13,14] and
naïve Bayes [15]; (2) linear classifiers, such as support vector machines (SVM) [16–18]; and
(3) machine learning methods [9,19]. The performance of the first two approaches is limited
by the huge amounts of data with relatively low classification and semantic segmentation
accuracy (60–75%) [16,20].

Neural networks (NN) have recently been applied to the problem of structures clas-
sification and segmentation. Neural networks are typically designed to classify and/or
predict one or two types of SSSs, though several NN-utilizing methods are now capable of
predicting β-hairpin and βαβ-units (StackSSSPred) [21–23]. The following main groups of
machine learning models are most widely used:

1. Models based on the sequence-to-sequence architecture, where the protein structure
is considered as a sequence of amino acids with the main characteristics of their
localization, i.e., contact map. Featured sequences are processed using a group of
recurrent layers [24].

2. Models based on 3D-CloudSegmentation, in which each atom of a molecule is rep-
resented as a point in a 3D space. PointNet, PointNet++, and dynamic graph CNN
(DGCNN) architectures [25] are used to segment and classify structures.

3. Models based on the representation of a protein molecule as a 3D volumetric ob-
ject (protein voxelization) with subsequent processing by 3D-Convolution family
networks [26].

4. Models based on the representation of a protein molecule as a graph with subsequent
processing by graph neural networks (CGNs) [27].

Here, we present a new approach to classify different types of SSSs, specifically
βαβ-unit, α-hairpin, β-hairpin, and αα-corner, and the approach was tested on standard
format files extracted from the public Protein Data Bank (PDB) [9]. The neural network
PSSNet (Protein Secondary Structure Segmentation) was realized on a new deep learning
architecture that uses the integrative synergy of CGN, convolutional neural networks
(CNN), and (bidirectional) recurrent neural network (RNN) predictions. The proposed
architecture achieves an accuracy of 84% and endorses a wide range of valuable annotations
for over 1.9 million SSSs available in the open-access knowledge base at https://psskb.org/
(accessed on 28 October 2022). In addition to the secondary structure prediction, PSSNet
can also be applied for the prediction of free energy, solvent availability, contact maps, and
searching for stable protein structures.

2. Results and Discussion
2.1. SSS Segmentation Using the PSSNet Model

This model was the basis for the filling of gaps in the open knowledge base of SSSs
(available at https://psskb.org/, accessed on 28 October 2022). After training the model,
we applied it to complete dataset maintained in the PDB and AlphaFold. The results were
selectively assessed by expert researchers, entered into a database, and finalized as publicly
available. The number of SSSs defined by the model are listed in Table 1.

Table 1. Number of SSSs recognized in open knowledge databases (PDB and AlphaFold).

SSS PDB (185,469 Structures) AlphaFold (2021) (360,000 Structures)

βαβ-unit 461,336 233,882
α-hairpin 390,965 563,946
β-hairpin 360,845 280,181
αα-corner 5977 8153

https://psskb.org/
https://psskb.org/
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The model was built according to the proposed architecture and combined high accu-
racy and performance. We assessed the performance of the model engine by comparing its
quality with that of networks with distinct architectures, i.e., CurveNet [28] and DGCNN36
networks (Table 2). Such networks are among the top 10 utilized in “3D point cloud”
classification and segmentation [29]. Training and evaluation of the results were carried
out on the same datasets. Plots of the loss function and IOU versus iterations are provided
in Supplementary Materials (model evaluation metrics section).

Table 2. Comparison between our proposed and other models (mean IOU).

SSS PSSNet CurveNet DGCNN

Train Val Train Val Train Val
βαβ-unit 0.928 0.894 0.742 0.697 0.691 0.656
α-hairpin 0.964 0.957 0.814 0.795 0.731 0.688
β-hairpin 0.998 0.983 0.845 0.833 0.749 0.711
αα-corner 0.933 0.991 0.781 0.732 0.621 0.571

The predictive power of a machine learning model is mainly determined by its feature
representation and feature extraction algorithms. The models considered in our compar-
ative experiment operate only with the 3D coordinates of protein atoms, however these
features were barely enough to provide acceptable recognition accuracy (Table 2). In con-
trast, our model operates with an extended set of specific structural features, encompassing
torsion angles, the spatial positions of atoms in the amino acid sequence, and the primary
protein sequence. The convolutional filters of our neural network blocks capture and
generalize the local geometric features of the protein sequence well, and the subsequent
blocks of Bi-GRUs capture the features of the global feature context.

2.2. Practical Evaluation of the Model: Key Issues

The proposed model was empirically tested to assess its accuracy and discover key
objections that might arise from structure segmentation and classification. A random
sample of 5000 SSS structures from PDB and AlphaFold was consolidated, and topology
compliance with the studied motifs was examined.

The main issues that arose from the classification and segmentation of structural motifs
were as follows (Figure 1):

(a) Capture of excess structure sections;
(b) Breakages in structure element links;
(c) Incorrect definition of corners (typical for the αα-corner motif (70◦–90◦)).

Despite the results of the model validation being quite satisfying (IoU = 0.92), the
estimated accuracy ranged between 0.83–0.85. Thus, we established several problems
specific to the topology of a specific type of SSS.

a. Capturing extra sections is a prerequisite for SSS with α-helix elements, and it
usually manifests if the distance between the last and first Cα atoms of the first and
the second structures, respectively, is 9.7 Å. However, the network at the output
from the GRU layer generates a feature map that captures both structures (Figure 1e).
This issue was fixed by reducing the number of neighbors in the knn-graph, when
generating features, or by producing a sufficiently larger sample of such structures
and subsequently retraining the model. The identification and extraction of such
elements from the PSSKB database are currently ongoing.

b. Breakages in structures generally occurred in low-resolution (>4.0 Å) PDB files, but
the proportion was insignificant and relatively narrow compared to the total size of
the consolidated databank.

c. The network identified curved helices with a large angle of inflection as two elements
with incorrectly defined angles for αα-corner structures. Rigorous analysis revealed
that the issue can be effectively resolved only if we performed retraining of the model
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on a meaningfully larger representative sample that covers all such elements; the
retraining and sample collecting are currently in progress.
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map for the problem of extra α-helix.

Despite the difference in accuracy between the actual and validation datasets, the
model managed SSS segmentation and classification tasks well. The difference in accuracy
suggests relatively high folding variability among the structures downloaded from PDB
and AlphaFold. Hence, the training dataset must be sufficiently extended, especially in
terms of negative examples, to improve the accuracy of segmentation and classification.
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The composition of super-secondary structures is simple combinations of α-helices,
β-hairpins, and short loops with a well-defined hydrophobic core involved in SSS stabi-
lization. The loop–helix, β-hairpin, and Greek key motifs are prominent representatives
of SSSs [30–32]. Characterization of such structures allows us to collect a catalog of au-
tonomously stable protein motifs and archetypes [30,31]. These structures also serve as
promising objects of study in protein physics (the study of folding), bioengineering (the
development of peptide mimetics), and biomedicine (the study of conformational changes
in aberrant forms of proteins compared with intact forms).

Medical proteomic research is mainly focused on the extensive study of the molecular
basis of a disease associated with the arrival of aberrant forms of proteins that are regularly
not found under normal (healthy) conditions. Aberrant proteins are frequently caused by
genetic polymorphisms, alternative splicing, and PTMs [33,34]. Such structural changes
associated with the disease can be localized in different types of SSSs. Numerous aberrant
forms of proteins are fraught with dire structural changes, including isomers of beta-
amyloid in Alzheimer’s disease [35], splice isoforms of osteopontins b and c in prostate
cancer [36], amino acid substitutions in protein C7 in type II diabetes [37], and PTMs of
proteins in oncological diseases [12].

Here, we present a new approach to frame the problem of SSS recognition and seg-
mentation based on the geometric characteristics of structures and spatial relationships
within a protein sequence. The main advantage of our method is a low requirement for
computing sources. We used a standard personal desktop computer with a typical GeForce
GTX 1650—4Gb video card for training and data processing in the PDB and AlphaFold2.0
databases. We also operated the PSSNet model with high recognition accuracy (mean
IoU > 0.84; F1 > 0.08) and annotation capability of >1.9 million SSSs of βαβ-unit hairpin,
β-hairpin, and αα-corner. This opens up wide margins for investigation on the PSSKB
resource. The model does not require a large training set, since sets of 2000 specimens were
used to train the model. Plots of GPU memory usage as a function of protein sequence
length can be found in Supplementary Materials (GPU memory usage section).

A distinctive feature of our model is its ability to recognize and segment the SSSs
within a protein sequence of arbitrary length, i.e., regardless of the sequence length. The
model can operate directly with any file in PDB format, including those with low data
quality, poor resolution, and sparse protein sequences. The only limitation of the model
is the amount of graphics processing unit (GPU) memory. Likewise, most current models
focus on recognition of only one certain type of structure and work only with a few prepared
datasets, resulting in relatively low numbers of recognized structures within the range of
thousands to tens of thousands.

The architecture of the proposed method is powered by a comprehensive combination
of CGNs, CNNs, Bi-GRUs, self-attention, and multi-head attention mechanisms, which
encourage network flexibility and easy adaptation to solve problems in structural biol-
ogy and bioinformatics. Primary examinations have shown that a model with minimal
modifications can predict the structural alphabet based on geometric characteristics for
differentiable molecular modeling problems. A subsequent investigation will target this
and other issues.

3. Materials and Methods
3.1. Data Preparation

Training, test, and validation datasets downloaded from the Protein Data Bank were
represented by the following types of SSSs: aβαβ-motif (beta-alpha-beta motif), aβ-hairpin,
an α-hairpin, and an αα-corner (70◦–90◦).

The datasets were generated using STRIDE, which takes a PDB file as input and
returns secondary structure assignments. Thereafter, data were manually curated by a
team of experts to ensure compliance with the declared types of SSS. Eventually, the sets of
positive and negative examples included almost 2000 and 4000 elements of SSS of each type.
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Training and test model datasets are available at https://doi.org/10.6084/m9.figshare.2152
9812.v1 (open access, accessed on 28 October 2022) [38].

The balance between positive and negative examples in packets supplied to the
network input was regulated by the software implementation. Before entering the network,
the coordinates of atoms x, y, and z were augmented (rotation around the x, y, and z axes
at a random angle and the y-axis with random jitter for each point using Gaussian noise
with zero-mean value and standard deviation of 0.08). Data augmentation was executed
dynamically during the training time for 40% of input structures.

Before entering the network, elements of amino acid sequence (AA codes and 3D
coordinates of the corresponding group of atoms (N, Cα, C, and O)) were extracted from
PDB files.

Ultimately, an array of 3D coordinates was generated to describe the 3D structure of
the protein. The final array of coordinates was applied to generate a graph, with each vertex
representing a Cα-atom in the main protein chain, connected by edges to the 32 nearest Cα-
atoms (KNN-graph, k = 32). Each edge and vertex of the graph contained scalar and vector
features describing the 3D geometry of the protein structure. The method for determining
the optimal value of k is described in the Supplementary Materials (determining the optimal
value of k (nearest Cα atoms)).

3.2. Feature Extraction and Input Encoding
3.2.1. Node-Level Features

The signs of a graph node are described by the following elements (Figure 2):
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• {sin, cos} ◦ {ϕ, ψ,ω}, where ϕ, ψ, and ω are the torsion angles calculated for Ci−1, Ni,
Cαi, and Ci and Ni+1;

• Unit vectors of the directions to the Cα-atoms in the main chain (
⇀

Vf 1= (Cαi+1 − Cαi)

and
⇀

Vr1 = (Cαi−1 − Cαi));

• Unit direction vectors to the C-atom in the main chain (
⇀

Vf 2 = (Ci+1 − Ci) and
⇀

Vr2 = (Ci−1 − Ci));

https://doi.org/10.6084/m9.figshare.21529812.v1
https://doi.org/10.6084/m9.figshare.21529812.v1
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• Cosines of the angles between vectors Vf 2, Vr2;
• The distance between the C-atom in the chain ‖Ci+1 − Ci−1‖;
• A unit vector that determines the conditional direction of the side chain (direction of

the Cβ atom),
→
Vo=Cβi–Cαi. This vector is calculated from the tetrahedral representa-

tion of the geometry of the N, Cα, and C atoms as follows:

→
Vo =

√
1
3
(a× b)
‖a× b‖ −

√
2
3
(a + b)
‖a + b‖

where vectors a and b are defined as a = Ni − Cαib = Ci − Cαi. This vector, together

with the forward and reverse vectors (
⇀

Vf 1,
⇀

Vr1) determines the orientation of the amino
acid residue in 3D Euclidean space.

• The amino acid sequence is encoded as a sequence of numbers (0–21).

3.2.2. Edge-Level Features

Graph edge features are described by the following elements:

• a unit vector defining the direction between neighboring vertices, Cαj − Cαi;
• the distance between the vertices of the graph is encoded using Gaussian radial

basis functions:

ϕ(r) = e−(εr)2
(r = ‖x− xi‖)

For each edge, the distance was encoded with 32 Gaussian functions, with centers
uniformly spaced in the range of 0–24 Å. The edge position code (i, j) was obtained using
a sinusoidal encoder, which is widely used in transformer models. This approach to the
positional encoding of sequences has been previously described in detail [39].

3.3. Network Architecture

The architecture of our model is based on a combination of the geometric vector
perceptron (GVP), graph neural network (GNN), and multi-layer gated recurrent unit
(GRU) methods (Figure 3). The network architecture is based on the encoder–decoder
principle, which is widely used in classification and segmentation problems. The encoder
generates a feature map based on the input data (node position in the graph, local topology,
vector, and scalar attributes of the node itself and its neighbors). The decoder extracts
information from the feature map and generates classification labels for the graph nodes.
The model was implemented using a binary classifier, and a separate model was trained
for each SSS in the training set. As data are being accumulated, a multiclass model that
works with a variety of structures has to be used in the future.

The GVP elements of the model architecture extract invariant and equivariant features
from a combination of scalar and vector representations of geometric features. In addition,
the GVP can approximate any continuous rotation and reflection invariant scalar function.
The architecture (GVP–GNN) uses GVP modules for feature extraction and the graph
convolutional network (GCN) mechanism for message, which passes between graph nodes
(messaging), feature aggregation of neighboring nodes and edges, and updates node
attachments during a propagation operation [40]. The GVP architecture has been previously
described in detail [41].
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A GVP-based neural network was used to predict amino acid sequences based on
the geometric characteristics of a protein and PPI (protein–protein interaction). Because
proteins are connected in sequential structures, we supplemented the model with bidirec-
tionally controlled recurrent units (Bi-GRUs) to highlight relationships between geometric
characteristics [41]. Adding GRU layers to the model significantly increased the predictive
accuracy and reduced the amount of time required to train the model. Table 3 shows the
architecture of the model and a brief description of the functions of the blocks.

Table 3. Model architecture and implementation details.

Block Layer Description

Encoder

Embedding Words in AA-sequence using a dense vector form.

GVP Module for learning vector- and scalar-valued functions over geometric
vectors and scalars.

Norm Layer normalization for vector features (L2-normalization).

GVPConv (5-layers)
Implements GVP transforms and uses message-passing mechanisms
from neighboring nodes and edges to aggregate a function of hidden
states and update node embedding at each graph propagation step.

Bi-GRU (2-layer module)
Recurrent unit with input and forget gates. The Bi-GRU considers two
separate sequences: from right to left and vice-versa. We considered
the sequence of the hidden states of the node features of the graph.

Self-attention

This mechanism allows the discovery of connections between elements
of the input sequence and the selection of those required for future
generations [42]. We considered the sequence of the hidden states of
the node features of the graph.

Decoder

GVPConv + Bi-GRU (5-layers) Decoder block to reconstruct and obtain the graph structure from the
encoder’s hidden state.

GVP Last GVP module.

Multi-head graph attention This module has a one-way scalar sigmoid output to predict node
labels [43].



Int. J. Mol. Sci. 2022, 23, 14813 9 of 12

The Adam optimizer was applied with a reduced learning rate when the accuracy
metric stopped the improvement process (start with a 1 × 10−3 and reduce factor of 0.5).
The Dice BCE loss was selected as the loss function, as it combines the Dice loss with the
standard binary cross-entropy (BCE) loss, which is generally the default for segmentation
models. Combining the two methods allowed for moderate diversity in the loss while
improving the stability of the BCE.

3.4. Training and Performance Evaluation

The model training process lasted 24 epochs for each SSS and models were assessed
on the validation datasets. During the learning process, the learning rate was changed
from 1 × 10−3 to less than 1 × 10−4 in order to reduce the learning rate on the plateau.
We used the intersection over union (IoU; also known as the Jaccard index) as the main
metric for assessing the quality of model predictions. Values from 0–1 show the extent to
which positions of two objects (reference [ground-truth]) predicted by the model coincide
according to the following equation:

IoU =
Area of Overlap
Area of Union

We considered the position of SSS in the reference and predicted structures and
evaluated the coincidence of their positions. The harmonic mean of the recall and precision
metrics (F1) were also evaluated (Table 4).

Table 4. Performance metrics: IoU and F1.

SSS Mean IoU (Training) Mean IoU (Validation) F1

βαβ-unit 0.928 0.894 0.978
α-hairpin 0.964 0.957 0.984
β-hairpin 0.998 0.983 0.991
αα-corner 0.933 0.991 0.994

4. Conclusions

Super-secondary structures are blocks of protein molecules with unique and compact
spatial arrangements. Such structures are stable outside the protein globule due to pro-
nounced hydrophobic cores. Structural biology considers SSSs as the nuclei of protein
folding and as starting structures when looking for the possible folding pattern of polypep-
tide chains while modeling protein structures. Our model combines GNN, CNN, and RNN
methods and suggests the following advantages:

• small datasets for rapid, efficient learning, and retaining;
• ability to generalize features on a relatively small training set;
• good recognition accuracy (mean IoU > 0.83);
• huge amounts of information (such as that in the PDB and AlphaFold) can be assessed

within a reasonable timeframe.

Our model can classify more than 2.3 million SSSs for all protein structures available
in the PDB and AlphaFold databases. The reliability and accuracy of the model were
demonstrated on four types of SSSs taken from the public Structural Elements Database
(PSSKB, https://psskb.org/, accessed on 28 October 2022); however, the model is generic
and can be applied to a wider set of SSS types. The assembled set of SSS structures opens up
new options for studying the uniqueness and compactness of protein spatial packing and
folding nuclei, and can also act as starting structures for searching for possible polypeptide
chain folding while modeling protein structures.

Future efforts will target the diversity of SSS types (Greek key, Rossmann fold, etc.) in
the segmentation model and replenishing the database. We will also focus on improving
annotations and ensuring the quality of SSS presentations. Furthermore, we will generate
sufficient information for users with extensive experience in structural biology and new

https://psskb.org/
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entrants into that. We will also tailor the database to meet the needs of the research
community and provide accurate SSS information for future updates.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232314813/s1. Reference [44] is cited in the supplementary materials.
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